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Abstract

Multi-axis coordinated trajectory
following is important in CNC machines and
metal cutting tools. Recently, flight

simulators with electrical actuators have been
in increasing demand. However, the
coordinate control scheme affects the
accuracy of the motion because motors have
an insufficient load capacity relative to the
hydraulic actuators. The electronic cam
(ECAM) is typically used to perform
coordinated control. However, selection of
the master may determine potentially very
different characteristics of motion. This study
proposes an automatic master switching
method. The conditions and results of the
master switching method for electronic cam
are detailed. The robustness and stability of
the proposed control system is also
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demonstrated usng the  well-known
structured perturbation analysis tool, .

Keywords: multi-axis coordinated trajectory
following; electronic cam; robustness;
stability; structured perturbation analysis
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Electronic cam (ECAM) tracking is
applied to a multi-axes motion control
system mainly to enable the slaves to follow
consistently trajectories obtained from the
predicted sets of reciprocal points of master
and slaves. When the master recelves a
position command, it will or will not be
driven to the desired position, and the slaves
will be moved into new postions by
following the predicted cam profiles.
However, in a fixed master ECAM system,
the heavily loaded slaves may follow a
lightly loaded master, and then the slaves
may lose tracking precision as it reaches its
current (force) limit. Kim and Tsao (2000)
developed an electrohydraulic servo actuator
for use in electronic cam motion generation,
addressing the robust performance control for
the fixed slave, an electrohydraulic servo
actuator. Steven (1995) specified a tracking
control electronic gearing system called an
“optimal feed-forward tracking controller”,
primarily associated with the fixed slave
controller design. Each of their control
schemes was demonstrated to satisfy the
demands of precision and robustness, but to
be valid only for its particular application.
This study introduces a master switching
control scheme, as shown in Fig. 1, to specify
the generalized ECAM control problem.

In the master switching control scheme,
the most heavily loaded axis must be
predetermined before anticipative motion
begins: this axis will be treated as the master



and the other axes as the slaves. The master
may be switched between different types of
motion from time to time, to exchange the
master and one of the slaves in the
subsequent action. After the master is
instantaneously  determined, the next
important task is to build ECAM profiles
from the demanded ECAM tables. Two
curve-fitting methods (Dierchx & Paul, 1993)
are proposed to establish piecewise ECAM
profile. One is the polynomial curve-fitting
method, as shown in Fig. 2, which is
suggested for use in cases of low frequency
motion. Simulations indicate that the
polynomial curve-fitting method (Chen, 1995)
(Reich, 1992) performs well, if the
frequencies of the active body are less than
one-tenth of half of the system’s sampling
frequency (Nyquist frequency). Restated, this
method is favorable if and only if the
trgjectory of motion is very smooth from the
viewpoint of the Nyquist frequency. The
second method is the poly-line curve-fitting
method, as shown in Fig. 3, which is more
appropriate for higher frequency motion.

A six degree-of-freedom (DOF) motion
simulator SP-120, shown in Fig. 4, was used
to implement and prove the robustness and
stability of the proposed master switching
control system. The important issue of the
robust stability of a six DOF motion
simulator concerns its six-axes cross-coupled
behavior: each axis pulls and drags every
other such that the most heavily loaded axis
may act unexpectedly; that is, the actual
trgjectory of the cockpit may be unexpected.
This phenomenon follows from inconsistent
tracking of the planned trgjectory and may
cause the cockpit of the motion simulator to
leave its nominal workspace. Thus, a robust
positioning controller is urgently required.
Several articles have referred to the design of
controllers of six DOF motion simulators.
Chung, Chang and Lin (1999) referred a
fuzzy control system for a six DOF simulator
and considered the hydraulic actuator system.
Werner (1996) introduced a robust tracking
control for an unstable, linearized plant
which was linearized. Plummer (1994)
described a nonlinear  multi-variable
controller for a motion simulator. The
procedure for completely designing a robust
controller of a nonlinear system consists of

finding the nominal controlled plant (Kim &
Tsao, 2000) (Dixon & Pike, 2002) (Zhiwen
& Leung, 2002) (Al-Muthairi, Bingulac &
Zribi, 2002), which is very complicated and
impractical; thus, the dynamics of the
nonlinear control system must be linearized
and simplified. Simplified dynamics of the
simulator SP-120 are proposed to model the
structured  perturbation with  parametric
uncertainties. The well-known 4  tool

(Zhou, 1998) is used to analyze the robust
performance of the original control system,
and then to demonstrate that it is more robust
and stable after the proposed control scheme
is applied to the system.

