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Abstract

Future B3G heterogeneous access network is an integrated network, which consists of
PAN, WLAN, and cellular network. The B3G network can provide users always-on and
ubiquitous services regardless of their geographical location, moving speed, service rate, and
quality of service. The wireless spectrum is scarce so the radio resource management schemes
(including: spectrum efficiency, throughput, call admission control and etc.) have to be
carefully designed. Hence, the project focuses on developing radio resource management

technologies on WCDMA/WLAN and macro-cell/micro-ell heterogeneous access networks.

For the WCDMA/WLAN heterogeneous access network, the system performance of
heterogeneous access network is firstly analyzed. We firstly develop a radio resource index
(RRI) to estimate the radio resource required for a call connection in WCDMA cellular
systems (Part 1). The RRI can transform traffic parameters and quality-of-service (QoS)
requirements of the call connection into a measure of resource in a unified metric, while
keeping QoS requirements of existing calls guaranteed. Also, a Q-learning-based multi-rate
transmission control scheme (Q-MRTC) for radio resource control (RRC) in WCDMA
systems is proposed (Part 2). Here, the multi-rate transmission control problem is modeled as
a semi-Markov decision process (SMDP). And we successfully apply a real-time
reinforcement learning algorithm, named Q-learning, to accurately estimate the transmission
cost for the multi-rate transmission control. As to the WLAN, the weighted fairness is
investigated for providing differentiated services (Part 3). A Markov chain queuing model is
proposed and the closed form solution is derived. The proposed model exactly describes the
relationship between access probability and contention window. The simulation results justify

the validity of the analytic model.

For the macro-cell/micro-cell heterogeneous access network, a joint power and rate
assignment (JPRA) algorithm for multirate soft handoff is proposed (Part 4). It can achieve
power balancing between cells for soft handoff better than the conventional site-selection
diversity transmission (SSDT) scheme. Simulation results show that the JPRA algorithm can

achieve lower forced termination probability and higher system throughput.

Keywords: heterogeneous access network, Beyond 3™ access network (B3G), WCDMA,

WLAN, radio resource management, call admission control, soft handoff.
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Abstract

In this paper, a radio resource index (RRI) is derived to estimate the radio resource required for a call
connection in WCDMA cellular systems. An analytical model is proposed and large deviation techniques are
adopted to obtain the RRI. The RRI can transform traffic parameters and quality-of-service (QoS) requirements
of the call connection into a measure of resource in a unified metric, while keeping QoS requirements of existing

calls guaranteed.
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I. INTRODUCTION

The amount of radio resource required by a call connection in WCDMA is generally determined
by its traffic parameters and QoS requirements. If a transformation that maps these parameters and
requirements into a radio resource index (RRI) exists, it will be useful to radio resource management
in WCDMA cellular systems [1].

The concept of RRI for WCDMA cellular systems is similar to that of effective bandwidth for ATM
networks. However, in the derivation of RRI, the interference from both home cell and adjacent
cells, the required power for each connection, and the random access behaviour of MAC layer on the
interference are to be considered. Moreover, the radio resource is constrained by a packet dropping
ratio in order to guarantee the call-level requirement, while the bandwidth of an ATM node is a
pre-defined hard capacity.

The algorithms to allocate radio resource has been studied in many literature [2], [3]. These al-
gorithms just allocated power to each user for fulfilling the required BER. However, from the QoS
architecture in WCDMA [4], there are still some requirements other than the BER requirement, such
as the packet error ratio and the delay, etc. If the allocated power considers only the BER, some
requirements may not be satisfied to the time varying interference level. The characteristics of the
interference process are influenced by the number and the characteristics of the active connections.
In order to fulfill the BER and other requirements, a longer time scale interference process should be
considered.

In this paper, we study the radio resource allocation of real-time connection in WCDMA cellular
systems. We here define BER as the packet-level requirement and the packet dropping ratio and
the tolerable delay as the call-level requirements. The radio resource allocation algorithm considers
both the packet-level requirement and the call-level requirements. The RRI is derived for uplink call
connection as an indication for base station to estimate the amount of radio resource used by the user
at receiver side. We first define analytical elements in a model to equivalently describe the behaviour
of the system. Some properties are developed to derive the input and output relationship of the
analytical elements. We then form the failure process consisted of all the dropped packets due to
either excess delay in the transmitter or the channel error. In order to fulfill the BER and dropping
ratio requirement, we can find that the required radio resource, converted into the unit of power, is

in terms of the SIR, source traffic characteristics and call-level requirements. Based on the concept of



multiplexing different users on the shared channel, we finally calculate the equivalent radio resource
index consumed by each user at the base station side. The RRI performs as a function mapping from
a parametric space, which is constituted by traffic parameters and QoS requirements, to the metric
space, which is of unified metric to each different connections, while keep QoS requirements of all
existing calls guaranteed. We describe the overall operations and the model of the system in section
II. The Radio Resource Indicator is derived In section III. Results and conclusions are discussed in

section IV.

II. SYSTEM MODEL

We assume the connection with bursts, of which packets of a burst arrive in a batch fashion. The
head-of-line packet of a burst is firstly sent as a request for resource reservation, where the request
permission probability 7, is determined and broadcasted by the radio network controller. If the first
packet is not permitted to transmit in this frame or its transmission is corrupted in the air interface,
it will retry. If the first packet fails to transmit successfully or be acknowledged before the maximum
tolerable dalay, the whole burst will be dropped. Once the first packet is successfully acknowledged,
the remaining packets of burst can be sequentially sent without any further request. The packet sent
out but corrupted in the air interface would be discarded by the receiver. We set a SIR threshold,
STRy, to determine if the packet is successfully received or not. We can set the maximum system load
Iy, and the required received power to transmit information in a basic rate with required SRy is P?.
And we assume that the call-level QoS requirements of user i are the packet dropping ratio, R}, ;, and

the maximum tolerable delay, Mj,.

l

Parameter
Transformer f

l Queue

A(t) D,(t)
— —

Permission Pil(t) Decision
Controller Processor

Fig. 1. The analytical model of the uplink connection i in WCDMA.
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There are N, connections in the uplink of WCDMA cellular systems. The analytical model for
uplink connection ¢ is shown in Fig. 1, where the capital letter X is to represent the cumulative
process of a process.The A;(t) denotes the arrival process of user i. The H,(n) is the access process for
arrivals in permission controller, where packets are transmission permitted or dropped. The dropped
packets are directed toward a failure process denoted by Fj ;(t); the permitted packets form an output
process denoted by B;(t). Subsequently, the process B;(t) enters into the decision process denoted by
H.(n). The decision processor determines the way the packet goes in the light of the level of aggregated
interference process denoted by I, (t), which is the summation of the adjacent-cell interference I,(¢) and
the home-cell interference I, (t). The transmission power P; of the transmission packet of connection
i forms a process [;(t) on the air interface, which indicates the power component contributed by
connection ¢ onto the transmission channel. If P;/[,(t) is less than SIRy, the packet will be directed

to a failure process Fy;(t), otherwise, the packet will be successfully received and forms a departure

Ny

process, denoted by D;(t). Note that for convenience, I;(t) = >, I;(t) including that of user 7 is

assumed, which would be the upper-bounded interference for each user.

III. ANALYSIS

The arrival process A;(t) can be decomposed into a point process A7(t) and a burst length process
Al(n). The compound process has the property described in lemma 1.
Lemma 1:
The arrival process A;(t), consisting of a point process A7(¢) and a length process of the n-th burst

Al(n), has the Gartner-Ellis Limit, denoted by A4, (6), which can be expressed as

A, (0) = Maz (A (0)). (1)

Lemma 2:
Consider the point process A7(t) through the permission controller with access processH,(n). Let
Ap,(0) be the Gartner-Ellis Limits of the H,(n). The point process output from the permission
controller for A7(t), denoted by B (t), has the Gartner-Ellis Limits Apr(f) obtained by

Apr(6) = Aar (A, (0)). (2)
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O

The burst length process Bl(n) of the output process B;(t) is preserved the same as Al(n). The

Gartner-Ellis Limits of B;(t), denoted by Ag,(0), can be directly written as

Ap,(0) = AB;(ABg(Q))
= Apr(Ag(9)). (3)

Lemma 3:
The arrival process A;(t) is divided into two sub-flows: B;(t) and Fy;(t). And the Gartner-Ellis Limit
of I ;(t) can be expressed as
Apy,(0) = Ma, (0) — A, (0). (4)

O

Lemma 4:
The outage probability of connection i, denoted by R, related to the aggregated interference can be
obtained by
Rog = lim PrlL(t) € G| ~ e, (G, (5)

p—00

where G; = {I,|P;/I, < SIRy}, A}, (G;) is the rate function of interference process, and N, is the total
number of calls in WCDMA.

O
Lemma 5:
The Gartner-Ellis Limits of the decision process H.(n), denoted by Ay, (), can be derived as
Ap, (0) = log(e?~ 1@ 4 1 — ¢7A1 (G, (6)
O
The failure process A, () from the decision processor can be gotten by
AR, (0) = Ap,(Ap.(0)). (7)

Similar to Eq. (4), Ap,(#) can be yielded as
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Based on these results derived before, we can predict the packet dropping ratio for each connection.
For a given packet dropping ratio requirement R}, ;, we can obtain a channel condition constraint by
the following lemma.

Lemma 6:
For the QoS requirement R}, ;, the aggregated interference process I,(t) on connection ¢ has the con-
straint given by

1 — RY.
A; (Gy) > —log(1 — ——=21), (9)

Ts
where 7 is the successful probability of a burst from the permission controller.
<pf>
The Gartner-Ellis Limits for a general process Z(t), denoted by Az(#), has two properties. As 6§ — 0,
it equals to zero and its derivative equals to the mean of the process p..

The packet dropping ratio of connection ¢ can be derived as

Roli) = Jim g 0)
+ Jim A (0) (10)
For A%, (0) in the first term of (10), it can be obtained by
Ny (@),
L ana )] dha(An (A (9))
g ,_, de 9o
_ a0 dha(0)
N df 6=0 df, 01=Ap, (A Al 9))
dA g, (6) A (0)
df, fa=A Al (0) dg 6=0
_dALO)] AL (8)]  dAg,(6)
g ,_, dé, 8,—0 do> |y o
dA i (0)
|,
= A, = A, Ts fhal, (11)

and 7 is given in Eq. (?7). For A%, () in the second term of (10), it can be derived as

AIFQ,z‘(t) (0) ’9

=0



_ As(An(0)
do =0
_ dA g, (0:) ~dAy (9)
dbr 1y do|,_,
B dABi(el) . 1 FE [Hc(t)@eHc(n)}
R PR B [efHem)] —0
_ dAp,(0;)  lim B H.(n)
d«91 01=0 n—0o0 n
@) (S La ()
d01 01=0 n—00 n
dAg,(01)
= — -EL(Tt(n
e AR
= g, - exp{—A7(Gi)}. (12)
Therefore, Rp(i) can be rewritten as
Ro(i) = (ma, = pa,, - 7o - pat
s, - exp{=A7 (Gi)}) /. (13)

Consequently, given the QoS constraint RD(Z') < Rp;, A7, (G;) can be reformatted and obtained by

1 — RY .
A (Gy) > —log(1 — ——21), (14)

TS
This result shows us that the function A} (G;) measuring the set G; should satisfy condition such
that the outage probability faced by this user can fulfill the packet dropping ratio. As 1 — Rp;

approaches 7, that is the packet dropping due to channel loss, the required power A} (G;) should be

increased.

