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Abstract
We propose a method for blind identification of
FIR channels with periodic modulation. The time-
domain formulation in terms of block signals is
simple compared with existing frequency-domain
formulations. It is shown that the linear equations
relating the products of channel coefficients and
the autocorrelation matrix of the received signal
can be further arranged into decoupled groups. The
arrangement reduces computations and improves
accuracy of the solution; it also leads to very sim-
ple identifiability conditions and a very natural for-
mulation of the optimal modulating sequence se-
lection problem. The proposed optimal selection
minimizes the effects of channel noise and error
in autocorrelation matrix estimation; it results in a
consistent channel estimate when the channel noise

is white. Simulation results show the method yields
good performance: it compares favorably with ex-
isting subspace modulation- induced-cyclostationarity
method and it is robust with respect to channel or-
der overestimation.
Keywords: wireless communication, blind iden-
tification, periodic modulation.

1 Introduction
To achieve high-speed reliable communication, chan-
nel identification and equalization is necessary to
reduce intersymbol interference (ISI) in many com-
munication environments. Channel identification
and equalization can be achieved either by send-
ing training sequences, or by designing the equal-
izer based on a priori knowledge of the channel. A
priori knowledge is often not available in a radio
(wireless) communication environment and send-
ing training sequences reduced data transmission
rate. Blind channel identification and equalization,
which does not assume a priori channel knowl-
edge or send training data, have traditionally re-
lied on high-order statistics (HOS) of the station-
ary received data, but this usually requires rela-
tively long data which is needed to accurately es-
timate the HOS [9]. This motivates approaches
using only induced second-order cyclostationary
statistics.
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Blind identification and equalization of finite
impulse response channel (FIR) channels which
exploits cyclostationarity of second-order statistics
of the received data is first proposed in [1]. Vari-
ous schemes have since been proposed, e.g., [2, 3].
Cyclostationarity can be induced at the receiver
or at the transmitter. While receiver induced cy-
clostationarity is always through oversampling or
multiple sensing, many different schemes have been
proposed to induce cyclostationarity at the trans-
mitter. They include periodic modulation [4, 5],
repetition coding [6] and a combination of repeti-
tion and modulation[7] and filter bank precoding
[8].

We study the problem of blind channel identi-
fication with periodic modulation of source sym-
bols. We formulate the problem in time-domain
and in terms of block signals. The method exploits
the linear relation between the products of chan-
nel coefficients and the autocorrelation matrix of
the received signal and computes the products first
by solving a set of linear equations. The channel
coefficients are then obtained (to within a scalar
ambiguity) by computing the dominant eigenvec-
tor of an associated Hermitian matrix. We show
that the set of linear equations relating the products
of coefficients and the autocorrelation matrix can
be further arranged into decoupled groups. The
arrangement reduces computations and improves
accuracy of the solution; it also leads to very sim-
ple identifiability conditions, which depend on the
modulating sequence alone, and a very natural for-
mulation of the optimal modulating sequence se-
lection problem. The proposed optimal selection
minimizes the effects of channel noise and error in
autocorrelation matrix estimation.

The report is organized as follows. Section 2 is
the problem statement and preliminary. Section 3
establishes the identifiability conditions, proposes
an identification algorithm and discusses numer-
ical aspects associated with it. In Section 4, the
problem of selecting the modulating sequence is
formulated and solved. In Section 5, simulation
examples are given to illustrate the performance
of the proposed method. Section 6 is conclusions.

2 Problem statement and pre-
liminary

2.1 Problem statement
We consider the baseband transmission system. The
source symbol sequence s(n) is modulated by a
(real) periodic sequence p(n) with period N to ob-
tain the modulated sequence w(n) = p(n)s(n)
which is sent through the channel. The channel
is modelled as an FIR filter, whose input-output
relation is

z(n) =
L

∑

l=0

h(l)w(n − l) (2.1)

where h(n) is the impulse response of the channel
and L is the channel order.

The received signal sequence x(n) id the sum
of the filtered signal z(n) and an additive noise,
i.e.,

x(n) = z(n) + v(n) (2.2)

We propose a method for identifying h(n) using
second order statistics of x(n) and a method for
optimal design of the modulation sequence p(n).
The following assumptions are made throughout.

(A1) The source s(n) is zero mean, white, and
with unit variance.

(A2) The noise v(n) is stationary with zero mean
and is uncorrelated with s(n).

(A3) An upper bound L̂ on channel order L is
known and the period N > L̂ + 1.

2.2 Preliminary
Define the block received signal
x̄(n) :=

[

x(nN) · · · x(nN + N − 1)
]T

and
let the block signals w̄, s̄, z̄, and v̄ be similarly
defined. In terms of block signals the channel re-
lation (2.1) and (2.2) can be written as

x̄(n) = H0Gs̄(n) + H1Gs̄(n − 1) + v̄(n) (2.3)

where H0 ∈ C
N×N is a lower triangular Toeplitz

matrix with
[

h(0) · · · h(L) 0 · · · 0
]T

as its
first column, H1 ∈ C

N×N is an upper triangular
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Toeplitz matrix with
[

0 · · · 0 h(L) · · · h(1)
]

as its first row, and G ∈ R
N×N is an diagonal ma-

trix whose jth diagonal entry is p(j−1). Equation
(2.3) is a time-invariant description of the channel
in terms of block signals.

