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1. Abstract

Plates are widely used components in
engineering applications for civil engineering,
mechanical engineering, and aerospace engineering.
The Mindlin plate theory is often applied to describe
the behaviors of plates. It is well known that stress
singularities arise in the mathematical solutions of
plate problems, which can be due to concentrated
forces and moments, discontinuities in edge
conditions or sharp corner. It has been pointed out
and numerically shown that if singularities due to
discontinuities in edge conditions or sharp corners
are not properly considered in numerical solutions,

significant errors will occur in the calculated global
behavior of plates, such as static deflection, free
vibration frequencies, forced dynamic response, and
critical buckling load. However, there is no
comprehensive study in the stress singularities for the
Mindlin plate theory. Consequently, it is also short of
accurate numerical solutions for the plates with stress
singularities. It is the main purpose of the three-year
proposal to investigate the stress singularity
behaviors of Mindlin plates due to discontinuities in
edge conditions or sharp corner and apply these
results to some well known numerical solution
techniques to solve some complicate vibration
problems involving stress singularities.

In the first year, egenfunction expansion
approach will be applied to find the asymptotic
solution for stress singularity behavior in the Mindlin
plate theory. The singularity orders corresponding to
various combinations of edge conditions will be
determined and expressed in graphic form. The results
will be compared with those for thin plate theory.

Keywords: Mindlin plate theory, stress singularities,
eigenfunction expansion

2. Motiveand Goal

Stress singularities in elastic plates frequently
arise due to boundary conditions along the plate edges
and the geometry of the plates. As well known, stress
singularities exist at sharp corners in plates with
V-notches or with irregular shapes of holes.
Analytically determining the stress singularity
behavior at a sharp corner is important not only for
fracture mechanics [1] but aso for numerical analysis
of any complex problem involving such a sharp corner
[2,3].

Some studies on stress singularities in plates have
been undertaken according to classical plate theory



(CPT) or the plane stress assumption. Williams [4,5]
pioneered the investigation of stress singularities of
homogeneous, isotropic sector plates under bending
and in-plane extension, due to various homogeneous
boundary conditions. Williams and Chapkis [6] further
considered the stress singularities for polarly
orthotropic thin plates. Dempsey and Sinclair [7]
proposed a new form of Airy stress function to
reexamine the stress singularities in isotropic elastic
plates under extension. Hein and Erdogan [8] and
Bogy and Wang [9] used the Mellin transformation to
study the stress singularities for bi-material wedges,
while Dempsey and Sinclair [10] used an Airy stress
function for the same purpose. Meanwhile, Ting and
Chou [11] applied Stroh’'s approach [12] to examine
the stress singularities at the vertex of anisotropic
wedges under extension. Applying classica
lamination theory, Ojikutu, Low, and Scott [13]
considered stress singularities at the apex of a
laminated composite wedge with simply supported
radial edges.

The sdtress singularities at the corners of
moderately thick plates have seldom been addressed.
Burton and Sinclair [14] considered the singularities
due to six different combinations of homogeneous
boundary conditions around a corner, for Reissner’'s
theory. The authors reduced the three field equations
of Reissner's theory to two Cauchy-Riemann
equations by introducing a stress potential. Williams'
procedure was then applied to find equations
characterizing the stress singularity behaviors.
However, moment singularities but no shear force
singularities were found in their solution. Based on the
Mindlin plate theory, Huang ef al. [15] investigated
the stress singularities at the vertex of a sector plate
with simply supported radial edges by finding the
exact solution for free vibrations of such a plate. That
solution yielded both the moment singularity and the
shear force singularity. The great similarity between
Reissner’s theory [16] and Mindlin's theory [17] leads
one to expect very similar singular behaviors
according to these two theories. Consequently, the
singularity behaviors in thick plate theories require
further study to resolve the conflicts between the
conclusions of Burton and Sinclair [14] and those of
Huang et al. [15].

