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中文摘要

板是工程設計上(土木工程、機械工程、航空工
程…..等)之主要構件之一。Mindlin 板理論亦經常被
使用於板相關問題分析上。由於外力點荷重、點彎
矩及邊界之不連續性與尖角之存在，應力奇異點常
發生於板相關問題。該奇異點須準確地處理，方能
使得相關之數值分析解得到準確的答案。但依文獻
回顧，目前對 Mindlin 板理論，由於邊界不連續或
尖角之存在而引致之應力奇異階數，並未有一完整
之探討。更不用論將其應用於含有應力奇異點且幾
何較複雜問題之數值分析解。故本研究擬以三年之
時間，深入探討此相關問題。

於第一年，本研究將以特徵函數展開法
(eigenfunction expansion)，求解由於邊界不連續或
尖角之存在所引致 Mindlin 板應力奇異之解析漸近
解，以求得各種不同條件下之應力奇異階數及其對
應漸近解函數。

關鍵詞：Mindlin 板理論；應力奇異；特徵函數展
開法

1.  Abstract

Plates are widely used components in 
engineering applications for civil engineering, 
mechanical engineering, and aerospace engineering. 
The Mindlin plate theory is often applied to describe 
the behaviors of plates. It is well known that stress 
singularities arise in the mathematical solutions of 
plate problems, which can be due to concentrated 
forces and moments, discontinuities in edge 
conditions or sharp corner. It has been pointed out 
and numerically shown that if singularities due to 
discontinuities in edge conditions or sharp corners 
are not properly considered in numerical solutions, 

significant errors will occur in the calculated global 
behavior of plates, such as static deflection, free 
vibration frequencies, forced dynamic response, and 
critical buckling load. However, there is no 
comprehensive study in the stress singularities for the 
Mindlin plate theory. Consequently, it is also short of 
accurate numerical solutions for the plates with stress 
singularities. It is the main purpose of the three-year 
proposal to investigate the stress singularity 
behaviors of Mindlin plates due to discontinuities in 
edge conditions or sharp corner and apply these 
results to some well known numerical solution 
techniques to solve some complicate vibration 
problems involving stress singularities. 

In the first year, eigenfunction expansion 
approach will be applied to find the asymptotic 
solution for stress singularity behavior in the Mindlin 
plate theory. The singularity orders corresponding to 
various combinations of edge conditions will be 
determined and expressed in graphic form. The results 
will be compared with those for thin plate theory.

Keywords: Mindlin plate theory, stress singularities, 
eigenfunction expansion

2.  Motive and Goal

Stress singularities in elastic plates frequently 
arise due to boundary conditions along the plate edges 
and the geometry of the plates. As well known, stress 
singularities exist at sharp corners in plates with 
V-notches or with irregular shapes of holes. 
Analytically determining the stress singularity 
behavior at a sharp corner is important not only for 
fracture mechanics [1] but also for numerical analysis 
of any complex problem involving such a sharp corner 
[2,3].

Some studies on stress singularities in plates have 
been undertaken according to classical plate theory 
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(CPT) or the plane stress assumption. Williams [4,5] 
pioneered the investigation of stress singularities of 
homogeneous, isotropic sector plates under bending 
and in-plane extension, due to various homogeneous 
boundary conditions. Williams and Chapkis [6] further 
considered the stress singularities for polarly 
orthotropic thin plates. Dempsey and Sinclair [7] 
proposed a new form of Airy stress function to 
reexamine the stress singularities in isotropic elastic 
plates under extension. Hein and Erdogan [8] and 
Bogy and Wang [9] used the Mellin transformation to 
study the stress singularities for bi-material wedges, 
while Dempsey and Sinclair [10] used an Airy stress 
function for the same purpose. Meanwhile, Ting and 
Chou [11] applied Stroh’s approach [12] to examine 
the stress singularities at the vertex of anisotropic 
wedges under extension. Applying classical 
lamination theory, Ojikutu, Low, and Scott [13] 
considered stress singularities at the apex of a 
laminated composite wedge with simply supported 
radial edges. 