3 Channel identification

3.1 Identification equation: noise free
case

We consider first the noise free case, i.e., x(n) =
z(n). We assume for the moment that the chan-
nel order is known. The autocorrelation matrix of
x̄(n) can be computed from (2.3) as

Rx̄(0) = Ex̄(n)x̄(n)∗ = H0G
2H∗

0
+ H1G

2H∗

1
(3.1)

The equation is quadratic in the channel coeffi-
cients h(0), · · ·, h(L). If we consider the prod-
ucts h(k)h(l) as unknowns, then (3.1) is a system
of N(N + 1)/2 linear equations (we need only to
consider the upper triangular part.) It can be fur-
ther divided into L + 1 decoupled groups of equa-
tions with smaller dimensions, by exploiting the
Toeplitz structure of H0 and H1. We describe pre-
cisely the equations below.

We define Γj[Q] ∈ C
N−j as the vector consists

of the jth upper diagonal entries of the matrix Q ∈
C

N×N , and define the vector fj ∈ C
L−j+1 as

fj =
[

h(0)h(j)∗ h(1)h(j + 1) · · · h(L − j)h(L)
]

The L+1 decoupled groups of equations can then
be expressed as

Γj[Rx̄(0)] = Mjfj, 0 ≤ j ≤ L (3.2)

where the the klth entry of Mj ∈ R
(N−j)×(L−j+1)

is

(Mj)kl =











p(0)2, if k = l;
p(k − l)2, if k > l;
p(N − l + k)2, if k < l.

We note that the matrix M0 is a complex N × (L+
1) circulant matrix with

[

p(0)2 · · · p(N − 1)2
]T

as its first column. The matrix Mj can be ob-
tained from M0 by deleting its last j rows and last j
columns. Solving these L+1 sets of equations we
would get the products h(k)h(l)∗, k = 0, · · · , L,
l ≥ k.

3.2 Identifiability condition
Since we consider noise free case and choose N >
L + 1, so every set of equations in (3.2) is overde-
termined and consistent. If each matrix Mj is full
column rank then the products of channel coeffi-
cients can be solved uniquely as

fj = (MT
j Mj)

−1MT
j Γj[Rx̄(0)] (3.3)

Let Q be the Hermitian matrix whose ijth element
is h(i)h(j)∗. The channel coefficients h(0), · · · , h(L)

can be determined to within a scalar ambiguity by
computing the eigenvector of Q associated with
its largest eigenvalue. We thus have the follow-
ing sufficient condition for identifiability.

Identifiability condition: The channel is identifi-
able if each Mj in (3.2) is full column rank.

Since Mj depends only on the modulating se-
quence p(n), by choosing p(n) properly we can
always make Mj full rank. We thus conclude that
every channel is identifiable.

3.3 Identification algorithm
Based on the discussions so far, we propose the
following algorithm for the computation of chan-
nel coefficients. Assume that the modulating se-
quence has been chosen so that each Mj is full
rank.

Identification algorithm

step1: Compute estimate of correlation matrix Rx̄(0)

via time average

R̂x̄(0) =
1

K

K
∑

i=1

x̄(i)x̄(i)∗

where K is the number of data block.

step2: Compute the product coefficients by (3.3).

step3: Form the matrix Q defined previously and
compute its unit-norm eigenvector associated
with the largest eigenvalue.
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4 Optimal modulation sequence
We consider the general case, that is, the channel
noise is present, and discuss the problem of select-
ing the modulating sequence p(n) . We first pro-
pose an optimality criterion to select p(n) to re-
duce the effect of noise. We will find a class of
solutions which are optimal for noise attenuation.
Among this class of solutions, we then choose the
”best” p(n), with which the channel coefficients
can be most reliably computed.

4.1 Optimality criterion
Assume that the additive channel noise is white.
Then

Rx̄(0) = H0G
2H∗

0 + H1G
2H∗

1 + σ2IN (4.1)

where σ2 is the noise variance. From (4.1), noise
has contribution to only the diagonal entries of
Rx̄(0). Thus the L+1 groups of equations in (3.2)
remains the unchanged except that the j = 0 group
becomes

Γ0[Rx̄(0)] = M0f0 + σ2b (4.2)

where b =
[

1 · · · 1
]T ∈ R

N . Since σ2 is not
known, f0 can not be determined from (4.2). In-
stead the least squares solution f̂0 can be computed
as

f̂0 = (MT
0 M0)

−1MT
0 Γj[Rx̄(0)]

= f0 + σ2(MT
0 M0)

−1MT
0 b

To eliminate the effect of noise, we should choose
the modulating sequence so that the null space of
MT

0 contains b, or equivalently, we should make
R(M0) orthogonal to b. But this is impossible
since all entries of b and columns of M0 are posi-
tive. However, this suggests that we should choose
p(n) so that the angle between R(M0) and b is as
close to π/2 as possible. We note that each col-
umn of M0 makes the same angle with b since M0

is circulant. Let q be the first column of M0, i.e.,
q =

[

p(0)2 · · · p(N − 1)2
]T

and define

γ =
qT b

‖q‖2‖b‖2
.

