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一、中文摘要 

    對於 CNC 機器和金屬切削工具機而

言，多軸軌跡座標追蹤是重要的。近來，

使用電力制動器的運動模擬器正在增加當

中，然而，由於馬達相對於液壓制動器的

負載能力較為不足，因此不同座標追蹤控

制的架構將影響運動的精度；電子凸輪

(ECAM)是一種典型地被使用在實現這種座

標追蹤控制的方法，其中主動馬達的選擇

可能對平台的運動有非常大的潛在影響。

本研究中建議一種自動切換主動馬達的電

子凸輪演算法來實現運動模擬器的控制。

系統的強健性與穩定性也將使用眾所週知
的結構化擾動分析工具－，來一併驗證。 

 
關鍵詞：多軸軌跡座標追蹤，電子凸輪，
結構化擾動分析，強健性，穩定性。 
 
Abstract 

Multi-axis coordinated trajectory 
following is important in CNC machines and 
metal cutting tools. Recently, flight 
simulators with electrical actuators have been 
in increasing demand. However, the 
coordinate control scheme affects the 
accuracy of the motion because motors have 
an insufficient load capacity relative to the 
hydraulic actuators. The electronic cam 
(ECAM) is typically used to perform 
coordinated control. However, selection of 
the master may determine potentially very 
different characteristics of motion. This study 
proposes an automatic master switching 
method. The conditions and results of the 
master switching method for electronic cam 
are detailed. The robustness and stability of 
the proposed control system is also 

demonstrated using the well-known 
structured perturbation analysis tool,  .  
Keywords: multi-axis coordinated trajectory 
following; electronic cam; robustness; 
stability; structured perturbation analysis 
 
二、緣由與目的 

Electronic cam (ECAM) tracking is 
applied to a multi-axes motion control 
system mainly to enable the slaves to follow 
consistently trajectories obtained from the 
predicted sets of reciprocal points of master 
and slaves. When the master receives a 
position command, it will or will not be 
driven to the desired position, and the slaves 
will be moved into new positions by 
following the predicted cam profiles. 
However, in a fixed master ECAM system, 
the heavily loaded slaves may follow a 
lightly loaded master, and then the slaves 
may lose tracking precision as it reaches its 
current (force) limit. Kim and Tsao (2000) 
developed an electrohydraulic servo actuator 
for use in electronic cam motion generation, 
addressing the robust performance control for 
the fixed slave, an electrohydraulic servo 
actuator. Steven (1995) specified a tracking 
control electronic gearing system called an 
“optimal feed-forward tracking controller”, 
primarily associated with the fixed slave 
controller design. Each of their control 
schemes was demonstrated to satisfy the 
demands of precision and robustness, but to 
be valid only for its particular application. 
This study introduces a master switching 
control scheme, as shown in Fig. 1, to specify 
the generalized ECAM control problem.  

In the master switching control scheme, 
the most heavily loaded axis must be 
predetermined before anticipative motion 
begins: this axis will be treated as the master 
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and the other axes as the slaves. The master 
may be switched between different types of 
motion from time to time, to exchange the 
master and one of the slaves in the 
subsequent action. After the master is 
instantaneously determined, the next 
important task is to build ECAM profiles 
from the demanded ECAM tables. Two 
curve-fitting methods (Dierchx & Paul, 1993) 
are proposed to establish piecewise ECAM 
profile. One is the polynomial curve-fitting 
method, as shown in Fig. 2, which is 
suggested for use in cases of low frequency 
motion. Simulations indicate that the 
polynomial curve-fitting method (Chen, 1995) 
(Reich, 1992) performs well, if the 
frequencies of the active body are less than 
one-tenth of half of the system’s sampling 
frequency (Nyquist frequency). Restated, this 
method is favorable if and only if the 
trajectory of motion is very smooth from the 
viewpoint of the Nyquist frequency. The 
second method is the poly-line curve-fitting 
method, as shown in Fig. 3, which is more 
appropriate for higher frequency motion.  