Real-time software was developed to
implement the PC-based master switching
ECAM control scheme used in the SP-120
motion simulator (Fig. 4). Experimenta
results show the advantage of the proposed
tracking accuracy. However, experimental
analysis has also revealed that a shorter
system sampling time yields more accurate
tracking control, especially when the
poly-line curve-fitting method is used.
However, a tradeoff exists between the
system sampling time and the calculation
burden in a programming cycle.

2 FLFERPD
1. Method of Building Cam Profiles
(Master-daves Trajectories)
1.1 Polynomial curve-fitting
A polynomial curve-fitting method is
proposed to build a continuous curve in order
to fit a known discrete signal, and the
established curve is treated as the
piecewise-continuous cam profile
(master-slaves trajectories). As presented in
Fig. 2, T is the sampling time of the driving
syssem and t, is the period of motion

planning. The predictive planned N points are
the known discrete commands for which t,

equals N times T; the cam profile of each axis
can be expressed as a function of time index t,
which describes the common relationship
between master and slaves, for 0<t<N-T,

and
N-1 .
f(t)y=Xc,-t",i=0tom (@0}
n=0

in which m is the numbers of axes. By
expanding Eg. (1), then
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where f (t) is the position of the i axis
motion planning with respect to time index t,
which normally equals the planning time KT,
unless an external equivalent force acts on an
axis exceeds the critical value, and further,

T C and F are the congtant time

matrix ?

matrix, the polynomial parameters of the i"

axis and the predicted positions of the i™
axis, respectively. The matrix T IS

matrix
constant and nonsingular so T, exists.

Adequately estimating the master’s next
position f_(t) enables the above equation
to be used to determine the time index t, and
then the estimated positions of all of the
slaves are determined by substituting t into
Eq. (1). The algorithm includes the following
steps.

1. Egtimating the next position of the master
is an electronic gearing process, and the
proper estimate is expressed follows.
fm(fk+1) =R =X YT (€©)

where X, ., Is the estimated position of the
master; X, =Y, is the present measured
position of the master, and Vv, is the
velocity estimated during the process of
motion planning.

2. Subdtituting the estimated position X, .,
of the master into Eq. (1) yields,

N-1
fm(karl) = )A(k+l = nzo Cm ’ fkn+l (4)

This equation generally has N-1 solutions,

and only one real rational solution is correct.

A proper congraint f <f,,<(k+D)T s

added to Eq. (4) to limit the region in which

the solution may be found. Sometimes, two

solutions  satisfy  this constraint, but
identifying the correct one is not difficult.

According to the properties of the
polynomial curve and the planned velocities
of the master, the sign of the slope of the

curve plotted againgt the time index f,,

must be the same as that of the ideal velocity
v, . For example, in Fig. 6, the solution near

(k+1)T isthe correct one.
The master velocity in terms of the time

index f_, isexpressedas
(5

m

v oA . N-1 -
fm (tk+l) = dxk+l/dt = znc 'tkn+ll
n=0

such that,
sgn( e, ) = sgn(g,) ©
where,
1 as () is postive
sgn(:)=<-1 as (-) is negative

0, as (-) is zero

3. The time index is estimated in the
preceding steps, and the estimated position
of the i™ daveisrepresented as,

R N-1 . )
fi,s(tk+1) = ZCi,ntknJrl’ I1=11t05 @)
n=0

1.2 Poly-line Curve-Fitting

The poly-line curve-fitting method is used
to fit the signal of higher frequency
according to the viewpoint of Nyquist
frequency. And then yields a poly-line curve
as shown in Fig. 3. If the number of motion
planning points equals N, then as in the
section 2.1, the cam profile can be expressed
as afunction of the time index t.

f()=3c,[t-nT|,i=0tom  (8)
n=0
Expanding Eq. (24) yields

0 T (N=-DT Co
T 0 (N-2)T . C,
(N-DT (N-2T .. 0 Cna
f,(0)
| (M)
fi((N-D)T)
= Toarix G =F



=G = Tn:altrix -F 9
where the parameters in Egs. (8) and (9) are
all defined as in the above section. Similarly,

matrix T_... IS constant and nonsingular;
thus, T, exists.