Lemma 7: The Required Power for Fulfilling Dropping Ratio

1-R

For a given Gartner-Ellis Limits Ay, (6) with constraint A7 (G;) > —log(1 — ff”i ), and given that 6*

is a pre-set value. The required power for fulfilling the packet dropping ratio can be set as

_ log(1 = =P + Ay, (6)

Ts

i = o

-SIR,



<pf>

We can see that

(G = inf (A} (o)

aeGy
- S%p{sféo 6= A (0))
s 1_:%)' (15)
For any 6 > 0,
SZO 0" = Ap, (07) = —log(1 — 1_7’D)
~ P> —log(1 — 1’231‘) +Ap (67 . "

0*

If we select the power P; for this user, the constraint in Lemma 6 will be satisfied.

O

The result shows us that the required power increment consists of two elements: the call level
1-RY, .

—1 7¢ *

requirement related quantity M and the equivalent system load A’“Tie). As the packet drop-

ping ratio becomes stricter, the more power increment is needed. And if the expected interference is

increased, the required power is also increased.

Lemma 8: The RRI of Connection i
The RRI of connection ¢ can be obtained by

RRI, = ™ (AHTéEPi )

(17)

<pf>

We define the total radio resource index as the maximum load received at the base station, i.e. the

total RRI is set to be A’%Ef’*) = I;;,. From Lemma 7, the required power for user ¢ to transmit in basic

rate is select as

I-Rp,
P> —log(l—T’)
F > (- T 2) STRy (18)
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According to the selection of required power for connection 4, the equivalent system load A%TE"*) should

operate below the value I;;,, otherwise the QoS of connection ¢ will be violated. From the multiplexing

Ag, (07)

b The

property of A’Uege*), the Afvgﬁf’*) is additive and can be decomposed into the summation of

RRI is therefore the equivalent load contributed from connection ¢ and is expressed by

RRI, = M (")
6*
Ay, (Ap, (F;-67))
9*

IV. RESULTS AND CONCLUSIONS

To verify the effectiveness of the proposed RRI, we examine if the packet dropping requirement of
each connection is satisfied under the way the RRI is allocated at light and heavy load conditions.
The heavier the load is (i.e. the summation of RRI of each connection is closer to the maximum
value), the closer the measured packet dropping ratio to the requirement is. In the worst case, that
is, the summation of RRI of each connection is equal to the maximum value, we expect that the
measured packet dropping ratio of each connection will approximate it’s requirement. Two scenarios
are presented here. In the first scenario, the only traffic is 12.2k conversational service with R}, ; = 0.02.
In the second scenario, there are three types of traffic: 12.2k conversational service with R}, ; = 0.02,
8.6k conversational service with R}, ; = 0.02, and 4.75k conversational service with R}, ; = 0.05. In the
simulations, we set STRy as —14dB, I,/ P? as 52, the permission probability 7, as 0.9, and 6* as 1.1.

Table I shows the RRI of each connection, the simulated and theoretical packet dropping ratio, and
the theoretical maximum number of users in one cell in (a) scenario 1 with single traffic type and (b)
scenario 2 with three traffic types. It can be found from Table I (a) that the simulated packet dropping
ratio Rp is 2.5 times smaller than the theoretical result R;g. As the number of users approaches 54,
the Rp can be around 0.02. This indicates the proposed RRI is too conservative in radio resource
allocation. The RRI attains about 88 percentage of best achievable resource utilization efficiency. It can
be found from Table I (b) that the simulated packet dropping ratios of type-1 and type-2 connections
are about 3 times less than the theoretical values, and the simulated value of type-3 connections is

almost 5 times smaller than the theoretical values. As we increase the number of connections of three
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TABLE I
THE THEORETICAL AND SIMULATION RESULTS
Scenario 1
Parameters | RRI Rp R}, | number of users
Single type | 1.08 | 0.00792 | 0.02 48

(a) Scenario 1 with single traffic types

Scenario 2
Parameters | RRI Rp R} | number of users
Type 1 1.08 | 0.00626 | 0.02 25
Type 2 0.67 | 0.00621 | 0.02 25
Type 3 0.31 | 0.0109 | 0.05 27

(b) Scenario 2 with three traffic types

types, the RRI can get about 80 percentage of the best achievable resource utilization efficiency in
average. It can be also seen that the packet dropping ratio of type 3 connections is higher than those
of type-1 and type-2 connections because the packet dropping ratio requirement for type 3 connections
is set looser and its allocated power can be decreased. The proposed RRI can allocate proper radio
resource to the connection according to the specific requirement for each connection without extra
computation complexity and the resulting packet dropping ratio can be differentiated to fit its own
requirement. From these two simulations, we can concluded that the RRI is a flexible and simple
mapping from traffic parameters and QoS requirements in any number types of services, however, the
achievable resource utilization efficiency is about 80%. The reasons are that several assumptions and
approximations considering the worst case system load are adopted in the derivation of the RRI to
simplify the derivation and keep QoS requirements of all connections guaranteed. Also, several bounds
in our lemmas have tighter ones in some specific conditions. The precision and the efficiency of the

proposed RRI will be improved in the future work.
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Abstract

In this paper, a Q-learning-based multi-rate transmission control scheme (Q-MRTC) for radio resource
control (RRC) in WCDMA systems is proposed. The RRC problem is modelled as a semi-Markov decision
process (SMDP). And we successfully apply a real-time reinforcement learning algorithm, named Q-learning,
to accurately estimate the transmission cost for the multi-rate transmission control. For the cost function
approximation, we apply the feature extraction method to map the original state space into a more compact
set which represents the resultant interference profile. Simulation results show that the Q-MRTC can achieve
higher system throughput and better users’ satisfaction index, by an amount of 87% and 50%, respectively,

than the interference-based multi-rate transmission control scheme, while keeping the QoS requirement.
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[. INTRODUCTION

The objective of a WCDMA system is to provide users a radio access link to ser-
vices comparable to those currently offered by fixed networks, resulting in a seamless
convergence of both fixed and mobile services. The WCDMA system is designed to
integrate different types of services with heterogeneous QoS requirements. Therefore,
an adequate radio resource control (RRC) is required to enhance the spectrum utiliza-
tion while meeting those QoS requirements. In this paper, the multi-rate transmission
control scheme for RRC is studied.

The multi-rate transmission control in the WCDMA system is to assign power and
processing gain for different service requests so as to maximize the system capacity
and to fulfill the users’ satisfaction and QoS requirements. There is no absolute
number of maximum available channels in the WCDMA system because WCDMA
system is interference-limited. Its capacity is affected by multiple access interference
(MAI), which is a function of the number of active users, the users’ location, and
heterogeneous QoS requirements. Many researches for CDMA capacity estimation
are based on MAI and other considerations [1]-[3]. In [4], an interference-based CAC
scheme in multimedia CDMA cellular systems was proposed. Instead of a fixed system
capacity, this interference-based scheme can adaptively assign a channel according to
the actual system capacity dependent of interference such that the system utilization
can be improved.

Maximizing system capacity while meeting QoS constraints suggests a constrained
semi-Markov decision process (SMDP) [5]. The SMDP has successfully applied to
many network control problems; however, it requires extremely large state space to
model these problems exactly. Also, a prior: knowledge of state transition proba-
bilities is required. Alternatively, many researchers turned to use the reinforcement
learning (RL) algorithms to solve the large state space problems [6] -[8]. The most
obvious advantage of RL algorithm is that it could approach an optimal solution from
the on-line operation if the RL algorithm is converged. Also, it does not require a
priort knowledge of state transition probabilities.

In this paper, we propose a ()-learning-based multi-rate transmission control scheme
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(Q-MRTC) for RRC in the WCDMA system to maximize the system utilization and
fulfill the users’ satisfaction, subject to a QoS requirement of packet error probability.
For the multi-rate transmission control, a cost function is defined to appraise the
cumulative cost of the consecutive decisions for the Q-MRTC. Without knowing the
state transition behavior, the cost function is calculated by a real-time RL technique
known as ()-learning [9]. To aggregate state space and improve the convergence
property, a feature extraction method is applied. The state space of the Q-function
is mapped into a more compact set which represents resultant interference profile.
Simulation results show that the Q-MRTC scheme can have higher system throughput
and better users’ satisfaction than the interference-based scheme [4] in an amount of

87% and 50%, respectively, while keeping the QoS constraints.

II. SYSTEM MODEL

Two types of services are considered in this paper: real-time service as type-1 and
non-real-time service as type-2. The system provides connection-oriented transmis-
sion for real-time traffic and best-effort transmission rate allocation for non-real-time
traffic, as the service discipline adopted in [10]. To guarantee the timely constraint
of real-time service, a UE always holds a dedicated physical channel (DPCH) while
it transmits real-time packets regardless the variation of the required transmission
rate. The real-time UE may generate variable rate information whose characteristics
are indicated in its request profile. On the other hand, a UE should contend for the
reservation of a DPCH to transmit a burst of non-real-time packets and will release
the DPCH immediately while the burst of data is completely transmitted. The non-
real-time data are transmitted burst by burst. Due to different service requirements,
the RRC performs two kinds of decision. For a real-time request, the request will be
accepted or rejected. On the other hand, for a non-real-time request, an appropriate
transmission rate will be allocated. A non-real-time request specifies the range of the
required transmission rates for itself, and would be blocked if the WCDMA system
cannot provide a suitable transmission rate to satisfy its required transmission rate.

The transmission power of a physical channel should be adjusted dependent of its
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spreading factor, coding scheme, rate matching attributes, and BER requirement.
Here, we assume that all physical channels adopt the same coding scheme and have
the same rate matching attributes and BER requirement. Therefore, power allocation
for a physical channel is simply dependent of its spreading factor and it is in inverse

proportion.

III. Toe DESIGN OF Q-MRTC
A. State, Action, and Cost Function

Since there is no re-transmission for real-time packets, an error real-time packet will
be dropped. The error non-real-time packets will be recovered via ARQ (automatic
repeat request) scheme. The packet error probability, denoted by Py, is considered
as the system performance measure. And the maximum tolerable packet error prob-
ability, denoted by Pr, is defined as the system QoS requirement. In this paper, we
assume that all packets have the same length. Also, a data packet is assumed to be
transmitted in a 10ms frame by a basic rate DPCH, and therefore a multi-rate DPCH
can transmit multiple data packets in a 10ms frame.

As to the service profile, a real-time request provides the mean rate and rate variance
to indicate its transmission rate requirement, while a non-real-time request provides
the maximum and minimum rate requirements. The mean and variance of the inter-
ference from the existing connections, denoted by I,,, and I,, respectively, can be used
as an interference profile for indicating the system loading condition [2]. As noted,
radio resource control of the WCDMA system can be regarded as a discrete-time
SMDP problem, where major events are request arrivals.