This study thoroughly investigates the Williams
type stress singularities in  first-order shear
deformation plate theory (FSDPT) due to ten different
combinations of homogeneous boundary conditions.
The three field equations in the first-order shear
deformation plate theory are directly solved by
adopting the eigenfunction expansion method recently
proposed by Xie and Chaudhuri [18,19] for studying
stress singularities in a three-dimensional problem.
Notably, the method proposed by Xie and Chaudhuri
[18,19] provides the same three-dimensional
asymptotic stress fields in the vicinity of the front of
crack as those obtained by Hartranft and Sih [20],
even though the solution methodology used by

Hartranft and Sih [20] is more complex than Xie and
Chaudhuri’s [18,19]. This study explicates not only
the equations characterizing the moment and shear
force singularities, but also the corresponding
asymptotic displacement fields for stress singularities.
The singularity orders of moments and shear force
variations with the corner angles are graphically
depicted for the various homogeneous boundary
conditions. The obtained stress singularity orders are
compared with those published in different theories or
approaches, and especially in Williams' solution [4]
for athin plate.

3. Contents of the Research
3.1 Methodology

The equilibrium equations with no external loading,
in terms of displacement components in polar
coordinates in the first-order shear deformation plate
theory are given
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where W is the transverse displacement of the
midplane; Y, and Y, are the bending rotation of
the midplane normal in the radial and circumferential

directions; respectively, his the thickness of the plate;
D= ER?/12(1- u?) is the flexura rigidity; E is the

modulus of elasticity; U is Poisson’s ratio; k2is
the shear correction factor, and G is the shear
modulus.

On the basis of separation of variables, the
displacement components are assumed to take the
following form:

Y (r.g)=eMy (r), Yq(r.q)=e"y4(r), and
W(r,q) = e”w(r), (4)

where pis commonly a complex number. Substituting
Eq. (4) into Egs.(1-3) with careful arrangement yields,
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gr\:ith simply supported radial edges. Figure 1 shows
;

e variation of the smallest positive rea part of /
with the vertex angle for different boundary conditions.
The details of derivation of the characteristic
equations and comparison of the values of / for
different plate theories are givenin [22].
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where the primes denote differentials with respect to r.
The coupled ordinary differential equations (Egs. (5))
are solved using the Frobenius method.

3.2 Singularity of bending moments

Let
Y (=8 am!' ™", yar = &by’ 7,
m=0 m=0
and wW(r)= & ¢y’ T2, (6)
m=0

where can be a complex number. Obviously, the

real part of / must be larger than zero to satisfy the
regularity condition for the displacement components,
as r approaches zero. The relations between stress
resultants and displacement components reveal that
the series given in Eq. (6) can lead to singular
moments in the vicinity of r equal to zero, but no
singularity for shear forces.

Subgtituting Eq. (6) into Egs. (5) and satisfying
the resulting equations corresponding to the smallest
order in r (i.e., m=0) yield

p==%i(/ -1 and p==i(/ +1). (7
The general asymptotic form for the displacement
components can be simply written as follows,

Y (r,q) = (A cos(/ +1)g+ Ay sin(/ +Dg +
Agcos(/ - 1)g+ Agsin(/ - Dg)r’ +o(r' *?)
(89)
Yq(r,q) =(Acos(/ +Dg- Asin(/ +1)q +

koA cos(l - 1)q - koAgsin(l - Dg)r' +o(r’ *?)
(8b)
W(r,q) = (Gceos(/ +1)g + Gsin(/ +Dg +

aAscos! - Dg +gAysin( - Dg)r' H+o(r! )
(8c)
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Those coefficients in Eqgs (8) and the values of
| are specified by the radial boundary conditions of a
wedge. Table 1 lists the characteristic equations for /
corresponding to different combinations of boundary
conditions. The characteristic equations based on thin
plate theory [4] are also summarized in Table 1.
Obviously, the characteristic equations for different
plate theories are quite different, except for the case

(92)

Starting with assuming
y,= a Ean/ +2m+l . Vg = A Eznf/ +2m+l . and
n=0 n=0
w= & Cyr! *2" (10)
2n=0
for Egs. (5), oneis able to find the general asymptotic
form for the displacement components simply written

asfollows,

Y, (r,q) =[Acos/ g+ Asinl g+

Aycos(2+/ )g+ Asin(2+/_)q]r7+1+0(r7+3)
Y4(r.q) =[Bicosl g+ Bysinl g+
Aycos(2+7)q- Asin(2+1)glr *+o(r *3)
W(r,q) =[h(Aicos] g+ Ay sinl q) +
I,(Bycosl g- Bysinl g)r +o(r' *2)

(11a-11c)
where /= '2D (3-u+@+u)@+7)) and
2k“Gh (4i)
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The coefficients A, A, A3, Ay, Bj,and B, are
also determined from the radia boundary conditions.