A six degree-of-freedom (DOF) motion 
simulator SP-120, shown in Fig. 4, was used 
to implement and prove the robustness and 
stability of the proposed master switching 
control system. The important issue of the 
robust stability of a six DOF motion 
simulator concerns its six-axes cross-coupled 
behavior: each axis pulls and drags every 
other such that the most heavily loaded axis 
may act unexpectedly; that is, the actual 
trajectory of the cockpit may be unexpected. 
This phenomenon follows from inconsistent 
tracking of the planned trajectory and may 
cause the cockpit of the motion simulator to 
leave its nominal workspace. Thus, a robust 
positioning controller is urgently required. 
Several articles have referred to the design of 
controllers of six DOF motion simulators. 
Chung, Chang and Lin (1999) referred a 
fuzzy control system for a six DOF simulator 
and considered the hydraulic actuator system. 
Werner (1996) introduced a robust tracking 
control for an unstable, linearized plant 
which was linearized. Plummer (1994) 
described a nonlinear multi-variable 
controller for a motion simulator. The 
procedure for completely designing a robust 
controller of a nonlinear system consists of 

finding the nominal controlled plant (Kim & 
Tsao, 2000) (Dixon & Pike, 2002) (Zhiwen 
& Leung, 2002) (Al-Muthairi, Bingulac & 
Zribi, 2002), which is very complicated and 
impractical; thus, the dynamics of the 
nonlinear control system must be linearized 
and simplified. Simplified dynamics of the 
simulator SP-120 are proposed to model the 
structured perturbation with parametric 
uncertainties. The well-known   tool 
(Zhou, 1998) is used to analyze the robust 
performance of the original control system, 
and then to demonstrate that it is more robust 
and stable after the proposed control scheme 
is applied to the system. 

Real-time software was developed to 
implement the PC-based master switching 
ECAM control scheme used in the SP-120 
motion simulator (Fig. 4). Experimental 
results show the advantage of the proposed 
tracking accuracy. However, experimental 
analysis has also revealed that a shorter 
system sampling time yields more accurate 
tracking control, especially when the 
poly-line curve-fitting method is used. 
However, a tradeoff exists between the 
system sampling time and the calculation 
burden in a programming cycle. 
 
三、研究報告內容 
1. Method of Building Cam Profiles 

(Master-slaves Trajectories) 
1.1 Polynomial curve-fitting 

A polynomial curve-fitting method is 
proposed to build a continuous curve in order 
to fit a known discrete signal, and the 
established curve is treated as the 
piecewise-continuous cam profile 
(master-slaves trajectories). As presented in 
Fig. 2, T is the sampling time of the driving 
system and VRt  is the period of motion 
planning. The predictive planned N points are 
the known discrete commands for which VRt  
equals N times T; the cam profile of each axis 
can be expressed as a function of time index t, 
which describes the common relationship 
between master and slaves, for TNt 0 , 
and 

 




1

0
,)(

N

n

n
nii tctf , i = 0 to m         (1) 

in which m is the numbers of axes. By 
expanding Eq. (1), then 
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imatrixi FTC  1                     (2) 

where )(tfi  is the position of the thi  axis 
motion planning with respect to time index t, 
which normally equals the planning time kT, 
unless an external equivalent force acts on an 
axis exceeds the critical value, and further, 

matrixT , iC  and iF  are the constant time 

matrix, the polynomial parameters of the thi  

axis and the predicted positions of the thi  
axis, respectively. The matrix matrixT  is 

constant and nonsingular so 1
matrixT  exists. 

Adequately estimating the master’s next 
position )(tfm  enables the above equation 
to be used to determine the time index t, and 
then the estimated positions of all of the 
slaves are determined by substituting t into 
Eq. (1). The algorithm includes the following 
steps.  
1. Estimating the next position of the master 

is an electronic gearing process, and the 
proper estimate is expressed follows. 