The request arrivals are treated as events that trigger the state transition in which
the radio resource control is executed. For the arrival of the k-th request, the system

state at x; 1s defined as

xr = (I, I, 1, Ry), (1)

where R; is transmission rate requirement of the type-i request, ¢ = 1,2. The R; =
(rm,7y), where r,,, and r, denote the mean rate and the rate variance of a real-time

request, respectively; the Ry = (riax, "min), Where rp.x and ryi, denote the maximum
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rate and the minimum rate requirements of a non-real-time request, respectively.
Based on the system state xj, the radio resource controller will determine an action,
denoted by Ay, for the k-th request arrival. If the request is non-real-time, A; € {0, 7}
and Ay = r is to accept the request given with rate r, rpin < r < rpax, while Ay =0
is to reject the request. For the state-action pair (zy, Ax), an immediate cost is given
by
ez, Ay) = [Py(ar, Ar) — P, (2)

where Pp(xy, Ar) is the packet error probability if the state-action pair (., Ax) has
been selected. We further define a cost function, denoted by Q(z, A), which is the
total expected discounted cost counted from the initial state-action pair (z, A) over
an infinite time. It is given by
Q(z,A) = FE { S ARe(ar, Ap) e = 2, Ag = A} : (3)
k=0
where 0 < v < 1 is a discounted factor. The optimal multi-rate transmission control
is to determine an optimal action which minimizes the () value with respective to
the current state. The minimization of () value represents the maximization of the
system capacity while the QoS requirements are satisfied.
Let P,,(A) be the transition probability from state x with action A4 to the next
state y. Then Q(x, A) can be expressed as
Q(va) :C(va) +72ny(A)Q(va)v (4)

Y

where C'(x,A) = E{c(z,A)}. Eq. (4) indicates that the () function of the current
state-action pair can be represented in terms of the immediate cost of the current
state-action pair and the () function of the next state-action pairs.

Based on the principle of Bellman’s optimality [12], the optimal action, denoted
by A*, can be obtained by a two-step optimality operation. The first step is to find
an intermediate minimal Q(z, A), denoted by Q*(x, A), where the intermediate cost
function for every possible next state-action pair (y, B) is minimized and the optimal

action is performed with respective to each next state y. For all (z, 4), Q*(x, A) is
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given by

Q" (2, A) = Clx, 4) + 72 Poy(A) Min [@"(y, B)] (5)

y

Then we can determine the optimal action A* with respective to the current state x

such that Q*(x, A) is minimal, which can be expressed as
Q" (x, A") = Min [Q (2, A)]. (6)

However, it is difficult to find the C'(x, A) and P,,(A) to solve Eq. (5). In this paper,
we adopt the Q-learning algorithm [9], [11] to find the optimal resource allocation
without a priori knowledge of C'(x, A) and P,,(A).

Interterence Profile
U, B

type-1 request
Tm. I,

State X Q-function QlxA) Rate A*
Construction Cowmputation Allocation
——
type-2 request
(rmin, Tmax)
AQ(v A
Q-learning rule
Fig. 1. Structure of the Q-learning-based multi-rate transmission control scheme (Q-MRTC)

Fig. 1 shows the implementation structure of the Q-learning-based multi-rate trans-
mission control scheme (Q-MRTC). The Q-learning algorithm tries to find optimal
value Q*(x, A) in a recursive method using available information (z, a, y, ¢(z,a)),
where o and y are the current and next states, respectively; and a € A and ¢(z,a)
are the action for current state and its immediate cost of the state action pair, re-
spectively. The Q-learning rule is formulated by

| Q(z,a) +nAQ(z,a), if (x,a) is chosen
Ql.a) = { Q(r,a) otherwise. (7)

where 7 is the learning rate, 0 < 7 < 1, and

AQ(r.0) = | el.a) +7 Min [Q(y. B)]} = Qlaa), 8)



18

[t has been shown in [9] that if the value of each admissible pair is visited infinitely
often and the learning rate is decreased to zero in a suitable way, then as the learning
time goes to infinity, Q(x,a) in Eq. (7) converges to Q*(x, A) with probability 1.

The rate allocation block of the Q-MRTC in Fig. 1 is the implementation of Eq. (6),
which determines the adequate rate allocation or call rejection for the new call request.

As noted, if the state space is too large, some states would be less visited and
the convergence of Q-learning algorithm would take a long time consequently. To
tackle this problem, the feature extraction method is applied in the proposed Q-
MRTC. Feature extraction is a method that maps the original state space into some
feature vectors associated with it. Feature vectors are used to represent the important
characteristics of the state space[12]. In the WCDMA system, after the RRC decision
is made, the change of interference is the most obvious corresponding response. That
is, the value of Q(x, A) mainly depends on the resultant interference profile if the
state-action pair (z,A4) is performed. Therefore, Q(x, A4) can be represented as a
function of resultant interference profile.

This resultant interference profile of (x, A) is denoted by (I,,+Al,, [, +Al,), where
(I, I,) indicates the system loading of existing connections at state x and (Al,, AL,)
indicates the change of interference profile due to action A. Then (Al,, AlL) is
obtained by

(7, 7y ), accept a real-time request
(AL,,Al,) =4 (r,0), accept a nonreal-time request (9)
(0,0), reject a request
Now, the state-action pair (x, A) is converted to interference profile (1,, + AL, I, +

AT,) which requires less state space.

IV. SIMULATION EXAMPLE AND DISCUSSIONS

In this simulation, we consider the WCDMA communication system supporting
two types of services: real-time and non-real-time services with QoS requirement
P;=0.01. Two kinds of traffic are transmitted via the real-time service: one is

2-level transmission rate traffic and the other is M-level transmission rate traffic.
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TABLE 1
THE SIMULATED TRAFFIC PARAMETERS

Traffic Type Traffic Parameters
2-level real-time | Call holding time: 30s
Mean talkspurt duration: 1.0s
Mean silence duration: 1.35s
M-level real-time | Call holding time: 30s
Peak rate: 4-fold of basic rate
Mean rate: 2-fold of basic rate

Non-real-time Mean burst size: 200 packets
rmin: 1-fold of basic rate

rmax: S-fold of basic rate

They are modelled by 2-level and M-level MMDP (Markov modulated deterministic
process),respectively. On the other hand, the non-real-time service is considered to
transmit variable-length data bursts. The arrival process of the data burst is Poisson
process and the data length is assumed to be with a geometric distribution.

The detail traffic parameters are listed in Table. I. The traffic intensities of the
services are 20%(2-level real-time), 40%(M-level real-time), and 40%(non-real-time).
A basic rate in the WCDMA system is assumed to be a physical channel with SF=256.
For each connection, DPCCH is always active to maintain the connection reliability.

For evaluation the performance of the Q-MRTC, the conventional interference-based
scheme [4] is used as a benchmark. Fig. 2 illustrates the throughput versus the
request arrival rate. The Q-MRTC has higher throughput than the interference-based
scheme. Generally speaking, the Q-MRTC can improve the maximum throughput by
an amount of 87% over the interference-based scheme. The reason is that the Q-
MRTC performs an on-line reinforcement learning algorithm to take the behavior
of interference variation into consideration for multi-rate transmission control. That
is, the Q-MRTC takes advantage of the multiplexing gain from the variable-rate
services. Actually, some existing connections may terminate or handoff between two
consecutive arrivals. The interference decreases consequently. Therefore, the multi-

rate transmission cost would be over-estimated in the interference-hased scheme.
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We further define an overall users’ satisfaction index (USI) which is a linear com-
bination of ﬁ—z (type-1) and ﬁ—;z (type-2), where the A, (Aq2) is the admitted trans-
mission rate for type-1 (type-2) and the Ay (Ag2) is the desired transmission rate for

type-1 (type-2); Ayy = 1 and Ay = rpax. That is, USI is expressed as

Aal Aa?
USI =« + (1 -« ,
An ( )AdQ

where « is the weighting factor. Fig. 3 depicts the USI versus the request arrival rate
for a = 0.5. It can be found that the Q-MRTC has higher USI than the interference-
based scheme. This is because the Q-MRTC can accurately estimate the multi-rate

(10)

transmission cost.
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Fig. 2. Throughput versus the request arrival rate
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Fig. 3. The users’ satisfaction index versus the request arrival rate

Fig. 4 depicts the packet error probability versus the request arrival rate. It can be

seen that the average packet error probability of the Q-MRTC is larger than that of



21

the interference-based scheme which is almost zero. However, the Q-MRTC can still

hold the packet error probability within the QoS requirement.

ity

0012k QoS requirement

0.008 F Q-learning scheme

Packet error probabil

Interference-based scheme

AW

0 5 10 15 20 25
Arrival rate (requests/second)

Fig. 4. packet error probability versus the request arrival rate

V. CONCLUDING REMARKS

In this paper, we propose a ()-learning-based multi-rate transmission control scheme
for radio resource control in WCDMA communication systems. We successfully apply
the ()-learning algorithm to accurately estimate the transmission cost for the multi-
rate transmission control. We also apply the feature extraction method to efficiently
map the original state space into the resultant interference profile. Compared with
the interference-based scheme, Q-MRTC can improve the throughput of the WCDMA
system by an amount of 87% under the constraint of the QoS requirement. In addition,
the Q-MRTC provides better users’ satisfaction by an amount of 50%. Since the (-
learning algorithm performs a closed-loop control by applying the system performance
measurement as a feedback to adjust the multi-rate transmission cost, the Q-MRTC

can have self-tuning capability to adaptively estimate the transmission cost.
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Abstract

It is important to provide differentiated quality of services (QoSs) for multimedia services over Wireless LAN (WLAN). Fairness
is one of the key issues for QoS supporting. In this paper, we proposed a method to achieve weighted fairness for two classes of
service operating under the enhanced distributed coordinator function (EDCF) mode of 802.11e. A queueing model is adopted to
analyze the behavior of the two classes. The analytical results were verified by computer simulation. Numerical results showed
that the weighted goals are easily achieved by adjusting both the arbitration inter frame space (AIFS) and the contention window

(CW).
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I. INTRODUCTION
In order to provide differentiated QoSs in Wireless LAN (WLAN), it is essential to have a method that can

allocate bandwidth for classes of stations (STAs) according to their priorities. A weighted fairness is

achieved if the bandwidth could be allocated according to a predetermined goal.

In IEEE 802.11, two mechanisms are defined to access the channel: a contention-based distributed
coordinator function (DCF) and a polling-based point coordinator function (PCF). In order to support
different priorities, enhanced DCF (EDCF) mode is further defined in 802.11e. DCF is based on CSMA/CA
protocol with slotted binary exponential backoff scheme. In DCF and EDCF modes, the bandwidth is shared
by all of the STAs and the probability for a STA to access the WLAN is depended on the number of active
stations, the contention window (CW) size, and the inter-frame space (IFS) time. The major difference
between EDCF and DCEF is that the CW and IFS are the same for all STAs in DCF but could be different in
EDCEF.