matrix
The next time index f,,., is properly

determined by substituting the estimated
position X,,, of the master into Eq. (9) and

considering the following conditions.
Cael: 0Lt <T

k+1 —
N-1 N-1 .
(Co - %Ci)tkﬂ + %ICiT = X
Case2: T<t,, <2T

1 N-1 N-1 R
(;)Cﬁ - _écltkﬂ) + (_Cl + _%'CJT = X

CaeN-1: (N-2)T <t <(N-DT
N-2 N-2
(%Q —Cy )t (= Z;llci +(N-I)cy )T

= )A(k+l
Under these conditions,
formulation is as follows.

the genera

B =[Rea + NZlSign(fku —nT)c,-nT]

- i A (10)
[E%)Cn ) Sign(tk+1 - nT)]

This equation is solved first by
determining whether the value of (f,, —nT)
IS positive or negative. Restated, the probable
region of f,,, must be determined correctly.
Theregion t, <f,,, <(k+1T isthe correct
choice, where t, is the actual time index
obtained by substituting the actual master’s
position X, into Eq. (10) at time KT. Multi

solutions may be in this region, so the correct
solution of EQ. (10) must next be identified.
As aforementioned, the sign of the slope of

the poly-line function of the time index f,.,
must be the same as that of the ideal velocity
V. That is,
sign(df (£.,)/dt) = sign(¥,) (11)
From the above analysis, the time index
f.., can be estimated; then, the estimated

position of the i"™ slave can be represented
asl

A N-1 . )
fio(fen) = Xy [fea—nT[, i =1t05(12)
n=0

2. Infinity Norm of the Master Switching
ECAM Controller
The control input of the master switching

method can beexpressedas y, =T,-T > T,
where r is the reference displacement input.
Then, from the characteristics of the master
switching ECAM control scheme, the actual
gpeed of each axis theoretically does not
exceed its reference speed. Therefore, the

reference displacement y, is confined by
|y, |<]|r[; that is, the infinity norm of the
controller (T, - T, .., ) is confined by,

I, Tourix <2 (13)
3. Applying the Proposed Control Scheme
toa Six DOF Motion Simulator

This proposed master switching ECAM
control scheme is applied to the control
system of multi-axes mechanisms to
demonstrate its advantages. In this paper, the
six DOF motion simulator SP-120 (Fig. 4) is
used to implement the generalized ECAM
tracking technique. If the current (force) of
the most heavily loaded axis reaches its
critical value, then the cockpit cannot easily
execute its planned motion easily by directly
feeding individual, planned commands to
each axis. Rather, the cockpit may sometimes
leave its nominal workspace. Accordingly,
the master switching ECAM control scheme
is better suited than the master fixed ECAM
method to this application.

The master of the motion simulator is
predetermined the heaviest loaded axis, sO
the Jacobian matrix (John, 1989) of the
simulator must be calculated and updated
from time to time. Appendix A presents the
detailed algorithm for finding the master.

4. Analysis of Stability and Robustness
The dynamics of each slider of the SP-120
motion simulator (Figs. 4 and 5) can be
modeled by parametric uncertainties, using
the linear fractional transformation (LFT)
representation. An equivalent mass, m, is
introduced to simplify the dynamics of the
dider motion and to decouple the
components of the system’s nonlinear terms,
to explicate the stability and the robust



performance of the system. Thus, a
simplified dynamic model of each dlider is,
t=u-2r/s, =-K0+KE,, (14)

where x=0-s,/2r is the displacement of

each dider;
u=-K x+K,K.E, (15)

where K, =s, /27 isthe machine constant.

As presented in Fig. 7,

X=—-(c/m)x+u/m (16)
in which the parameters in Egs. (14) ~ (16)
are defined in the nomenclature. Suppose that
the physical parameters m and c are not
known exactly, but are believed to lie in
known intervals. Assume,

Mm=mM+A_6,,C=C+AJ, (17)
where the nominal mass is
m=(m,+m)/2 , and the nominal

damping is C=(c, +c,)/2; the maximum
variation of massis A, =(m, -m)/2, and
the maximum variation of damping is
A, =(c, —c)/2 ; the perturbations o,
and o, ae confined by |5,k1 and
|6, k1, respectively, in which m, =250 kg,
c, =15kg/sand m = 50 kg, c, =5kg/s
are in practice the upper and lower bounds of
the dlider’s nominal mass and damping,
respectively.