Tvxxtf kkkkm   ˆˆ)ˆ( 11           (3) 
where 1ˆ kx  is the estimated position of the 
master; kk yx   is the present measured 
position of the master, and kv̂  is the 
velocity estimated during the process of 
motion planning. 
2. Substituting the estimated position 1ˆ kx  

of the master into Eq. (1) yields,  

 





1

0
111

ˆˆ)ˆ(
N

n

n
kmkkm tcxtf           (4) 

This equation generally has N-1 solutions, 
and only one real rational solution is correct. 
A proper constraint Tktt kk )1(ˆˆ

1    is 
added to Eq. (4) to limit the region in which 
the solution may be found. Sometimes, two 
solutions satisfy this constraint, but 
identifying the correct one is not difficult. 

According to the properties of the 
polynomial curve and the planned velocities 
of the master, the sign of the slope of the 
curve plotted against the time index 1

ˆ
kt  

must be the same as that of the ideal velocity 
kv̂ . For example, in Fig. 6, the solution near 

(k+1)T is the correct one.  
The master velocity in terms of the time 

index 1
ˆ
kt  is expressed as, 

 





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0

1
111
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such that, 
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


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where, 





















zeroisas

negativeisas

positiveisas

sign

)(,0

)(,1

)(,1

)(  

3. The time index is estimated in the 
preceding steps, and the estimated position 
of the thi  slave is represented as, 

n
k

N

n
niksi tCtf 1

1

0
,1,
ˆ)ˆ( 




  , i = 1 to 5       (7) 

 
1.2 Poly-line Curve-Fitting 

The poly-line curve-fitting method is used 
to fit the signal of higher frequency 
according to the viewpoint of Nyquist 
frequency. And then yields a poly-line curve 
as shown in Fig. 3. If the number of motion 
planning points equals N, then as in the 
section 2.1, the cam profile can be expressed 
as a function of the time index t. 

 




1

0
,)(

N

n
nii nTtctf , i = 0 to m     (8) 

Expanding Eq. (24) yields  
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imatrixi FTC  1                   (9) 
where the parameters in Eqs. (8) and (9) are 
all defined as in the above section. Similarly, 
matrix matrixT  is constant and nonsingular; 

thus, 1
matrixT  exists. 

The next time index 1
ˆ
kt  is properly 

determined by substituting the estimated 
position 1ˆ kx  of the master into Eq. (9) and 
considering the following conditions. 
Case 1: Ttk  10  
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Under these conditions, the general 
formulation is as follows. 

])ˆ([

])ˆ(ˆ[ˆ
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0
1

1

1
111
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(10) 

This equation is solved first by 
determining whether the value of ( nTtk 1

ˆ ) 
is positive or negative. Restated, the probable 
region of 1

ˆ
kt  must be determined correctly. 

The region Tktt kk )1(ˆ
1    is the correct 

choice, where kt  is the actual time index 
obtained by substituting the actual master’s 
position kx  into Eq. (10) at time kT. Multi 
solutions may be in this region, so the correct 
solution of Eq. (10) must next be identified. 
As aforementioned, the sign of the slope of 
the poly-line function of the time index 1

ˆ
kt  

must be the same as that of the ideal velocity 

kv̂ . That is, 

)ˆ()d/)ˆ(d( 1 kk vsignttfsign          (11) 
From the above analysis, the time index 

1
ˆ
kt  can be estimated; then, the estimated 

position of the thi  slave can be represented 
as, 
 

 





1

0
1,1,

ˆ)ˆ(
N

n
kinksi nTtctf , i = 1 to 5 (12) 

 
2. Infinity Norm of the Master Switching 

ECAM Controller 
The control input of the master switching 

method can be expressed as rTy matrixtr  1 , 
where r is the reference displacement input. 
Then, from the characteristics of the master 
switching ECAM control scheme, the actual 
speed of each axis theoretically does not 
exceed its reference speed. Therefore, the 
reference displacement ry  is confined by 

||  || ryr  ; that is, the infinity norm of the 
controller ( 1 matrixt T ) is confined by,  