Several algorithms were proposed for investigating the behavior of DCF mode. Bianchi, Fratta, and
Oliveri [1] proposed a mechanism to adaptively adjust the CW according to the estimated contending stations.
It showed that a better throughput is achieved as the increased of network loading. Cali, Conti, and Gregori [2]
proposed a dynamic tuning of the backoff algorithm to achieve a theoretical throughput limit. In [3], the
authors designed a throughput enhancement mechanism for DCF by adjusting the contention window-
resetting scheme. In these papers, the authors were focused only on the behavior of a single class. Vaidya,
Bahl, and Gupta [4] presented a distributed packet scheduling algorithm. The bandwidth of different flows
was allocated in proportion to their weights. Banchs and Perez [5] proposed an extension of the DCF function
to provide weighted fairness by tuning the CW. However, these two schemes only focused on fairness and
did not consider the enhancement of channel utilization. Qiao and Shih [6] attempted to deal with both
weighted fairness and maximized utilization simultaneously by analytical method, but their model did not

consider backoff mechanism and cannot be backward-compatible to DCF mode.

In this paper, we propose a method to achieve weighted fairness for two classes of services operating
under EDCF mode. We derive the relationship between throughput, conditional collision probability, and
channel busy probability, for high- and low-class stations, respectively. The rest of the paper is organized as
follows. In Section II, basic concepts of DCF and EDCF modes are described. Section III presents the

analytical results of the weighted fairness problems for two classes of services in EDCF mode. In Section IV,
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numerical examples and simulation results are presented to verify the effectiveness of the analysis. Finally,

the concluding remarks are given in Section V.

II. BACKGROUND

In this section, we briefly review some background information on 802.11. Basic concepts of DCF and

EDCF modes will be introduced.

The time interval between frames, named InterFrame Spaces (IFSs), are used to control the priority for
accessing the channel in 802.11. Three types of IFSs are defined in 802.11: Short IFS (SIFS), the Point
coordination function IFS (PIFS), and the Distributed coordination function IFS (DIFS). SIFS is the shortest
interval and is used for transmission of acknowledgments (ACKs), polling responses in point coordination
function (PCF) mode, and fragments belonging to the same MAC service data unit (MSDU). The PIFS,
which is greater than SIFS but smaller than DIFS, is used to initiate the Contention Free Period in PCF mode.

In DCF mode, a STA with a new packet is allowed to transmit only if the channel is sensed to be idle for
DIFS. Otherwise, the transmission is deferred and the exponential backoff procedure is invoked. The

exponential backoff procedure is implemented via using a backoff counter C calculated by

C=Rand(0,w-1), )

where w is set to be equal to CWmin, at the first transmission attempt and is doubled after each unsuccessful
transmission until it reaches a maximum value CWmax = 2m CWmin. C is decreased whenever the channel
is sensed idle for , is frozen when any packet transmission is detected, and is reactivated when the medium is
sensed idle for DIFS again. The STA transmits immediately when C reaches to zero. At the end of the
receiving packet, the destination STA immediately acknowledges the successful reception by transmitting an
ACK after SIFS. Since the SIFS is shorter than DIFS, the other STAs will not detect the channel as idle until
the end of ACK. The originating STA assumes that the transmission is failed if it does not receive ACK
within a pre-defined period or it detects packets transmitted by other STAs. For the failed transmission, the

originating STA will reschedule the packet according to the backoff procedure described above.

The access mechanism of 802.11e EDCF, as shown in Fig. 1, is similar to that of DCF. Four different

priorities, called access categories (ACs), are supported in EDCF. Each AC has its associated values of

CWmin, CWmax, and arbitration IFS (AIFS). The AIFS for the i-th AC, denoted by AIFSi, is defined by

AIFS=SIFS+L; x o, for 1<i<4, (@)
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where Li is an integer ranging from 1 to 255. Specifically, AIFSi is PIFS and DIFS for Li equal to 1 and 2,
respectively. One should note that an AC with a smaller CWmin or AIFS implies a higher priority to access

the channel. In EDCF, the backoff counter for priority i, denoted by ci, is modified as
¢; = Rand (0,w-1) + X, for | <i=4, 3)

where w; is the CW for priority i; X is equal to 1 if Li=1, otherwise, it’s set to be 0. X is introduced to ensure

AIFS;

Immediate access when AlIFSi

ium i = DIFS/AIFS
Medium is free >= DIFS Contention Window
DIFS/AIFS PIFS
SIFS T T 77
Busy Medium 'Be?c!(o'ff-Wi ndow / Next Frame

L
= Slot time( o)
Defer Access Select Slot and Decrement Backoff as long
as medium is idle

that operation of EDCF mode will not disturb the PCF mode.

Figure 1. Basic access mechanism under 802.11e EDCF MAC protocol.

III. THEORETICAL ANALYSIS

In this section, we investigate the weighted fairness of 802.11 under EDCF mode. We consider a system
with NL low-class STAs and NH high-class STAs, each STA adopts a full queue traffic model [7]. For
backward compatible to DCF, AIFSH=PIFS and AIFSL=DIFS are assigned for the two classes. An ideal
channel condition without hidden terminals and with error-free transmission is assumed. We adopted the
weighted fairness function given by [6]

ST, _ by

STL ¢L ’ (4)

where ¢, ¢,,ST,,, and ST, are the assigned weights and the successful transmission probabilities for

high- and low-class STAs, respectively. We assumed that the average frame length for both classes is the
same. Therefore, the traffic flows for each class may share the channel according to the pre-defined weights

and the weighted fairness is then achieved if Eq. (4) can be guaranteed.

A.  System Parameters and Observation Points

According to the backoff procedure, the decrement of backoff counter is stopped if the channel is sensed
busy. Therefore, the time interval between two consecutive backoff counter decrements is not fixed. Due to

the fact that AIFSH<AIFSL, we define a slot time as the (variable) time interval between two consecutive
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backoff counter decrements for the high-class STAs. The observation points are then selected at the end of
each time slot such that the backoff counter for either low- or high-class STAs can only be decreased at the
observation points.

Let ¢, (n) and ¢, (n) be the stochastic processes representing the backoff counter of a given low- and
high-class STA saw at the observation point n, respectively. The first property we found is that the ¢, (n) is
always decreased but c,(n) could be frozen for any observation point n. Since AIFSH=PIFS, the new
backoff counter for high-class STAs is initially chosen in range of (1, WH,) after a successful or a collided

transmission. However, the selection of initial backoff counter of a high-class STA must be done in a slot and

should be decreased by 1 at the observation point. Thus, we have the second property that c,, (n) will fall into

the range of (0, WH,-1).

¢,(n) and c,(n) are non-Markovian because the backoff counter depends also on its retransmission
history. Therefore, we adopt the definition of “backoff stage,” which is defined as the number of
retransmission attempts for a frame, to account for the retransmission history [8]. Let M, (M, ) and WL,
(WH, ) be the maximum backoff stage and the CWmin of the low-class (high-class) STAs, respectively. We
can calculate the CW of the low-class (high-class) STAs at the i-th backoff by WL, =2ix WL, (WH,

=2'xWH,), where i is called the backoff stage and i= M, (M,,).

B. Behavior of a Single Station with Different AIFS

Lets,(n) and s, (n) be the stochastic processes representing the backoff stage for a given low-class
(high-class) STA at time n, respectively. We first consider the behavior of a single low-class STA with ¢, (n)
and s,(n) at observation point n. Similar to the approximation adopted in [8], we assume that at each
transmission attempt, each frame (of a low-class STA) collide with a constant and independent probability
P, regardless of the number of retransmissions. P, is referred to as conditional collision probability of a low-
class STA, meaning that a collision seen by a frame (of a low-class STA) being transmitted on the channel.
In other words, it is the probability that at least one of the other STAs (i.e. N, high-class STAs and N, -1

low-class STAs) counts down to zero while the low-class STA transmits. We further assume that a low-class
STA with nonzero backoff counter may sense the channel as busy with a constant and independent
probability g. g is referred to as channel busy probability sensed by a low-class STA. In other words, it’s the
probability that at least one of other STAs (i.e. N,, high-class STAs and N, -1 low-class STAs) transmits
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while the low-class STA has nonzero backoff counter. Therefore, ¢ is independent of the number of
retransmissions.

Once independence is assumed, and P, and q are supposed to be constant values, it is possible to model
the bi-dimensional process {s,(n),c,(n)} with the discrete-time Markov chain as depicted in Fig. 2. Here,
we assumed that the CW of a frame originates from a low-class (high-class) STA will be reset to WL, (WH,)
if has been retransmitted for M, (M, ) times. In this Markov chain, the non-null one-step transition

probabilities of a single low class station are

Plik|i,k}=gq, ke(LWL-1) ie(0,M,), )
Plik|i,k+1}=1—-q, ke(O,WL —-2) ic(0,M,), (6)
P{0,k|i,0y=(1=P,)/WL,, ke(O,WL,~1), ic(0,M,-1), (7)
Plik|i-1,04=P, /WL, ke(OWL 1) ie(,M,), (8)
P{0,k|M,,0y=1/WL,,  ke(0,WL,~1). )

Where pii ki, k,} = Pls(n+1) =i, c(n+1) =k | s(n) = ip,c(n) = ky} -

Figure 2. Markov chain model for the backoff counter with AIFS; =DIFS.

Lety —tim . Pris,(n)=i,c,(n)=k},ie(0,M,),k «©0,wL,—1) b€ the steady-state probability of the low-class STA. We

can derive b;; and by by

bi,O :PL.bi—l,O :PLi'bo,Oa ie(lsML)7 (10)
WL —k)-P'-b WL, —k)-b
. :M, ie(LM,),ke(,WL -1), (11) by, :M’ k e (LWL, —1). (12)
’ WL, -(1-q) T WL-(1-9q)

Then, by using the normalization condition for stationary probabilities, we have
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- 2(1-q)(1-2R)(1-P)
WL,(1-P)(1-(2F)"") +(1-2¢)1-2R)(1-F"")

(13)

b(U)

Similarly, consider the stochastic process ¢, (n) and s, (n) for a high-class STA observed at n. We also
assumed that at each transmission attempt, each frame (of a high-class STA) collide with a constant and
independent probability P, regardless of the number of retransmissions. P, is referred to as conditional
collision probability of a high-class STA, meaning that a collision seen by a frame (of a high-class STA)

being transmitted on the channel. In other words, it’s the probability that at least one of the other STAs (i.e.
Ni—1 high-class STAs and N, low-class STAs) counts down to zero while the high-class STA transmits.

Py 1s supposed to be a constant value because of the independence assumption. It is also possible to model

the bi-dimensional process {s,(n), c,(n)} with the discrete-time Markov chain as depicted in Fig. 3.

Similarly, the non-null one-step transition probabilities are

Plik|ik+1} =1, ke(O,WH, -2) ie(0,M,), (14)
P{0,k|i,0y = (1= P,)/WH,, k € (0,WH,~1) ie(0,M, —1), (15)
Plik|i-1,0}=P, /WH,, ke(0,WH —1) ie(LM,), (16
P{0,k|M,,,0}=1/WH,, k & (0,WH, —1). (17)

Figure 3. Markov chain model for the backoff counter with AIFSy=PIFS.

Here, we do not have P{ik|i,k} as in Eq.(5) due to the first observed property that c, (n) is always
decreased but ¢, (n) could be frozen for any observation point n. Also, the range of ¢, (n) (i.e. k) has to be

modified to (0,/WH;-1) according to the second observed property.