Figure 8 presents the system’s block

diagram according to the foregoing
dynamical equations. Suppose the control

input is [w,w,,y.]" and the output is

[z,2,y]" . Then, using the Doyle’s
representation, the transformation matrix can
be represented as below.
i 0 1 |
|
-K.K,/m —(C+K.K,)/m |
M=|—A KK, /M -A(C+KNK,)/m|
0 A, |
1 0 ;
(M, |
- ——F—r——lf}sel(s)
M21 [ M22
(18a)
and,

G,(s)=M,, + M, (s —M,)*M,, (18b)
in which the parameters of Eq. (18a) are
defined in the nomenclature, and the system

including the perturbations 6,, and J_, can
be represented using LFT. That is,

y=SU(M,A)yr,A=F’“ 5}6RHDO ,
W:{Wl}:A-{Zi}:A-Z (19)
W, Z,

where 3,(M,A) is the upper LFT, as
shown in Fig. 9, and AeRH_ is the
structured uncertainty. Stability is often not
the only property of a closed-loop system
that must be robust to perturbations. The
most well-known use of u as a robustness
analysis tool is in the frequency domain.
Figures 10 and 11 show the singular value
frequency responses of G,(jw) and the
structured singular values, u,(G,(jw)) ,
respectively, for each frequency with
AeC?® | obtaned by adjusting the
proportional gain, K, . These figures are
obtained by programming the theorem of u
(Zhao, 2000). Moreover, the bounds of
u,(G,(jw)) are formulated within the
reference book (Zhou, 1998). In Figs. 10 and
11, the maximum singular value of G,(jw)
is increased by decreasing the proportional
gain, and the maximum structured singular
value is increased by increasing the
proportional gain. Table 1 presents the
maximum singular values G (jo)! , the

maximum  structured  singular  values
sup u, (G,(jw)) and the bandwidth of the

weR

control system for various proportional gains.
Moreover, if the upper bound of the nominal

mg}s(s exceeds a criti value, then the
maximum stfuctured sinqular Vialue will be

t&Ge&  thanl/ hity, KpdSsioly sing the
—requiemert, fom rolug _Rrerfaimance to be
urgatisfied. 0Table 2p ts| the critical
—upper- -bounds —of- -m-~ —for various
proportional 0gains, K,. The eritical upper
bound increases as the proportional gain
decreases. Combining Table 1 and Table 2
reveals that the system is more robustly
stable at a lower proportional gain, but the
time constant of the system responses is
higher. Thus, a tradeoff exists between the
robustness and the performance of the
system’s response. Nevertheless, by carefully




considering this tradeoff, the most suitable
proportional gain can be conveniently
adjusted to fit the specific demands of the
control. In this paper, m, isestimated to be
around 250 kg by transforming the maximum
torgue of each joint of the motion simulator
SP-120 to the equivalent mass. The
maximum torque is obtained by applying the
critical velocity and the maximum tolerable
acceleration to drive the slider of the motion
simulator provided traveling most the
nominal workspace of the simulator.
Moreover, for example, if the damping ratio
is set to 0.707, then the proportional gain
must be adjusted to 6.3, and the maximum
structured singular value is then calculated as
0.801358. Clearly, the sufficient and
necessary condition for robust performance is
satisfied. That is, the maximum structured
singular value must be less than unity.
Consequently, according to the theorem of
u and u -synthesis, the system is
well-defined and internally stable under the
structured perturbation, |A| <1.

By combining Eg. (13) with the above
results, the maximum structured singular
value of the entire system, G,G,, is confined
by the following inequality.
sup 1, (G, (jo)G,(j))

weR

<supu, (G,(jw)) <1

weR

Restated, the master switching control
system is more robustly stable than the
original stable system.