1|||| 1  


matrixt T                   (13) 
 

3. Applying the Proposed Control Scheme 
to a Six DOF Motion Simulator 
This proposed master switching ECAM 

control scheme is applied to the control 
system of multi-axes mechanisms to 
demonstrate its advantages. In this paper, the 
six DOF motion simulator SP-120 (Fig. 4) is 
used to implement the generalized ECAM 
tracking technique. If the current (force) of 
the most heavily loaded axis reaches its 
critical value, then the cockpit cannot easily 
execute its planned motion easily by directly 
feeding individual, planned commands to 
each axis. Rather, the cockpit may sometimes 
leave its nominal workspace. Accordingly, 
the master switching ECAM control scheme 
is better suited than the master fixed ECAM 
method to this application. 

The master of the motion simulator is 
predetermined the heaviest loaded axis, so 
the Jacobian matrix (John, 1989) of the 
simulator must be calculated and updated 
from time to time. Appendix A presents the 
detailed algorithm for finding the master. 
 
4. Analysis of Stability and Robustness 

The dynamics of each slider of the SP-120 
motion simulator (Figs. 4 and 5) can be 
modeled by parametric uncertainties, using 
the linear fractional transformation (LFT) 
representation. An equivalent mass, m, is 
introduced to simplify the dynamics of the 
slider motion and to decouple the 
components of the system’s nonlinear terms, 
to explicate the stability and the robust 
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performance of the system. Thus, a 
simplified dynamic model of each slider is,  

ccnp EKKsu   /2 ,       (14) 

where  2/psx   is the displacement of 
each slider;  

ccfn EKKxKu                 (15) 

where 2/pf sK   is the machine constant. 
As presented in Fig. 7,  

muxmcx /)/(                 (16) 
in which the parameters in Eqs. (14) ~ (16) 
are defined in the nomenclature. Suppose that 
the physical parameters m and c are not 
known exactly, but are believed to lie in 
known intervals. Assume, 

ccmm ccmm    ,         (17) 
where the nominal mass is 

 2/)( LH mmm  , and the nominal 
damping is 2/)( LH ccc  ; the maximum 
variation of mass is 2/)( LHm mm  , and 
the maximum variation of damping is 

2/)( LHc cc  ; the perturbations m  
and c  are confined by 1|| m  and 

1|| c , respectively, in which Hm =250 kg, 
skgcH / 15 and Lm = 50 kg, skgcL / 5  

are in practice the upper and lower bounds of 
the slider’s nominal mass and damping, 
respectively. 

Figure 8 presents the system’s block 
diagram according to the foregoing 
dynamical equations. Suppose the control 
input is T

21 ],,[ ryww  and the output is 
T

21 ] ,,[ yzz . Then, using the Doyle’s 
representation, the transformation matrix can 
be represented as below. 
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and, 

12
1

1121221 )()( MMsIMMsG   (18b)                     
in which the parameters of Eq. (18a) are 
defined in the nomenclature, and the system 

including the perturbations m  and c , can 
be represented using LFT. That is, 
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where ),(  Mu  is the upper LFT, as 
shown in Fig. 9, and   RH  is the 
structured uncertainty. Stability is often not 
the only property of a closed-loop system 
that must be robust to perturbations. The 
most well-known use of   as a robustness 
analysis tool is in the frequency domain. 
Figures 10 and 11 show the singular value 
frequency responses of )(1 jG  and the 
structured singular values, ))(( 1  jG , 
respectively, for each frequency with 

22 C , obtained by adjusting the 
proportional gain, aK . These figures are 
obtained by programming the theorem of   
(Zhao, 2000). Moreover, the bounds of 

))(( 1  jG  are formulated within the 
reference book (Zhou, 1998). In Figs. 10 and 
11, the maximum singular value of )(1 jG  
is increased by decreasing the proportional 
gain, and the maximum structured singular 
value is increased by increasing the 
proportional gain. Table 1 presents the 
maximum singular values 