Let 4 —tim__ pris, () =i,c, (m = k},ie0,M,)k < 0., 1) DE the steady-state probability of the high-class STA.
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i . WH,—k)-P,'d
dig=bBy-d_y=F; -dyg, ie (M), (18) dl.vk:#, ie(L,M,).ke(0,WH,~1),  (19)
(WHo_k)'doo
dy, =—2——% " fe(0,WH,-1). 20
= (0, H, 1) (20)

And, dy can be found as

= 2(1_2PII )(I_P,,)
= WHO(I_PH)(I_(2PH)M”H)+(l—ZPH)(l—PHM”H)

do,o

@D

C. Frame Transmission Probabilities with Different AIFS

Denote 7,, as the transmission probability that a high-class STA transmits in a randomly chosen time slot,

7, can be obtained by summarizing of the state probability d;, found in (18) as

My
Ty = Zdi,o
i=0
_ 2(1-25,)
WH,(1-P,)(1-2P,)"*"/1-P,"" "y +(1-2P,)

(22)

Since AIFSp<AIFS;, the low-class STA may not affect the high-class STA. Therefore, 7,, is equal to the

probability that more than one high-class STA that choose the same backoff counter. Similarly, we can derive

the probability that more than one low-class STA that choose the same backoff counter value, denoted by 77,

as

Z'L' = A ‘

> B2 WL, +1)

i=0

_ 2(1-25R)
WL,(1-P,)(1-(2P)"") (1= B, )+ (1-2P,)

(23)

The transmission probability that a low-class STA transmits in a randomly chosen time slot, denoted by 7, is

the sum of b;y found in (10) and is given by

ML
= Zbi,O
=0

_ 2(1-¢)1-2B)
WL(1-B)1-Q2B)" ™) /(1-B"")+(1-2¢)1-2B)

24

Then we can derive the Py, Py, and g based on their definition. Py is the probability that a ready-to-
transmit high-class STA collides with any of the Ny-1 high-class STAs or N, low-class STAs. g is the
probability that the channel is sensed busy by a low-class STA with nonzero backoff counter. The channel

will be busy if any of the Ny high-class STAs or N;-1 low-class STAs transmits at the same time. Py is the
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probability that a ready-to-transmit low-class STA collides with any of the Ny high-class STAs or N;—1 low-
class STAs. In this case, the transmission probability for low-class STAs is 77 because the counter of the
ready-to-transmit low-class STA is zero. Then we can have,

Py =1-(1-7, )" (1= )",

PL=1—(l—’[H)N”(1—1'L)NL71, (25)
g=1-(1- TH)N" (1- TL)NL7|~

Finally, we can easily derive successful transmission probabilities of high-class and low-class STAs,

respectively, as

{STH:TH'(I_PH)’ (26)

ST, =7,-(1-F).
Comparing with Eq. (4), we can use the numerical method to find the relationship between WH, and WL,
from Eqs.(22), (23), (24), and (25) that can satisfied with Egs. (4) and (26) by fixing the values of ¢y, @1, Ny,
NL, MH, and ML.

IV. NUMERICAL RESULTS

To validate the analysis, simulations were performed based on MATLAB. The values of PHY-related
parameters were referred to IEEE 802.11b [9]. The symbol transmission rate was set to 11 Mbps. The frame
format was the one defined by the 802.11e MAC specifications, and the PHY header and IFS intervals were
those defined for 802.11b PHY. The PHY overhead time including preamble and header length is 196 ps,
is 20 us, SIFS is 10 us, and the propagation delay is 1 us. The length of the MAC header and ACK packet is
36 and 14 bytes, respectively. Unless otherwise specified, a constant frame payload size of 1028 bytes, which
includes 1000 bytes application data payload, 20 bytes IP header, and 8 bytes UDP header, were used in the
simulations. The full queue traffic model was assumed to apply to all stations. The maximum backoff stage
My and M) were both set to be equal to 5 throughout this section. Unless otherwise specified, the numerical
results were depicted in solid and dash lines and the simulation results were depicted with hollow and full

symbols.

The accuracy of the analysis is verified by simulation results. In the following examples, we fix the sum of
Ny and Ny to be 10 and set WL, to be 32. The effect of high- and low-class STAs (i.e. Ny and Ny, respectively)
for different values of WH, was investigated. In Fig.4, the transmission probabilities of the two classes
(i.e. 7y and 7;) were depicted for different Ny and WH,. It was found that the larger Ny would lead to smaller

transmission probabilities for both classes because the high-class STAs have more chances to access the
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channel. It was observed that, if WL, was fixed, a small WH) resulted in a high z; but a low 7;. Fig. 5 showed

the weighted fairness, S7x/ST;, for different cases. It was showed that S7:/ST; was highly depended on the
selection of (WH,, WLy). The smaller WH, would lead to the larger STy/ST;, when WL, was fixed. Moreover,
the growth of Ny might lead to the decrease of STy/ST;. Moreover, it was found that, the S7/ST;. could be
greater than one even if WHy=WL,. The differentiation of throughput was achieved by setting different AIFSs.

Based on the results observed above, we might choose a suitable WL, based the given Ny, N;, My, and M;.
Then we may adopt any numerical method to find the WH, based on the desired weighted goal ¢y /¢;. In the
simulations, WH, was initially set to be equal to WL,. For a given WH,, STw/ST; was calculated. The new
value of WH, was decreased if ST/ST;, < ¢u/¢ and was increased otherwise. The iteration continued until

|STH/STL-¢H/¢L| was minimized.

In the following, we show that the fairness is achieved using the proposed method. A total of 10 STAs are
considered. The weighted goal ¢x/¢@, is 2 and the WL, is fixed to be 32. WH, is then chosen based on the
weighted goal for different combination of (Ny, N;). Fig. 6 showed that the weight goal was achieved for
different combination of high- and low-class STAs. Due to the constraint that WH), was an integer, therefore,

it resulted in a little fluctuation of STw/ST;.

V. CONCLUDING REMARKS

In this paper, we proposed an analytical method to obtain parameters required to achieve weighted
fairness for services operating under the enhanced distributed coordinator function (EDCF) mode. A system
with full queue traffic model and supported two classes of services was considered. Specifically, the length of
AIFS was set to be DIFS and PIFS for low- and high-class stations, respectively, to backward compatible
with 802.11. In the queueing analysis, a discrete-time Markov-chain was adopted to model the behavior of
backoff counters for the two classes and the steady-state probabilities were derived. We further explored the
relationship between throughput, conditional collision probability, and conditional busy medium probability
for the two classes. With the information, the size of the contention window was adjusted to achieve the
weighted goal. The accuracy of the analytical solution is verified by simulation for different number of active
stations. It can conclude that, for different combination of high- and low-class STAs, the weighted fairness is

easily achieved by employing the proposed method.
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The paper proposes a joint power and rate assignment (JPRA) algorithm to deal with multirate soft
handoff in WCDMA heterogeneous cellular systems. This JPRA algorithm, containing a constrained
unequal power allocation (CUPA) scheme and an evolutionary computing rate assignment (ECRA)
method, can determine an appropriate allocation of power and service rate for multirate soft handoffs,
respectively. It can achieve power balancing between cells for soft handoffs better than the conventional
site-selection diversity transmission (SSDT) scheme. Simulation results show that the JPRA algorithm
can improve the forced termination probability of soft handoffs by 61.0 %, and the total throughput
by 2.4 %. Besides, considering measurement error happened during the active set selection, the JPRA
algorithm can further improve the forced termination probability of soft handoffs by 76.8 %, and the

total throughput by 6.7 %.
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I. INTRODUCTION

Soft handoff is one of the most important features in WCDMA cellular mobile communication
systems. When mobile users move from one cell to another cell, the soft handoff technique can provide
seamless connections and better signal qualities for users in the cell boundary. However, in the forward
link, systems often have to consume more power to serve soft handoff users than that to serve non-
handoff users. Since the power resource are shared between non-handoff users and soft handoff users,
the radio resource management would be a critical problem especially when soft handoff users are with
multirate services. Generally, a multirate soft handoff costs much more power resource to satisfy the
required quality of service.

Furthermore, in heterogeneous WCDMA cellular systems, microcells, which are with stringent power
budget, may easily exhaust their total transmission power because of serving soft handoff users in the
forward link [1], [2], [3], and then there is no extra power resource for serving other users in the
system. This situation would become worse for multirate WCDMA heterogeneous cellular systems.
If power balancing can be achieved between macrocells and microcells through effectively managing
radio resources for multirate soft handoffs, there are more power resource can be allocated for users in
the congested microcells. Consequently, the system performance can be improved.

In this paper, we propose a joint power and rate assignment (JPRA) algorithm for multirate soft
handoff users in WCDMA heterogeneous cellular systems. Many literature discussed the issue of joint
power and rate assignment for all users in the cellular system in the sense of global optimization
problem [4], [5]. However, they focused on the reverse link and did not concern about multirate soft
handoffs. Reference [6] discussed radio resource management in multiple-chip-rate direct sequence
CDMA systems supporting multiclass services, and it developed call admission control to arrange
handoff in the same subsystem or execute inter-frequency handoff. Kim [7] dealt with rate-regulated
power control in the reverse link without concerning handoff. Kim and Sung [8] proposed a handoff
management scheme for multirate services using guard channels and reservation on demand queue
control. But a hard handoff scheme was considered. Reference [9] and [10] proposed joint power
and rate allocation algorithms in the downlink CDMA systems, however no handoff mechanism was
concerned.

The proposed JPRA algorithm is composed of a two-phase process. In the first phase, a constrained
unequal power allocation (CUPA) scheme is designed for soft handoffs. A conventional site selection
diversity transmission (SSDT) scheme was proposed for soft handoff in [11]. Tt dynamically selects one
base station with best link quality in the active set to serve the soft handoff. The SSDT sometimes

cannot offer enough power required for multirate soft handoff users because of the maximum allocation
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power constraint. Furthermore, since SSDT is a single site transmission scheme at one time, it easily
consumes more power when suffering measurement error during active set selection. The advantage
of power saving feature would disappear. The proposed CUPA is a multi-site diversity transmission
scheme. It distributes the required allocation power for one soft handoff user unequally among all the
active base stations, based on link quality between the active base station and the soft handoff user.
The base station with better link quality will allocate more power than others with worse link qualities.
In addition, the allocation power is constrained by the maximum allocation power of the base station.
In the second phase of JPRA algorithm, an evolutionary computing rate assignment (ECRA) method
is proposed to formulate an integer and discrete optimization problem under a predefined total power
constraint for soft handoffs in each cell. It is well known that conventional optimization methods
can hardly cope with problems with integer and discrete variables, whereas evolutionary computing
methods are very efficient for these problems for reducing the searching complexity [12].

In the meantime, a multirate removal (MRV) algorithm is proposed to pick out a user who consumes
system resource most and to reduce its service rate or even block it when the system resource is
insufficient. Several removal algorithms had been proposed. Among these, the link-based and received
signal-strength based removal algorithms were only suitable for single service [13], [14]. The prioritized
removal algorithm, based on predefined service priority, did not consider service rate tuning for users
in the reverse link of a multiservice cellular system [15]. On the other hand, a new multi-quality
balancing power allocation (MQBPA) algorithm for non-handoff users with multiple service rates is
also developed. Previous work for quality balancing power allocation technique were studied only for
a single service rate and the same required signal quality [1], [3], [16]. Consequently, system operation
for forward-link power and rate assignment containing JPRA for soft handoff is shown in Figure 1.