(20)

5. Numerical Method for the Forward
Kinematics of Six DOF Motion Simulator
The cockpit trgectories obtained using
conventional tracking control and the
proposed tracking control, are compared to
demonstrate the precision of the proposed
control scheme. Therefore, the six dliders
must be transformed into the cockpit
positions off-line; that is, forward kinematics
will be used to transform the six axis
coordinates into the cockpit’s coordinates,
including translation components and
rotation components (and representing a
transformation from J to S). However, direct
forward kinematics is difficult to formulate
for a six DOF motion simulator. Therefore,
this study proposes the use of a numerical

method, such as Newton’s method to execute

the transformation (J to S) indirectly. The

following iterative steps describe the

numerical, steepest descent approach (Garret,

1984) (Edwin & Stanidaw, 1996).

1.Set k=0, and set the initial cockpit
position, X,, to the cockpit home position.

2. Calculate the present Jacobian matrix J,,
according to the algorithm presented in the
Appendix A.

3. Calculate the estimated errors in the
positions of the six diders as,

Ay = Py~ Pegy € R (21)
where p, is the actual position of one
sider, p, is the estimated positions of

the six dliders, calculated by inverse
kinematics, and ¢, is the chosen step
Sze.
4. Calculate the next
position,
X = X Ty -0
where the Jacobian J,
equivalent gradient matrix.
SAf %=X lb<s or o L<é
terminate the iteration; the approximate
cockpit position is X,,,, where ¢ and &
are the set maximum tolerable errors.
6.Set k=k+1; repeat steps2to 5.
The convergence of this algorithm takes
about two to three iterative loops, given the
setting ¢ =1e-12 and & =1e-12.

estimated cockpit

(22)
matrix is the

6. Experimental Results and Comparisons

In this study, the proposed ECAM tracking
scheme is used on the SP-120 simulator to
simulate ground earthquake signal received
at Shui-Li Primary School on September 21,
1998. Figure 12 shows a part of this ground
earthquake signal. Figure 13 presents the
power spectrum density of this signal at
various frequencies. As aforementioned, the
frequencies of the signal are not all less than
one-tenth of the Nyquist frequency (here is
50 Hz). Nevertheless, poly-line curve-fitting
method is used in the proposed control
scheme.

Figures 13 ~ 15 compare Euler’sroll angle
errors, the pitch angle errors and the yaw
angle errors, respectively, between the
conventional and proposed method. This



ground earthquake signal involves only the
translation; restated, the simulator’s output
attitude must not include a rotationa
component. However as stated above, the six
axes may mutually pull and drag each other,
causing rotational motion during this pure
translation. Table 3 presents the root mean
square (RMS) errors of Eular angles for
using the proposed ECAM tracking scheme
and the master fixed ECAM tracking method
executed on the simulator SP-120. In this
simulation, the poly-line curve-fitting
method is used to establish the ECAM
profile and the positioning accuracy depends
on the system sampling time: a smaller
sampling time vyields greater accuracy.
However, a tradeoff exists between the
calculation time and the system sampling
frequency. For example, with a calculation
time of around 0.5 ~ 1 ms, the system
sampling frequency may be set to 100 Hz.
Therefore, some small errors sill occur (as
shown in Figs. 14 ~ 16) even if the master
switching tracking control is applied to the
simulator system. Thus, higher performance
computers clearly track more precisely.

T, B

The displacements of slaves of the
electronic cam control system depend on the
displacement of the master; the master
switching method selects the most heavily
loaded axis to be the master in real-time. The
trgjectory following speed yielded by the
master switching method can be less than the
speed yielded by the conventional (master
fixed) method. Precision and robustness are
the key concerns and the proposed method is
sound. As aforementioned, by adjusting the
proportional gain, a tradeoff exists between
the robust stability and the velocity response
of the control system. Using the well-known
u analysis of structured uncertainty, a most
appropriate proportional gain may be chosen
to satisfy the demand of control performance,
provided robust dability is guaranteed.
Furthermore, the poly-line curve-fitting
method requires less computational time than
the polynomial curvefitting method,
although the latter one may theoretically
yield higher precision for a motion of low
frequencies.

Appendix A
To find the most heavily loaded axis of

the six DOF motion simulator, SP-120, the
Jacobian of the simulator should be
calculated by the following procedure.
A.1 Inverse Kinematics

Motion-based control may also be called
cockpit’s  positioning control.  Cockpit
position, including both translation and
rotation components, must be transformed
into the coordinates of the six sliders using
inverse kinematics. The inverse kinematics
of the SP-120 motion simulator is as follows.