)(1 jG , the 

maximum structured singular values 
))((sup 1 


jG

R



 and the bandwidth of the 

control system for various proportional gains. 
Moreover, if the upper bound of the nominal 
mass exceeds a critical value, then the 
maximum structured singular value will be 
larger than unity, possibly causing the 
requirement for robust performance to be 
unsatisfied. Table 2 presents the critical 
upper bounds of Hm  for various 
proportional gains, aK . The critical upper 
bound increases as the proportional gain 
decreases. Combining Table 1 and Table 2 
reveals that the system is more robustly 
stable at a lower proportional gain, but the 
time constant of the system responses is 
higher. Thus, a tradeoff exists between the 
robustness and the performance of the 
system’s response. Nevertheless, by carefully 
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considering this tradeoff, the most suitable 
proportional gain can be conveniently 
adjusted to fit the specific demands of the 
control. In this paper, Hm  is estimated to be 
around 250 kg by transforming the maximum 
torque of each joint of the motion simulator 
SP-120 to the equivalent mass. The 
maximum torque is obtained by applying the 
critical velocity and the maximum tolerable 
acceleration to drive the slider of the motion 
simulator provided traveling most the 
nominal workspace of the simulator. 
Moreover, for example, if the damping ratio 
is set to 0.707, then the proportional gain 
must be adjusted to 6.3, and the maximum 
structured singular value is then calculated as 
0.801358. Clearly, the sufficient and 
necessary condition for robust performance is 
satisfied. That is, the maximum structured 
singular value must be less than unity. 
Consequently, according to the theorem of 
  and  -synthesis, the system is 
well-defined and internally stable under the 
structured perturbation, 1


. 

By combining Eq. (13) with the above 
results, the maximum structured singular 
value of the entire system, 21GG , is confined 
by the following inequality. 

1))((sup

))()((sup

1

21

 













jG

jGjG

R

R              (20) 

Restated, the master switching control 
system is more robustly stable than the 
original stable system. 
 
5. Numerical Method for the Forward 
Kinematics of Six DOF Motion Simulator 

The cockpit trajectories obtained using 
conventional tracking control and the 
proposed tracking control, are compared to 
demonstrate the precision of the proposed 
control scheme. Therefore, the six sliders 
must be transformed into the cockpit 
positions off-line; that is, forward kinematics 
will be used to transform the six axis 
coordinates into the cockpit’s coordinates, 
including translation components and 
rotation components (and representing a 
transformation from J to S). However, direct 
forward kinematics is difficult to formulate 
for a six DOF motion simulator. Therefore, 
this study proposes the use of a numerical 

method, such as Newton’s method to execute 
the transformation (J to S) indirectly. The 
following iterative steps describe the 
numerical, steepest descent approach (Garret, 
1984) (Edwin & Stanislaw, 1996). 
1. Set 0k , and set the initial cockpit 

position, 0x , to the cockpit home position. 
2. Calculate the present Jacobian matrix kJ , 

according to the algorithm presented in the 
Appendix A. 

3. Calculate the estimated errors in the 
positions of the six sliders as,  

6
, Rpp kestyk                (21) 

where yp  is the actual position of one 

slider, kestp ,  is the estimated positions of 
the six sliders, calculated by inverse 
kinematics, and k  is the chosen step 
size. 

4. Calculate the next estimated cockpit 
position,  

kkkk Jxx 1                 (22) 
where the Jacobian kJ  matrix is the 
equivalent gradient matrix. 

5. If  21 |||| kk xx  or  2|||| k , 
terminate the iteration; the approximate 
cockpit position is 1kx , where  and  
are the set maximum tolerable errors. 

6. Set 1 kk ; repeat steps 2 to 5. 
The convergence of this algorithm takes 
about two to three iterative loops, given the 
setting 121  e  and 121  e . 
 