Simulation results show that proposed JPRA algorithm effectively achieves power balancing between
macrocells and microcells in WCDMA heterogeneous cellular systems. Because of the power balancing
characteristic, JPRA can improve not only the forced termination probability of soft handoffs by 61.0 %
but also the total throughput by 2.4 %, as compared to the conventional SSDT scheme. Moreover, with
the concern of 1.5 dB measurement error happened during the active set selection, it further improves
the forced termination probability of soft handoffs by 76.8 %, and the total throughput by 6.7 %. The
proposed JPRA algorithm can achieve better power balancing between cells and owns less sensitivity
to the measurement error during the active set selection in multirate WCDMA heterogeneous cellular
systems.

The remaining parts of this paper are organized as follows. In section II, the JPRA algorithm

for multirate soft handoff is proposed. Simulation results are presented and discussed in section III.
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Fig. 1. The system operation of forward-link power and rate assignment

Finally, section VI concludes this paper. Moreover, the proof of CUPA convergence is provided in the

Appendix A; the MQBPA and MRV algorithms are provided in the Appendix B and C, respectively.

II. THE JPRA ALGORITHM

The JPRA algorithm is mainly composed of the constrained unequal power allocation (CUPA)
scheme in the first phase and the evolutionary computing rate assignment (ECRA) method in the
second phase. Before describing them, the received bit-energy-to-noise ratios of multirate soft handoff
is defined.

In WCDMA cellular systems, the received bit-energy-to-noise ratio (E,/N,) of user j in base station
i and with service rate r, denoted by ~; ;(r), must be larger than or equal to the required signal quality,
denoted by v*(r). For bandwidth W, the ~; ;(r) can be expressed as

_ Qi,j(r) L ;- G(T)
> Py Lipj+mn,
k

%i,5(7) >7'(r), (1)

N

where ¢; ;(r) is the allocation power from base station i to user j; Py, = ) g ; is the total downlink
j=1

transmission power for N users in cell k; L; ; is the link quality from cell i to user j; G(r) = W/r is

the processing gain; and 7, is background noise. Assume that the link quality includes only the effect

of both path loss and shadowing. For a soft handoff user h with service rate r, using the maximum
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ratio combining (MRC) method to combine signals from all serving base stations in the active set Dy,

its received Ej/N,, v,(r), can be obtained by

W(r) =Y Yin(r)- (2)

1€Dy,
A. The CUPA Scheme

The constrained unequal power allocation (CUPA) scheme estimates the required allocation power
for soft handoff user h, g,(r); then it distributes ¢,(r) to all serving base stations in Dj under the
constraint of maximum allocation power to each user by base station i € Dy, g;. The ¢;,(r) is pro-
portional to the link quality between the serving base station ¢ and the soft handoff user h [3]. If
the allocation power of one link reaches to the constraint of maximum allocation power, the CUPA
will compensate the required power through other links. The CUPA scheme is an iterative method to
distribute ¢ (r) to all serving base stations so that the required signal quality can be satisfied. The
design is to try to accomplish power balancing between cells in the heterogenous cellular system with
different cell sizes. Besides, it is noteworthy that because of the maximum allocation power constraint
of each forward link, there exists a forced termination situation for the soft handoff because the soft
handoff user cannot obtain required signal quality even though all active links are allocated with max-
imum power. If the soft handoff is forced to terminate, the g;,(r) of each link 7 in the active set Dy,

are reset to zero. The CUPA scheme is stated in more details in the following.

[The CUPA Scheme]

Step 0: [Exam soft handoff feasibility]

o Allocate maximum power ¢; for each active links 7 .

« Calculate received signal quality ~,(r) based on (1) and (2).

o IF 4,(r) > v*(r), THEN Goto Step 1.

ELSEIF ~,(r) = v*(r), THEN Set ¢;(r) = @, i € D;,, DONE.

ELSE the soft handoff user h is forced to terminate (¢;,(r) =0, i € D), DONE.

Step 1: [Initialize]

« Initialize the required transmission power ¢;'(r), n = 0, for soft handoff user h to be the summation

of the maximum allocation power, ¢;, of each serving base station i by

2= G (3)

€Dy,

Step 2: [Calculate weighting factor]
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o Set the weighting factor of the allocation power from base station ¢ in D), based on the link quality
between the cell 7 and the soft handoff user h, by

L;y,
Wi h

= S Lip

€Dy,

(4)

Step 3: [Calculate allocation power]
o Determine the power that base station ¢ in Dj, allocates to the soft handoff user h at iteration time
n, qin(r), by

qi(r) = Min{ g (r) X wip, G }, Vi € D, (5)

Step 4: [Compute received Ep/N, and tuning factor]

« Compute the corresponding ~;(r) in (2) at iteration time n, and set tuning factor p} by
A(r)

T (r)

Note that ~;(r) is the required signal quality received at the soft handoff user h.

2

Ph =

Step 5: [Check Stop Criterion]
. IF pp # 1.0, THEN
— Let

g, " (r) = ph % ay (r) (7)

— Set n =n+ 1 and Goto Step 3.
ELSE DONE. [ |

The CUPA scheme is convergent, that is proven in the Appendix A. The required allocation power of
each active link, ¢; (1), ¢ € Dy, for all soft handoff users with all kinds of service rates can be obtained

through the CUPA scheme.

B. The ECRA Method

The ECRA method performs the rate assignment for multirate soft handoff users. It formulates the
rate assignment issue as a constraint optimization problem with an objective to maximize the total
throughput of multirate soft handoffs. Note that the total power budget for a cell is limited, and the
total power allocated to soft handoffs in cell ¢ would be constrained by a maximum, denoted by @,
and @Z < P;. Since the computation time may be far behind system’s requirements especially for a
larger number of multirate soft handoff users being managed, In this paper an evolutionary computing

[12], which is a promising intelligent technique to find global optimal solution effectively, is adopted.
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Assume there are N; and N, soft handoff users with data and voice services, respectively, and N,
cells in the system. Assume there are m kinds of data service rates, and the searching complexity is
(m+1)"¢ by using exhaustive method, in which 1 means zero service rate for suspending transmission.
For example, if Ny is 10 and m is 4, there are nearly 107 searching complexity. This is far behind the
requirement of computation time. In order to reduce complexity of exhaustive search, the evolutionary
computing technique [12] is applied and depicted in the following. Represent the service rate of each
user as a chromosome in a population. For m kinds of data service rates, each rate is encoded into
|logy(m + 1)| binary digits, denoted by x, and the decoder function of the service rate is s(x). For
soft handoff data user h, its data service rate is thus s(z,), and its corresponding allocation power is
qn(8(zy)), in which the allocation power from active link 7 is g; 5 (s(z)) by the CUPA scheme. Denote r,
to be the service rate for soft handoff voice users and ¢; ,(r,) is the corresponding allocation power from
active link ¢ to soft handoff user h. The ECRA method is to find an optimal rate assignment vector
(decision vector) of Ng soft handoffs, x* = [z], 25, -, 2} |, for maximizing the objective function

O(x), which is defined to be the total throughput of soft handoff data users, given by

O(x) = max{ Z s(xh)} , (8)

h=1

subject to constraints:

ZU in(rv) +Z Gin(wn) <Qiy 1 < i < N, (9)
and
(s(xn)) = 7 (s(zn)), Vh. (10)

Because of these constraints, some decision vectors may be out of the feasible domain. A violation
function, which is proportional to the square of violation, is used to rank violated constraints of solution
[12]. The values of the constraint violation function indicate how far the solutions deviate from the

feasible region. This constraint violation function is defined as

S* Hilyn(s(an))J? > MQ! GO

U(x) ==L N, + N (11)

where H;, and M, are the Heaveside operators [12], in which H;(-) = 1 [M;(-) = 1] whenever the con-
straint in (10) and (9) is violated, and H;(-) = 0 [M;(-) = 0] otherwise. The evolutionary computing is
a more advanced genetic algorithm, which uses stochastic searches through simulating natural genetic
processes of living organisms, including selection, mutation, and crossover, to solve difficult optimiza-

tion problem in real-world. Based on the formulation of constraint optimization problem, the optimal
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decision vector, x*, can be found for maximizing the objective function, O(x). The ECRA method is
described in the following. Noticeably, the allocation powers for the soft handoffs are corresponding

to the ones obtained by the CUPA scheme.

[The ECRA method]
Step 1: [Initialize]
e Set the crossover rate p., the mutation rate p,, and the maximum number of generations 7.
« Initialize the generation ¢t = 1, the optimal objective value O* = 0, and the optimal decision vector
X* to be a zero pattern.
o Generate K populations that are randomly selected decision vector x; = [zF, - - ,x’]‘(,d] , 1< EkE<K.
Step 2: [Constraint tournament selection]
e Choose K tournament pairs randomly among all populations.
« Calculate violation function (11) for each competitive pair, and determine one winner, which owns
a smaller value of violation function.
o Replace each population x;, with the winner population of each competitive pair, thus form K new
populations.
Step 3: [Variable point crossover]
o Choose K /2 crossover pairs from adjacent population x; and x,1, where k is odd.
« Generate a random number ¢ in [ 0,1 ] for each chromosome in each crossover pair.
« For the chromosome with ¢ < p,., generate crossover point randomly in [1, |log,(m + 1)]], and make
crossover operation within this crossover chromosome.
Step 4: [Uniform mutation]
« Generate a random number u in [0, 1] for every bit in each population, and mutate the bits whenever
U < Py.
Step 5: [Calculate objective function of resulting new population]
« Calculate violation function value for each population.
« Find feasible population { x; } with zero violation among K populations.
o IF {xs } is not empty set, THEN Calculate the objective function value { O(xy) }.
— IF max { O(xs) } > O*, THEN
Set O* = max{O(xy)} and the optimal decision vector x* = arg max{ O(xy) }.
ELSE Goto Step 6. Xf
ELSE Goto Step 6.
Step 6: [Check stop criterion]
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o« IFt < T, THEN Set t =t + 1, and Goto Step 2.
ELSE DONE. [ |

III. SIMULATION RESULTS AND DISCUSSION
A. Simulation Model

Consider a heterogeneous cellular system with 9 wrap-around squared cells, including 4 microcells in
the central and 8 macrocells in the neighboring cells as shown in Figure 2. The radii of macrocell and
microcell are 1 km (Rys) and 0.5 km (R,,), respectively, thus the cell radius ratio (¢) between microcell
and macrocell, R,,/R)s, is 0.5. The antenna heights of macrocell and microcell are 20 meters and 10
meters, respectively, and the antenna height of mobile stations is 1.5 meters. For the propagation
channel model, only path loss and long-term shadowing are taken into account, in which two slope
path loss exponents are 2 dB and 4 dB, and standard deviations of two slope shadowing are 4 dB
and 8 dB [17]. For the power budget design, the maximum transmission power, ]3,~, for macrocell
(microcell) 7 is 20 (10) watt; and the maximum allocation power for each user in macrocell (microcell)
is 1 (0.5) watt. Each user determines its active set members based on received signal strength by soft
handoff algorithm which is based on the difference of received signal strength between users and cells,
]SZ-LW- — }N’kLij < n,i # k, where n is soft handoff threshold and ]3Z is the transmission power of pilot
signal of base station 4, which is related to the cell size. Here, n is 2 dB and the maximum active
set size is 3. In the simulations, two cases without and with measurement error during the active set
selection are concerned. For the measurement error case, the received signal strength of user is added
one Gaussian distributed random variable with zero mean and 1.5 dB standard deviation.