Figure 5 presents the top view of SP-120.

C]xi2 + (qyi - pyi )2 + C]zi2 = LZ (23)
All of the parameters in Eq. (1) are fixed in
the S coordinate system. Thus,

3 Siqi:S [Oxi Oyi Ozi ]T + R(Hxi ’Hyi ’Hzi)

{[Xs Yo Zs]" +R(a, B,7) °[ay Gy 9417}
(24)
where R(a,B,y) is the transformation

matrix of the Euler angle, and can be easily
expressed as,

R, B.7)
cpcy -Cpsy sB
=| Sasficy +casSy -SasPsy +cacy -sacP
-Casficy +sasy CasfSy +Sacy  cocf
(25)

and cf =cosB,sa =sina ,.... and so on,

where the above variables and symbols are

all presented in the nomenclature.

A.2 Jacobian formulation of simulator SP-12
From Eq. (23),

q, -da,/dt+(a, —p,)-d(a, —p,)/dt
+qzi dqm/dt = O

dpyi /dt = [qxi /(qyi - pyi ) 1 qxi /(qyi - pyi )] ’
S[da,/dt dq,,/dt da, /dt]"

= [rxi ryi rzi ]S| [dqxlldt dqu/dt dqzi/dt]Ti

i=1to6

(26)

(27)
where,
[ M ril= [qxi/(qyi _pyi) 1 qxi/(qyi —Pyi )|
the superscript “T” represents the transpose
of the matrix and all the parameters are

considered in the S coordinate frame. From
Eq. (24)



S[da, /dt dq,,/dt da, /dt]"

= R(Oxi ) Oyi 1 Ozi)

{[dX /dt dY /dt dZ /dt]"
+(R, -da/dt+R, -dB/dt

+R -dy/dt)-°[a, a, a1}
where R, is the partial derivative of
R(a, B,y) with respect to a . R; is the
partial derivative of R(e, B,y) with respect
to g. R is the partia derivative of
R(e, B,7) withrespectto y.

(28)

Substituting EqQ. (26) into Eq. (25) yields
[dpy /dt]e,, =[r 1y Ta]-R(64, 64, 6,)
{[dX /dt dY,/dt dZ /dt]"
+(R,-da/dt+R,-dB/dt+R -dy/dt)
[0, dy A;17}

=[rq 1y ta]- RO, 0y, 0,)

{[dX /dt dY,/dt dZ /dt]"

[R,-Q,R;-Q,R -Q] -[doddit,dB/dt, dy/dt] "}
(29)
. However, a, B

yi?

where Q=°[q, q, g,
and y are the Euler angles measured in the

body embedded coordinate frame, which is
the cockpit coordinate system. When dealing
with angular velocity, the inertial frame must

be the reference frame. Let [@, @, @,]"

the cockpit angular velocity measured in the
inertial frame X-Y-Z-O. Then,

1 0 do/dt

sp
[@, @, @,]' =|0 ca -sacp || dp/dt
0 sa cocp || dydt
do/dt
=M | dg/dt
dy/dt
(30)
[de/dt dB/dt dy/dt]” =M -[@, @, @,]"
(31)
where,
cf sasp -casp
M™*=| 0 cacB sacB |-(cB)™ (32)
0 -sa ca

Substituting Eqg. (31) into Eq. (29) yields,

[dpy|/dt]6x1 [rXI vi 2|] R(exu 9 ezi)

{[dX/dt dY,/dt dZ /dt]"

+[R,-Qi, R;-Q,, R-Q] M w, @, @]’
(33)

According to the definition of Jacobian

matrix J, the joint space is converted into
Cartesian space, such that,

yi?

dX /dt = J-d® /dt (34)

where X, =[Xs Yo Zs a By]" and
=p,,i=1to6, and

de/dt = J*-dX /dt (35)

As mentioned above, the angular velocity in
the inertial frame is more meaningful than
that measured in the body embedded frame.
Form Eg. (35), the elements of J™* can be
summarized directly as follows.