6. Experimental Results and Comparisons 

In this study, the proposed ECAM tracking 
scheme is used on the SP-120 simulator to 
simulate ground earthquake signal received 
at Shui-Li Primary School on September 21, 
1998. Figure 12 shows a part of this ground 
earthquake signal. Figure 13 presents the 
power spectrum density of this signal at 
various frequencies. As aforementioned, the 
frequencies of the signal are not all less than 
one-tenth of the Nyquist frequency (here is 
50 Hz). Nevertheless, poly-line curve-fitting 
method is used in the proposed control 
scheme. 

Figures 13 ~ 15 compare Euler’s roll angle 
errors, the pitch angle errors and the yaw 
angle errors, respectively, between the 
conventional and proposed method. This 
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ground earthquake signal involves only the 
translation; restated, the simulator’s output 
attitude must not include a rotational 
component. However as stated above, the six 
axes may mutually pull and drag each other, 
causing rotational motion during this pure 
translation. Table 3 presents the root mean 
square (RMS) errors of Eular angles for 
using the proposed ECAM tracking scheme 
and the master fixed ECAM tracking method 
executed on the simulator SP-120. In this 
simulation, the poly-line curve-fitting 
method is used to establish the ECAM 
profile and the positioning accuracy depends 
on the system sampling time: a smaller 
sampling time yields greater accuracy. 
However, a tradeoff exists between the 
calculation time and the system sampling 
frequency. For example, with a calculation 
time of around 0.5 ~ 1 ms, the system 
sampling frequency may be set to 100 Hz. 
Therefore, some small errors still occur (as 
shown in Figs. 14 ~ 16) even if the master 
switching tracking control is applied to the 
simulator system. Thus, higher performance 
computers clearly track more precisely. 

 
四. 結論 

The displacements of slaves of the 
electronic cam control system depend on the 
displacement of the master; the master 
switching method selects the most heavily 
loaded axis to be the master in real-time. The 
trajectory following speed yielded by the 
master switching method can be less than the 
speed yielded by the conventional (master 
fixed) method. Precision and robustness are 
the key concerns and the proposed method is 
sound. As aforementioned, by adjusting the 
proportional gain, a tradeoff exists between 
the robust stability and the velocity response 
of the control system. Using the well-known 
  analysis of structured uncertainty, a most 
appropriate proportional gain may be chosen 
to satisfy the demand of control performance, 
provided robust stability is guaranteed. 
Furthermore, the poly-line curve-fitting 
method requires less computational time than 
the polynomial curve-fitting method, 
although the latter one may theoretically 
yield higher precision for a motion of low 
frequencies. 

 

Appendix A 
To find the most heavily loaded axis of 

the six DOF motion simulator, SP-120, the 
Jacobian o f the simulator should be 
calculated by the following procedure. 
A.1 Inverse Kinematics 

Motion-based control may also be called 
cockpit’s positioning control. Cockpit 
position, including both translation and 
rotation components, must be transformed 
into the coordinates of the six sliders using 
inverse kinematics. The inverse kinematics 
of the SP-120 motion simulator is as follows. 

Figure 5 presents the top view of SP-120.  
22

zi
2

yiyi
2

xi Lq)p(qq          (23) 
All of the parameters in Eq. (1) are fixed in 
the Si coordinate system. Thus,  

}]qq[q),,(R]ZY[X{

),,(R][
T

ziyixi
GT

GGG

ziyixi
T

ziyixi
SS ii







 OOOiiqS

                                 (24) 
where ),,(R   is the transformation 
matrix of the Euler angle, and can be easily 
expressed as, 

 



























ccsccsc-
cs-sss-css

ssc-cc

),,(R

cssss
ccsc

                                 (25) 
and  sins,cosc  ,…. and so on, 
where the above variables and symbols are 
all presented in the nomenclature. 
A.2 Jacobian formulation of simulator SP-12 