Assume there are 40 users uniformly distributed in each cell, and each user moves in a constant
speed 36 km /hr. The probability of moving direction change for users is 0.2 and the direction update is
among +45 degree [18]. During the mobility, the correlated shadowing effect is based on Gudmundson
model [19], in which the normalized autocorrelation function A(d) between two correlated points with

distance d can be described accurately by an exponential function:

A(d) = eXp{ _C’ZC“ In2 } (12)

corr

where d,,,.. is the decorrelation length equal to 20 meters in a vehicular environment. Figure 2 shows
an example of mobility trajectory. Assume the shadowing factor will not be changed when the moving
distance is less than 4 meters and there are five averaging windows in each snapshot, for 36km/hr

mobility speed, the correlated shadowing duration is 400 msec. Assume the power allocation duration
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TABLE I

MULTIRATE SERVICE

Service r (kbps) ~*(r)(dB)  encoded z

Voice 12.2 5

Data 0 N/A (100)
Data 16 4 (001), (101)
Data 32 3 (011), (111)
Data 64 2 (010), (110)
Data 144 1.5 (000)

is equal to one frame time (10 msec), the allowable iteration is about 40 times. These performance
measurements are averaging from 2000 independent instances of user location and shadowing, and each
snapshot has 5 times correlated instances. In the simulations, two essential performance measures are
investigated. One is the forced termination probability of soft handoffs, which indicates the service
continuity for soft handoffs. It is evaluated by counting the proportion of soft handoff users that are
terminated by the system due to insufficient power resource for soft handoffs, temporarily. The other
is the total system throughput, which is obtained by summing all service rates of users in the system.

For parameters in ECRA method, the total power constraint for soft handoffs, @i, is assumed to be
0.3 times the total transmission power of each cell ¢ [20]. The population size (K) is 100, the crossover
rate (p.) is 0.5, the mutation rate (p,,) is 0.05, and the stop generation (7') is 20. The computing
time of ECRA method is far behind that of the exhaustive searching method. The ECRA method will
search whole 2000 searching patterns to find optimal rate sets for multirate soft handoffs in the very
first iteration. Since the system gradually approaches to convergent point, the optimal rate sets only

need less searching patterns afterward.

B. Discussion

We compare the proposed JPRA algorithm with the site-selection diversity transmission (SSDT)
algorithm and the multiple site-selection diversity transmission (MSSDT) algorithm. The major idea
of site selective transmit diversity (SSDT) [11] is to dynamically choose one base station with the best
link quality in the active set for transmission in order to mitigate interference caused by multiple site
transmission. The SSDT sometimes cannot offer enough required power for soft handoff users because
of the maximum allocation power constraint of each link. The MSSDT is designed to compensate the
required power for users with allocated rates so as to satisfy their required signal quality, and then it

sorts the active links by link quality and uses better links to transmit signals in order. Since MSSDT
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uses diversity transmission for soft handoff users when necessary, the ECRA method is applied in
MSSDT for rate assignment in the simulations.

Figures 3(a) and 3(b) show the average forced termination probability of soft handoffs without
and with 1.5 dB measurement error, respectively. It can be seen from Figure 3(a) that JPRA and
MSSDT outperform SSDT by 61.0 % and 45.8 %, respectively, when there are 2 data users in each
cell. The main reason is that SSDT easily uses up the maximum allocation power for the best link
in microcells, as compared to JPRA and MSSDT, so that SSDT cannot support enough required
allocation power often for these multirate soft handoff users in microcells. Notice that the power
budget (maximum allocation power) for microcells to serve multirate soft handoffs is stringent and
critical in the heterogeneous cellular system. Besides, because of the signal quality constraint in ECRA
method, only if soft handoff users can satisfy required signal quality of the allocated service rates, the
ECRA method helps to serve soft handoff users as many as possible. The signal quality constraint
results in a reduction of forced termination probability of soft handoffs. However, the performance
improvement is decreased as soon as the number of data users is increased because high interference
is induced accordingly. In the case of 1.5 dB measurement error, it can be found from Fig. 3(b) that
JPRA further improves the forced termination probability of soft handoffs over SSDT and MSSDT
by 76.8 % and 26.8 %, respectively, at the case of 2 data users in each cell. The results imply that
if the measurement error causes a wrong selection of best link in the active set, the damage of power
waste is more serious in SSDT and MSSDT than in JPRA. It is because the CUPA scheme in JPRA
distributes the required allocation power to all the cells in the active set in proportional to their link
qualities. Thus, because of the power balancing feature, JPRA can not only provide better service
continuity performance but also own a capability of resistance to measurement error better than SSDT
and MSSDT.

Figures 4(a) and 4(b) present the total throughput for cases without and with 1.5 dB measurement
error, respectively. It can be found that JPRA and MSSDT can enhance the average total throughput
than SSDT by 2.4 % in the case of error free, and they can support higher average total throughput
than SSDT by 6.7 % and 4.2 %, respectively, in the case of 1.5 dB measurement error. The superi-
ority of JPRA over the SSDT and MSSDT is mainly because the CUPA scheme in JPRA owns the
aforementioned power balancing feature; in addition, the total power constraint of the ECRA method
in JPRA prevents wasting too much power resources for multirate soft handoffs so that the power
resource can be preserved to serve non-handoff users with higher service rates.

Figure 5 (a) and (b) show the average total transmission power ratio for macrocells and microcells,

respectively, where the ratio of cell 7 is defined as its total transmission power relative to the maximum
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transmission power. It is found that SSDT and MSSDT allocate more power for the best link of
microcells than that of macrocells, whereas JPRA allocates nearly equal ratio of total transmission
power to macrocells and microcells. Thus, JPRA achieves power balancing better than SSDT and
MSSDT. This is because JPRA distributes power between cells by applying the CUPA algorithm
which is to let all base stations in the active set cooperatively allocate power, proportional to their
link qualities, to serve soft handoff users. As regards the case of measurement error, it may result
in a wrong selection of the best link in the active set, and base stations have to allocate more power
to serve soft handoffs. As a result, it incurs higher ratio of total transmission power than the case
without measurement error. In order to demonstrate power balancing performance, we further define

a power balancing index PBI as

Ny _
>_(b; —b)?

where b; is total transmission power ratio for cell i, P;/ f’l . b is the average total transmission power
ratio for all N, cells, (32N b;)/N,. The PBI represents the variance of b; which means the lower
value of PBI, the better power balancing between cells. Figure 6 shows the PBI results with and
without measurement error cases. It can be found that JPRA accomplishes excellent power balancing
performance for both with and without measurement error cases, which justify the superiority of
JPRA algorithm for previous results in terms of forced termination probability of soft handoff and
total throughput.

Noticeably, if the cell radio ratio between macrocell and microcell turns out to be smaller or the
measurement error becomes worse in heterogeneous cellular systems, the JPRA algorithm could en-
hance the system performance more. On the other hand, we also investigate all the algorithms in
the homogeneous cellular systems (¢ = 1). Because the power budgets of maximum allocation power
constraint and maximum transmission power are the same for all cells in the homogeneous cellular
systems, the power balancing advantages of JPRA would not be so significant between mixed-size cells
in the heterogeneous cellular systems. On the contrary, the power saving characteristic is more im-
portant than the power balancing for the homogeneous cellular systems, but SSDT and MSSDT have
weak resistance capability of measurement error which may degrade the advantage of power saving

characteristic.
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IV. CONCLUSION

In this paper, a joint power and rate assignment (JPRA) algorithm is proposed to deal with multirate
soft handoffs in WCDMA heterogeneous cellular systems. JPRA allocates transmission power based on
the constrained unequal power allocation (CUPA) scheme and achieves optimal service rate according
to the evoluationary computing rate assignment (ECRA) method, for the multirate soft handoffs.
In order to support good service quality for multirate soft handoffs, a proposed multirate removal
algorithm (MRV) is activated to reduce service rate or even block users whenever system radio resource
is insufficient. In the meantime, a new multi-quality balancing power allocation (MQBPA) scheme is
also developed to allocate power for non-handoffs users with multirate services.

Simulation results show that, JPRA accomplishes excellent power balancing feature between cells,
and it thus can improve the forced termination probability of soft handoffs by 61.0 %, and the total
throughput by 2.4 % , as compared to conventional SSDT. Moreover, JPRA is less sensitive to the
measurement error than SSDT in the active set selection; so the former can further enhance the forced
termination probability of soft handoffs and the total throughput by 76.8 % and 6.7 % over the latter,
respectively. The above advantages of JPRA are more conspicuous in WCDMA heterogeneous cellular
systems with smaller cell radius ratio between microcell and macrocells.

Also, the computational complexity is worthwhile to take into account. Assume there are 10 multi-
rate soft handoff users in the system. The ECRA method and the exhaustive searching method need
to take 2.0 x 10® and 4.8 x 107 searching patterns, respectively, for finding optimal rate set of multirate
soft handoffs. According to the parameters set in ECRA method, it takes 20 float-point additions, 50
compare operations, and 2450 bit operations per generation. By using the INTEL Pentium 4 processor
with speed 2.0 GHz and MATLAB codes, the average computing time of ECRA method is about 9.5
msec. The rate assignment procedure can be completed among one frame time. If special purpose CPU
or DSP processors with pipeline architecture or optimized computation capabilities are adopted, less
computing time should be taken to execute rate assignment. Therefore, the computational complexity
is reduced significantly, and the practical implementation would be feasible in WCDMA heterogeneous

cellular systems with multirate services.
Appendix A
Convergence Proof of the CUPA Scheme

[Definition]: A function F' is “standard” if it satisfies the following conditions for all non-negative
power vectors [22]:

« Positivity : F(y) > 0,
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« Monotonicity : y; > yo = F(y1) > F(y2),

o Scalability : Voo > 1, aF(y ) > F(ay). |
[Proposition]: A “standard” power control algorithm will converge to a unique “effective” power
vector that achieves «; for any initial power g;. The standard power control algorithm means that the

power allocation function is standard. ]

The CUPA scheme has an iterative process for the required power allocation for the multirate soft

handoff user h, ¢, which is described by

g, =1(qy), (14)

where the superscript of ¢; denotes the number of iteration and I/ denotes the power allocation func-
tion.The notation of service rate r is ignored here for convenience. From (2), (6), and (7), I is given

by

I(q))= z%%,h x gj. (15)
i€Dy,
Based on (1), 7, is the function of ¢;5, ¢ € Dy, which should obey the constraint of maximum
allocation power given in (5). In order to represent these relationship, we denote 7,5 as I'( gip ),
instead of (1).
Since all the link gains and background noise between soft handover mobile station h and serving
base stations i, i € Dy, are positive, the power allocation function given in (14) has the positivity and

monotonicity properties. As for the scalability property, there are two kinds of cases in the result-

ing allocation power vector g; 5, ¢ € Dy, considering the effect of maximum allocation power constraint:

Case 1: ¢;;, = min( quwin, Gpn) < @,V i
Since aqpw;, > quwip, for a > 1,
it can be found that I'(agrw; ) > T(gawin), and > T(agawin) > Y T'(guwin).

i€Dy, i€eDy,
Thus,
*
Th
(CYQhwi,h

I(aqy) = ST

€Dy,

) X (aqn) < al(qn).