The stress singularities at the corners of 
moderately thick plates have seldom been addressed. 
Burton and Sinclair [14] considered the singularities 
due to six different combinations of homogeneous 
boundary conditions around a corner, for Reissner’s 
theory. The authors reduced the three field equations 
of Reissner’s theory to two Cauchy-Riemann 
equations by introducing a stress potential. Williams’ 
procedure was then applied to find equations 
characterizing the stress singularity behaviors. 
However, moment singularities but no shear force 
singularities were found in their solution. Based on the 
Mindlin plate theory, Huang et al. [15] investigated 
the stress singularities at the vertex of a sector plate 
with simply supported radial edges by finding the 
exact solution for free vibrations of such a plate. That 
solution yielded both the moment singularity and the 
shear force singularity. The great similarity between 
Reissner’s theory [16] and Mindlin’s theory [17] leads 
one to expect very similar singular behaviors 
according to these two theories. Consequently, the 
singularity behaviors in thick plate theories require 
further study to resolve the conflicts between the 
conclusions of Burton and Sinclair [14] and those of 
Huang et al. [15]. 

This study thoroughly investigates the Williams 
type stress singularities in first-order shear 
deformation plate theory (FSDPT) due to ten different 
combinations of homogeneous boundary conditions. 
The three field equations in the first-order shear 
deformation plate theory are directly solved by 
adopting the eigenfunction expansion method recently 
proposed by Xie and Chaudhuri [18,19] for studying 
stress singularities in a three-dimensional problem. 
Notably, the method proposed by Xie and Chaudhuri 
[18,19] provides the same three-dimensional 
asymptotic stress fields in the vicinity of the front of 
crack as those obtained by Hartranft and Sih [20], 
even though the solution methodology used by 

Hartranft and Sih [20] is more complex than Xie and 
Chaudhuri’s [18,19]. This study explicates not only 
the equations characterizing the moment and shear 
force singularities, but also the corresponding 
asymptotic displacement fields for stress singularities. 
The singularity orders of moments and shear force 
variations with the corner angles are graphically 
depicted for the various homogeneous boundary 
conditions.  The obtained stress singularity orders are 
compared with those published in different theories or 
approaches, and especially in Williams’ solution [4] 
for a thin plate.

3. Contents of the Research

3.1 Methodology

The equilibrium equations with no external loading, 
in terms of displacement components in polar 
coordinates in the first-order shear deformation plate 
theory are given
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where W is the transverse displacement of the 
midplane; rΨ  and θΨ  are the bending rotation of 
the midplane normal in the radial and circumferential 
directions; respectively, h is the thickness of the plate; 

)1(12/ 23 υ−= EhD  is the flexural rigidity; E is the 

modulus of elasticity; υ  is Poisson’s ratio; 2κ is 
the shear correction factor, and G is the shear 
modulus.

On the basis of separation of variables, the 
displacement components are assumed to take the 
following form:
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where p is commonly a complex number. Substituting 
Eq. (4) into Eqs.(1-3) with careful arrangement yields,
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where the primes denote differentials with respect to r. 
The coupled ordinary differential equations (Eqs. (5)) 
are solved using the Frobenius method.

3.2 Singularity of bending moments
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where λcan be a complex number. Obviously, the 
real part of λ  must be larger than zero to satisfy the 
regularity condition for the displacement components, 
as r approaches zero. The relations between stress 
resultants and displacement components reveal that 
the series given in Eq. (6) can lead to singular 
moments in the vicinity of r equal to zero, but no 
singularity for shear forces. (4i)

Substituting Eq. (6) into Eqs. (5) and satisfying 
the resulting equations corresponding to the smallest 
order in r (i.e., m=0) yield