From Eq. (23), 

0/ddqq

)/dpd(q)p(q/ddqq

zizi

yiyiyiyixixi





t

tt
(26) 

6to1i

,]/ddq/ddq/ddq[]rr[r

]/ddq/ddq/ddq[

)]p/(qq1)p/(qq[/ddp

T
ziyixi

Si
ziyixi

T
ziyixi

Si

yiyixiyiyixiyi







ttt

ttt

t

  

     (27) 
where, 

)]p/(qq1)p/(qq[]rr[r yiyixiyiyixiziyixi  ; 

the superscript “T” represents the transpose 
of the matrix and all the parameters are 
considered in the Si coordinate frame. From 
Eq. (24) 
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T
GGG

ziyixi

T
ziyixi

Si

]d/dZd/dYd/dX{[

),,(

]/ddq/ddq/ddq[

ttt

R

ttt

         

}]qqq[)d/d

d/d/d(
T

ziyixi
GtR

tdRtR












        (28) 

where R  is the partial derivative of 
),,( R with respect to  . R  is the 

partial derivative of ),,( R  with respect 
to  . R  is the partial derivative of 

),,( R  with respect to  .  
   

Substituting Eq. (26) into Eq. (25) yields   

T
GGG

ziyixiziyixi16yi

]d/dZd/dYd/dX{[

),,(]rr[r]/ddp[

ttt

Rt 
 

}]qqq[

)d/dd/d/d(
T

ziyixi
G

tRtdRtR



  
  

T
GGG

ziyixiziyixi

]d/dZd/dYd/dX{[

),,(]rr[r

ttt

R 
 

}]/dtd/dt,d/dt,d[],,[ T  iii QRQRQR

  
                               (29) 

where T
ziyixii ]qqq[Q G . However,  ,   

and  are the Euler angles measured in the 
body embedded coordinate frame, which is 
the cockpit coordinate system. When dealing 
with angular velocity, the inertial frame must 
be the reference frame. Let T][ zyx   be 

the cockpit angular velocity measured in the 
inertial frame X-Y-Z-O. Then, 



















































t
t
t

M

t
t
t

zyx

/dd
/dd
/dd

/dd
/dd
/dd

ccs0
cs-c0

s01
][ T















                       

(30) 
T1T ][]/dd/dd/dd[ zyxMttt                                   

(31)                       
where,  

11 )(
cs-0

cscc0
sc-ssc

 















 





cM  (32)     

Substituting Eq. (31) into Eq. (29) yields,  

T
GGG

ziyixiziyixi16yi

]d/dZd/dYd/dX{[

),,(]rr[r]/ddp[

ttt

Rt 
 

T1
iii ][]Q,Q,Q[ zyxMRRR 

                                

(33) 
According to the definition of Jacobian 
matrix J, the joint space is converted into 
Cartesian space, such that, 

tJtX /ddΘd/d i                  (34) 
where T

GGG16 ]ZYX[ γβαX  , and 

yii p , i = 1 to 6, and 

tXJt d/d/ddΘ 1
i                 (35) 

As mentioned above, the angular velocity in 
the inertial frame is more meaningful than 
that measured in the body embedded frame. 
Form Eq. (35), the elements of 1J  can be 
summarized directly as follows. 
The first part of Eq. (35) comprises the first 
three columns of 1J  

),,(]rr[r][ ziyixiziyixi
1

3i
1

2i
1

1i RJJJ  ,   

i = 1 to 6                          (36) 
The second part of Eq. (35) comprises the 
last three columns of 1J  

),,(]rr[r][ ziyixiziyixi
1

6i
1

5i
1

4i RJJJ 

1
iii ]Q,Q,Q[  MRRR        (37) 