Table 2 lists the characteristic equations for /
corresponding to different combinations of boundary
conditions. Figure 2 shows the variation of the

smallest positive real part of /  with the vertex angle
for different boundary conditions.

4, Discussion

This investigation has presented the Williams
type asymptotic solution at a corner of a thick plate
with various boundary conditions using an
eigenfuction expansion technique to solve the three
partial differential equations for displacement
components in first-order shear deformation plate
theory. The characteristic equations for determining
the singularity orders for moments and shear forces at
the corner, with corresponding corner functions for
various boundary conditions, were aso fully
developed. Notably, under identica boundary
conditions, the equations characterizing the singularity
behaviors of moments are totally different from those
characterizing the singularity behaviors of shear
forces.

The validity of the solution was confirmed by
comparing the moment and shear force singularity



behaviors for type | simply supported conditions with
those from the exact solution of free vibrations of a
sector plate with the same boundary conditions along
radial edges. Furthermore, the obtained characteristic
equations for a free-free boundary condition were
consistent with those for a completely free wedge
from three-dimensional elasticity solution.

The characteristic equations for first-order shear
deformation plate theory are completely different from
those for the classical thin plate theory, except in the
case of simply supported ((1)) radial edges. The
boundary conditions and the vertex angle determine
which theory, FSDPT or CPT, produces a stronger
moment singularity. Nevertheless, the classical theory
always leads to a stronger shear force singularity than
does the first-order shear deformation plate theory
because the former does not consider the shear
deformation.

The corner functions corresponding to various
boundary conditions presented here can be applied to
numerical analysis for the complex problems of
moderately thick plates with corner singularities.
McGee et al. [23] and Leissa et al. [3] applied the Ritz
method using the corner functions for classical plate
theory as admissible functions to examine the free
vibrations of skewed plates and sectorial plates.

5. Comment and Conclusion

We have achieved the goals of the project
given in the proposal. Based on the results in
this work, one paper has been published in
International Journal of Mechanical Science
[22]. This work has also been extended to
investigate the stress singularities in
bi-material plates, whichhas been published in
Composite Structure [24].
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Table 1 Comparison of characteristic equations for first-order shear deformation

plate theory and classical plate theory

Case Boundary Characteristic equations
No. conditions FSDPT CPT
1 Simply supported |(cos{ - Da/2)(cos( +Da/2)=0 (S*) cosal =-cosa (S*)
(D (sin(/ - Da/2)(&n(/ +Dal2)=0 (A%) cosal =+cosa (A%)
-Simply supported
(D
2 Clamped-Free 72 24n2 - 12(1- N2 gn2
sin2/a=4 I“(1+u)“sin“a sinzla:4 /“@A- u)“sin“a
(3-w)@+uw) B+u)1- u)
3 Simply supported sin2la =1 sin2a i I (1-u) .
sn2/a=———-+*sin2a
(I> - 3_ u
- Free
4 Simply supported sin2l a =1 sin2a
pey Supp in2ia =18 ghog
(D - 3+u
- clamped
5 Free-Free sinla =-1 sha (Sx -
. . (59 sin/a :-lll—glgna (S%)
sinla =1 sina (A%) -3-u




I (1- u)

sin/a =

sina (A%)

6 sinla =-/sna (S%)
sin/a - 1@+ (1+u)sina (§%) _ .
Clamped-Clamped -3+u sn/a =/sna (A%
sin/ a :Msina (A%)
-3+u
7 Simply supported sinla=-1 sina (S%)

(1D
-Simply supported

(ID

sinl a =1 sina (A%

8 Clamped—- Simply
supported (II)

2 2
- + .
—Mgnz

sn?/a-=
3- u)A+uw)

9 Simply supported
(D
-Simply supported
(1D

sin2la =1 sin2a

10 Simply supported
(ID

-Free

sin/a =%/ sina

Note: * S: symmetric case,

A: anti-symmetric case

Table 2 Characteristic equations for the singularities of shear forces




Boundary conditions S(D-S(1), E-F, C-F, S(1)-F, (1N)-F S()-C, C-4(11),
C-C, S(11)-5(11) S(H-(11)

Characteristic cos/al2=0 cos/ a=0 -
_ — — sn/a=0
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