)1( −±= λip and )1( +±= λip . (7)
The general asymptotic form for the displacement 
components can be simply written as follows,
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Those coefficients in Eqs (8) and the values of 
λ are specified by the radial boundary conditions of a 
wedge. Table 1 lists the characteristic equations for λ
corresponding to different combinations of boundary 
conditions. The characteristic equations based on thin 
plate theory [4] are also summarized in Table 1. 
Obviously, the characteristic equations for different 
plate theories are quite different, except for the case 

with simply supported radial edges. Figure 1 shows 
the variation of the smallest positive real part of λ
with the vertex angle for different boundary conditions. 
The details of derivation of the characteristic
equations and comparison of the values of λ  for 
different plate theories are given in [22].

3.3 Singularity of shear forces
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for Eqs. (5), one is able to find the general asymptotic 
form for the displacement components simply written 
as follows,
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The coefficients 214321 and,,,,, BBAAAA are 
also determined from the radial boundary conditions. 
Table 2 lists the characteristic equations for λ
corresponding to different combinations of boundary 
conditions. Figure 2 shows the variation of the 
smallest positive real part of λ  with the vertex angle 
for different boundary conditions.

4. Discussion

This investigation has presented the Williams 
type asymptotic solution at a corner of a thick plate 
with various boundary conditions using an 
eigenfuction expansion technique to solve the three
partial differential equations for displacement 
components in first-order shear deformation plate 
theory. The characteristic equations for determining 
the singularity orders for moments and shear forces at 
the corner, with corresponding corner functions for 
various boundary conditions, were also fully 
developed. Notably, under identical boundary 
conditions, the equations characterizing the singularity 
behaviors of moments are totally different from those 
characterizing the singularity behaviors of shear 
forces. 

The validity of the solution was confirmed by
comparing the moment and shear force singularity 
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behaviors for type I simply supported conditions with 
those from the exact solution of free vibrations of a 
sector plate with the same boundary conditions along 
radial edges. Furthermore, the obtained characteristic 
equations for a free-free boundary condition were
consistent with those for a completely free wedge 
from three-dimensional elasticity solution.

The characteristic equations for first-order shear 
deformation plate theory are completely different from 
those for the classical thin plate theory, except in the 
case of simply supported (S(I)) radial edges. The 
boundary conditions and the vertex angle determine 
which theory, FSDPT or CPT, produces a stronger 
moment singularity. Nevertheless, the classical theory 
always leads to a stronger shear force singularity than 
does the first-order shear deformation plate theory 
because the former does not consider the shear 
deformation. 

The corner functions corresponding to various 
boundary conditions presented here can be applied to 
numerical analysis for the complex problems of 
moderately thick plates with corner singularities. 
McGee et al. [23] and Leissa et al. [3] applied the Ritz 
method using the corner functions for classical plate 
theory as admissible functions to examine the free 
vibrations of skewed plates and sectorial plates.

5. Comment and Conclusion

We have achieved the goals of the project 
given in the proposal. Based on the results in 
this work, one paper has been published in
International Journal of Mechanical Science
[22]. This work has also been extended to 
investigate the stress singularities in 
bi-material plates, which has been published in 
Composite Structure [24].
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Table 1 Comparison of characteristic equations for first-order shear deformation

plate theory and classical plate theory

Characteristic equationsCase 

No.

Boundary

conditions FSDPT CPT

1 Simply supported 

(I)

-Simply supported 

(I)
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7 Simply supported 
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8 Clamped- Simply 
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10 Simply supported 
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Note: * S: symmetric case,  A: anti-symmetric case

Table 2 Characteristic equations for the singularities of shear forces
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Boundary conditions S (I)-S(I), F-F,

C-C, S(II)-S(II)

C-F, S(I)-F, S(II)-F S(I)-C, C-S(II),

S(I)-S(II)

Characteristic 

equation

02/cos =αλ 0cos =αλ
0sin =αλ
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Fig. 2 Variation of minimum positive λ with vertex angle α  for FSDPT
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