Case 2: 3 k‘, ke Dh s.t. qk.h = mln( gnWk, h, a\k,h) = Z]\k
It can be found that > I'(guwin) = >, T'(guwin) + > T'(dk),
k

1€Dy, i#£k,
i€Dy,
then > I'aguwin) = > T(agrwin) + D> T(qe) > > T(gawin)-
€Dy, ir, % i€Dn

i€Dy,
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Thus,

I{agy) = 5 F(g%wi,h) X (aqn) < al(qn).

i€Dy,

|

The interference function also possesses the scalability property. Therefore the proposed CUPA scheme
is a standard power control algorithm, and it always exist an effective solution ¢, for soft handoff user

h.
Appendix B
The MQBPA Algorithm

The multi-quality balancing power allocation (MQBPA) algorithm is to provide each non-handoff
user the required signal quality of itself. Assume each service rate r has the required signal quality
v*(r); denote C; (Q;) as the total transmission power for non-handoff (soft handoff) in cell i; and
C; + Q; = P;. The MQBPA algorithm assigns the non-handoff user j in cell ¢ with service rate r an

amount of power, ¢; ;(r), by
wi,j

¢,(r) = <=——-Cj (16)
’ > Wiy
jEUi
where Y ¢, ;(r) = C;, U is the set of non-handoff user in cell i, and w; ; is defined as
jeU;
Yo PeLiy+1,
wij = = (7). (17)

Lij - G(r)
Substituting (16) and (17) into (1), the received signal quality of the non-handoff user j in cell i can
be yielded as

(1) =~ (1) (18)
ii(r) = —=——"(r).
/Y »J Z U)id' ’7
jEUi
From (18), it can be found that any user j with service rate r in cell ¢ will receive the same signal
quality, 7, ;(r), which depends on required signal quality of service rate r, v*(r). Thus, all users in cell
i will have the same referenced signal quality ~; ;(r)/v*(r) value, no matter what kind of service rate

r is. Assume that -, is the target of balanced signal quality for the system, and the relative balanced

signal quality, 7;, for users with any service rate in cell ¢ will be

~ P)/i,]'(r) . (19)
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The balancing target is to let 7; > ~, so that each user with service rate r will have v, ;(r) > v*(r).
If 7; is not equal to 7,, the total allocation power C; should be adjusted by tuning factor ¢;, which is
given by

T
Ui = (20)

The MQBPA algorithm is described in the following.

[The MQBPA Algorithm]
Step 1: [Initialize]
« Initialize iteration time n = 0, and the total transmission power P? to the maximum total transmis-
sion power ﬁl for each cell i.
o Calculate the total allocation power (); for handoff users in each cell ¢ after executing JPRA algo-
rithm.
Step 2: [Calculate w; ;]
« Calculate w; ;, based on (17), for user j in cell 1.
Step 3: [Calculate allocation power]
« Calculate the total allocation power C* for non-handoff users in each cell ¢, which is equal to (P*—Q);).
« Calculate allocation power ¢;;(r)= min( ¢;';(7), ¢ ) for each non-handoff user j with service rate r
in cell 7 based on (16).
Step 4: [Calculate balanced signal quality]
« Calculate the relative balanced signal quality 7/ for users in cell i based on (19).
Step 5: [Calculate tuning factor]
« Calculate tuning factor ¢} for each cell i based on (20).
Step 6: [Check Stop Criterion for each cell 7]
o IF any " # 1.0 and convergence is not met, THEN
— Adjust total transmission power as P/*' = min( ¢ x C" + Q;, P, ).
— Set n =n+ 1 and Goto Step 2.
ELSE DONE. [ |

Since the balanced signal quality for each cell in (19) is independent of serving users’ service rates,
the proposed MQBPA algorithm is standard [1]. It will converge to a desired solution if there exists
an effective individual power allocation for all users such that they can obtain their required signal

qualities. If an effective solution does not exist, the issue becomes how to find a subset of users that can
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obtain their required signal qualities. Then, the MRV algorithm will be activated, which is described
in the Appendix C.

Appendix C
The MRV Algorithm

The multirate removal (MRV) algorithm defines a novel removal index for user j with service rate
r, denoted by J;(r), as

(= ()
J;(r) B L, G0 (21)

where ]3, is the transmission power of pilot signal of base station i, which is related to the cell size.
The removal index shows how much the system resource is required to serve user j. The worse the
received signal strength, the higher the service rate and the required signal quality are, the larger the
removal index value will be.

In order to provide higher priority for voice users, the proposed MRV algorithm removes system
resource from data users first unless all the data users are reduced to basic service rate. The flowchart
of MRV algorithm is shown in Figure 7. At first, the MRV scheme will check if all data users are with
basic rate. If there exists one data user not with the basic rate, the MRV scheme will choose the data
user with the maximum removal index. If the service rate of the selected user is with basic rate, then
the system will remove it directly, otherwise reduce its rate to the next lower service rate. If all data

users are with basic rate, the system will remove the user which is with the maximum removal index.
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Fig. 3. Averaged forced termination probability of soft handoff (a) without measurement error (ME) and (b) with 1.5

dB measurement error (ME) during active set selection
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Fig. 4. The total throughput versus the number of data users per cell (a) without measurement error (ME) and (b)

with 1.5 dB measurement error (ME) during active set selection
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Conclusion

The radio resource management technologies for heterogeneous access network
are investigated in this project. Two kinds of network architecture are considered:
WCDMA/WLAN and macro-cell/micro-cell. For the WCDMA/WLAN, we develop
novel admission/access control schemes for proper system resource allocation. Since
the WLAN lacks the capability of QoS, in the first year of the project, we treat the
WCDMA and WLAN separately. Firstly, a radio resource management index (Part 1)
and a Q-learning-based multirate controller are proposed for the WCDMA system
(Part 2), and the weighted fairness for differentiated services is studied for the WLAN
system (Part 3). For the macro-cell/micro-cell heterogeneous access network
(hierarchical network), a joint power and rate assignment (JPRA) algorithm for multirate
soft handoff is proposed (Part 4).

In Part 1, we propose RRI scheme as a unified resource allocation metric. From
computer simulation results, it can be found that RRI is a flexible and simple mapping
from traffic parameters and QoS requirements for any number types of services.
Moreover, the achievable resource utilization efficiency is about 80%. The reasons are
that several assumptions and approximations considering the worst case system load
are adopted in the derivation of the RRI to simplify the derivation and keep QoS
requirements of all connections guaranteed. Also, several bounds in our lemmas have
tighter ones in some specific conditions. The precision and the efficiency of the
proposed RRI will be improved in the future work.

In Part 2, we propose a Q-learning-based multirate controller for multirate
transmission control in WCDMA system. In the Q-MRCT, the Q-learning algorithm is
being successfully applied to accurately estimate the transmission cost for the
multi-rate transmission control. Also, the feature extraction method is applied to
efficiently map the original state space into the resultant interference profile. The
computer simulation results show that, compared with the interference-based scheme,
Q-MRTC can improve the throughput of the WCDMA system by an amount of 87%
under the constraint of the QoS requirement. In addition, the Q-MRTC provides better
users' satisfaction by an amount of 50%.

In Part3, the weighted fairness for differentiated services is studied. An analytical
method is proposed to obtain parameters required to achieve weighted fairness for
services operating under the enhanced distributed coordinator function (EDCF) mode.
In the queuing analysis, a discrete-time Markov-chain was adopted to model the
behavior of backoff counters for the two classes and the steady-state probabilities
were derived. The analytic model can interpret the relationship between access

probability and contention window. The accuracy of the analytical solution is verified
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by simulation for different number of active stations. It can conclude that, for different
combination of high- and low-class STAs, the weighted fairness is easily achieved by
employing the proposed method. With our proposed Markov analytic model, we will
further investigate the throughput enhancement in WLAN.

In Part 4, a joint power and rate assignment (JPRA) algorithm is proposed to deal with
multirate soft handoff in WCDMA heterogeneous cellular systems. JPRA allocates
transmission power based on the constrained unequal power allocation (CUPA)
scheme and achieves optimal service rate according to the evolutionary computing
rate assignment (ECRA) method, for the multirate soft handoff. In order to support
good service quality for multirate soft handoff, a proposed multirate removal
algorithm (MRYV) is activated to reduce service rate or even block users whenever
system radio resource is insufficient. In the meantime, a new multi-quality balancing
power allocation (MQBPA) scheme is also developed to allocate power for
non-handoff users with multirate services. Simulation results show that, JPRA
accomplishes excellent power balancing feature between cells, and it thus can
improve the forced termination probability of soft handoff by 61.0%, and the total
throughput by 2.4 %, as compared to conventional SSDT. Moreover, JPRA is less

sensitive to the measurement error than SSDT in the active set selection.

We can conclude that (1) the RRI scheme provides a mathematical background
for resource allocation in wireless network; (2) the Q-MRTC provides an intelligent
technique approach for burst mode transmission control in WCDMA system; (3)
adaptive adjusting the contention window is the key to provide QoS capability in
WLAN.

In the second year of the project, we will work toward the heterogeneous
admission control/access control scheme in WCDMA/WLAN network architecture.
Also, we will investigate the dynamic cell planning for macro-cell/micro-cell
heterogeneous access network using smart antenna techniques. The concept of
situation-aware network planning emerges because it is hard to precisely partition the
cell size in advance. The actual service area in the macro-cell/micro-cell
heterogeneous access network should be dynamically adjusted according to the
fluctuation of traffic so as the other RRM technologies in the heterogeneous network.
We believe that the concept of situation-aware will play an important role in the
development of B3G RRM technologies.
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Self-assessment of the Project

In this project, our researches focus on the development of radio resource

management technologies for heterogeneous access network. The time schedule

of the project is keeping pace with our project proposal. In the first year’s study,

have completed five working items, including:

Call admission control in heterogeneous network
Radio resource index for heterogeneous network
Bandwidth management for WLAN

Novel power control algorithm

Soft handoft algorithm for heterogeneous network

Generally speaking, we have done a great deal of works and some of them

have been published in international conferences and journals [1]-[5]. As to the

detail of our works, please refer to these published papers. In accordance with

our proposal, our research in the coming year will keep on development of the

radio resource management technologies for WLAN/WCDMA and hierarchical

WCDMA systems. Based one the current research results, we envision that the

highlights of our researches are three-folded:

Call admission control for WCDMA/WLAN heterogeneous access
network
Soft handoff algorithms for hierarchical WCDMA systems usinf smart
antenna
A novel situation-aware/location-aware packet scheduling algorithm

for bust-mode data transmission in heterogeneous access network.



[1]

[2]

[3]

[4]

[3]
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