The first part of Eq. (35) comprisesthe first
three columnsof J™*

['Jll 'J|2 'J|3]_[r ] R(H Hyi’ Ozi)’

Xi yi 2|
i=1to6 (36)
The second part of Eq. (35) comprises the
last three columnsof J™*

['J|4 'J|5 'J|6] _[r ] R(H Hyi’ Ozi)

xi yi 2|

+[Ra'Qi’ Rﬂ'Qi’ Ry'Qi]'Mil (37)

A.3 Calculate the loaded torque of each joint

using Jacobian matrix
The relationship between 6x1 joint torque

vector 7, 7= [Tl, T2, T3, T4, Ts5, Te], and the 6x1

equivalent Cartesian force-moment vector F,
=[ma, |33 a], acting at the mass center of

the upper plate, can be written in the form,

(John, 1989)
7 = J'F. (38)
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Motion Planning
Process

yr,l - yr,m

Calculate Jacobian Matrix J
(Eq. (23) ~ Eq. (37))

l

Calculate the heaviest loaded axis asthe
new master
(Eg. 38)
iM aster switching flag
—» Axis#1
Establish cam
profiles by using
curvefitting [ ®»  Axis#2
method:
Polynomial
curvefitting [ %] AXis#3
method
=0 (1Zr)~(23) ——>  Axisi4
Poly-line
curve-fitting L Axis#5
method
Eq. (24)~(28)
——» AXxis#m

T

Y

Yo

Ys

Ya

Ys

Ym

Fig. 1 Master switching method for m-axes ECAM control
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f(H)A The planned paints

x

—'
x
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_|

Fig. 2 Cam profile trajectory established using the polynomial curve-fitting method

The planned points
f(t)A P P

Cam profile. je

Fig. 3 Cam profile trajectory established using the poly-line curve-fitting method
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Fig. 4 Prototype SP-120

tr=11.7cm

roll angle range
(~*0.14 rad)
pitch angle range
(=x0.15rad)
yaw angle range
(+x0.2rad)

Fig. 5 Vertical view of the smulator platform SP-120
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Fig. 6 Conditions on dual solutions using the polynomial curve-fitting method

Fig. 7 Equivalent model of dider
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Fig. 9 Upper linear fractional transformation with A,



5(G,(jo))
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rad/s
Fig. 10 Singular value frequency responses, o (G,(j®)), for various proportional gains, K,

Ip i 3, (o)) mcrmdasKa increased ‘

107 107 107 10" 10"

rad/s
Fig. 11 Upper bounds of structured singular values, u,(G,(jw)), for various proportional

gains, K,
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Fig. 12 The piecewise ground earthquake signal involves only the trandation.
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Fig. 13 Power spectrum density of the ground earthquake signal at various frequencies
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Fig. 14 Comparison of Euler’s piecewise roll angle errors obtained using the proposed master

switching method with those obtained the conventional method for ECAM control

executed on the simulator SP-120
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Fig. 15 Comparison of Euler’s piecewise pitch angle errors obtained using the proposed
master switching method with those obtained the conventional method for ECAM

control executed on the smulator SP-120
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Table 1 Maximum singular values of |G,(jw)| , maximum structured singular values of
sup u, (G,(jw)) and bandwidth of control system for various proportional gains, K,; the

weR

upper bound, m, , of the nominal massis set to 250 kg

Ka 0.1 1.0 5.0 10.0 12.0
terms
[G.(je)], 88.939455 | 18.651650 | 3.910155 2.323414 2.168739
SR b (©.(j0)) 0.666652 0.666658 0.752879 0.929482 0.989907
Bandwidth 0.00594 0.0188 0.0420 0.0594 0.0651
(rad)

Table 2 Critical upper bounds of the nominal mass for various proportional gains, K,

Ka 0.1 1.0 5.0 10.0 12.0
critical upper | 14 400.0 1414.9 433.6 281.8 254.1
bounds (kg)

Table 3 Root mean square (RMS) errors of Euler angles, obtained using the proposed master

switching method and the conventional method for ECAM control executed on the simulator
SP-120

Error items RMS error RMS error RMS error
of roll of pitch of yaw
Tracking method
conventional method 0.0015150 rad 0.003427 rad 0.0004285 rad
master switching 0.0007445 rad 0.001988 rad 0.0001499 rad
method
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