We formulate the problem of selecting optimal p(n)
as the following optimization problem:

Minimize γ by choosing p(0), p(1), · · · , p(N − 1)

Subject to

1

N

N−1
∑

n=0

p(n)2 = 1 and p(n)2 ≥ δ > 0 for all n

4.2 Optimal solution
It turns out that for a given positive δ < 1, there
are N optimal sequences:

|p(m)| =
√

N(1 − δ) + δ, |p(n)| =
√

δ for n 6= m

where m is any integer between 0 and N − 1.
The optimal modulating sequences assume only
two values with a single peak and the rest assum-
ing the lower bound. In theory, where the peak
occurs does not matter since each optimal choice
gives the same γ and thus the same noise effect. In
practice, it does matter since different choices de-
fine different M0 and thus all the submatrices Mj .
In particular, the condition numbers of the matri-
ces MT

j Mj will be different. Making the condition
number small is crucial in obtaining reliable least
squares solutions in (3.3). Thus the proposed op-
timal choice of modulating sequence is one of the
N optimal sequences that results in the smallest
condition number of MT

j Mj .

5 Simulation results
To illustrate the performance of the proposed chan-
nel identification method, we consider the five-tap
channel used in [4]:
h(0) = 0.459 + 0.265j, h(1) = −0.2078− 0.12j, h(2) =

−0.467−0.27j, h(3) = 0.095+0.055j, h(4) = −0.031−
0.018j.

The input source symbols are drawn from an
i.i.d QPSK constellation. The additive channel noise
is white with normal distribution. The channel
identification performance is measured by the nor-
malized root-mean-squares error (NRMSE) defined
as

NRMSE :=
1

‖h‖2

√

√

√

√

1

I

I
∑

i=1

‖ĥ(i) − h‖2
2

where I is the number of Monte Carlo runs and
ĥ(i)is the estimate of the channel impulse response
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vector in the ith trial. For computation purpose,
the scalar ambiguity is removed by a least squares
fitting. The signal-to-noise ratio (SNR) is defined
as

SNR :=

√

√

√

√

1
N

∑N−1
n=0 E|z(n)|2
E|v(n)|2

For all simulations, I = 100.
Figure 5.1 shows the dependence of NRMSE

on the number of samples used in the computa-
tion for different choice of peak value index m in
the optimal modulating sequences. The choices
m = 0 and m = 1 give the best condition num-
ber and thus yield smallest NRMSE. In this simu-
lation, N = 6, δ = 0.5878, and SNR = 10 dB.

Figure 5.2 and Figure 5.3 compare the perfor-
mance of the proposed method with those of the
one cycle subspace method [5] and the structured
subspace method [4]. In this simulation, N =
6, δ = 0.5878, and m = 0. In Figure 5.2, the
SNR is fixed at 10 dB and in Figure 5.3 the num-
ber of samples is fixed at 1000. The results show
that the proposed method gives better performance
than the two subspace methods do.

Figure 5.4 shows the effect of channel order
over-estimation. For each channel order upper bound
L̂, 4 ≤ L̂ ≤ 12, the length of modulation sequence
N = L̂ + 2. The SNR is fixed at 10 dB and the
number of samples is 1000. The result shows that
as the channel upper bound increased from 4 to 12,
the NRMSE increases only 5 dB.
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Figure 5.1: NRMSE for optimal p(n) with differ-
ent peak value index m
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Figure 5.2: Comparison with subspace methods
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Figure 5.3: Comparison with subspace methods

6 Conclusions
We propose a method for blind identification of
FIR channels with periodic modulation of source
symbols. The time-domain formulation in terms
of block signals is simple compared with exist-
ing frequency-domain approaches. The method
exploits the linear relation between the products
of channel coefficients and the autocorrelation ma-
trix of the received signal as well as the decoupled
structure of the resulting linear system of equa-
tions. The identifiability conditions so derived are
particular simple: they depend on the modulat-
ing sequence alone. Indeed, with the proposed
method, any FIR channel is identifiable with an
appropriate choice of the periodic modulating se-
quence provided that the modulation period N ≥
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Figure 5.4: Robustness to channel order overesti-
mation

L+2 , where L is the channel order. In fact, almost
all periodic modulating sequences yield the chan-
nel identifiable. The optimal modulating sequence
selection problem formulated as one of minimiz-
ing the effects of channel noise and error in es-
timating the autocorrelation matrix is straightfor-
ward and easy to solve. The proposed optimal
solution also results in a consistent channel esti-
mate when the channel noise is white. Simulation
results show that the method yields good perfor-
mance: it compares favorably with existing sub-
space modulation-induced-cyclostationarity meth-
ods and it is robust with respect to channel order
overestimation.
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