A.3 Calculate the loaded torque of each joint 
using Jacobian matrix 

The relationship between 6×1 joint torque 
vector ,  = 1, 2,3,4,5,6and the 6×1 
equivalent Cartesian force-moment vector F, 
F = m a, I3x3 acting at the mass center of 
the upper plate, can be written in the form, 
(John, 1989)  
  = TJ F.                      (38) 
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Calculate Jacobian Matrix J 
(Eq. (23) ~ Eq. (37)) 

mr,1,r y~y

Calculate the heaviest loaded axis as the 
new master  

(Eq. 38) 

 
Establish cam 

profiles by using 
curve-fitting 

method: 
Polynomial 
curve-fitting 

method 
Eq. (17)~(23) 

or 
Poly-line 

curve-fitting 
method 

Eq. (24)~(28)  

Axis #1 

Axis #2 

Axis #3 

Axis #4 

Axis #5 

Axis #m 

r,1y

r,2y
 

r,3y

r,4y

r,5y

mr,y

Motion Planning  
Process 

Fig. 1 Master switching method for m-axes ECAM control 
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Fig. 2 Cam profile trajectory established using the polynomial curve-fitting method 

Fig. 3 Cam profile trajectory established using the poly-line curve-fitting method 

kT (k+N) T T 

The planned points 

… … 

f(t) 

t 

VRt

Cam profile 

kT (k+N) T 
T 

The planned points 

… … 

f(t) 

t 

VRt

Cam profile 



 13

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Prototype SP-120 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Vertical view of the simulator platform SP-120 
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Fig. 6 Conditions on dual solutions using the polynomial curve-fitting method 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 Equivalent model of slider 
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Fig. 8 Simplified control system’s block diagram of control system of each slider of simulator 

SP-120 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9 Upper linear fractional transformation with cm   21   ,  and ,1 || m 1 || c  
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Fig. 10 Singular value frequency responses, ))(( 1  jG , for various proportional gains, aK  

 
Fig. 11 Upper bounds of structured singular values, ))(( 1  jG , for various proportional 

gains, aK  
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Fig. 12 The piecewise ground earthquake signal involves only the translation. 
 
 
 
 

 
Fig. 13 Power spectrum density of the ground earthquake signal at various frequencies 
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Fig. 14 Comparison of Euler’s piecewise roll angle errors obtained using the proposed master 

switching method with those obtained the conventional method for ECAM control 

executed on the simulator SP-120 

 
 

 

Fig. 15 Comparison of Euler’s piecewise pitch angle errors obtained using the proposed 

master switching method with those obtained the conventional method for ECAM 

control executed on the simulator SP-120 
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Fig. 16 Comparison of Euler’s piecewise yaw angle errors obtained using the proposed master 

switching method with those obtained using the conventional method for ECAM 

control executed on the simulator SP-120 
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Table 1 Maximum singular values of 


)(1 jG , maximum structured singular values of 

))((sup 1 


jG
R




 and bandwidth of control system for various proportional gains, aK ; the 

upper bound, Hm , of the nominal mass is set to 250 kg 

          aK  

 terms 
0.1 1.0 5.0 10.0 12.0 


)(1 jG  

88.939455 18.651650 3.910155 2.323414 2.168739 
))((sup 1 


jG

R



 

0.666652 0.666658 0.752879 0.929482 0.989907 

Bandwidth 

(rad) 
0.00594 0.0188 0.0420 0.0594 0.0651 

 
 
 
Table 2 Critical upper bounds of the nominal mass for various proportional gains, aK  

aK  0.1 1.0 5.0 10.0 12.0 

critical upper 
bounds (kg) 

10,400.0 1414.9 433.6 281.8 254.1 

 
 
 
Table 3 Root mean square (RMS) errors of Euler angles, obtained using the proposed master 
switching method and the conventional method for ECAM control executed on the simulator 
SP-120 

       Error items 
 

Tracking method 

RMS error  
of roll 

RMS error  
of pitch 

RMS error  
of yaw 

conventional method 0.0015150 rad 0.003427 rad 0.0004285 rad 

master switching 
method 

0.0007445 rad 0.001988 rad 0.0001499 rad 

 
 

 


