行政院國家科學委員會專題研究計畫 成果報告

氮化物材料及液晶配向結構之光電特性顯微偵測研究

<u>計畫類別</u>: 個別型計畫 <u>計畫編號</u>: NSC91-2112-M-009-024-<u>執行期間</u>: 91 年 08 月 01 日至 92 年 10 月 31 日 執行單位: 國立交通大學電子物理學系

<u>計畫主持人:</u>李明知

共同主持人: 趙如蘋,陳文雄,陳衛國

報告類型:精簡報告

<u>處理方式:</u>本計畫可公開查詢

中 華 民 國 92 年 12 月 22 日

行政院國家科學委員會專題研究計畫成果報告

氮化物材料及液晶配向結構之光電特性顯微偵測研究

計劃編號: NSC-91-2215-E-009-024

執行期間: 91/8/1~92/10/31

主持人:李明知 交通大學電子物理系

一、中文摘要

本計劃中使用低壓有機化學氣相 沉積系統於(0001)C面的藍寶石基板上 成長六角丘型結構之氮化鋁鎵薄膜,並 使用本實驗室自行架設之微螢光光譜 儀,利用微螢光光譜儀具有之空間解析 能力,對此微結構進行光學特性研究。 實驗中發現此六角丘型微結構除了近 帶躍遷(341nm)譜峰外還具有相關於六 角丘型結構之特殊躍遷譜峰(351nm)且 其光譜強度比近帶躍遷強五倍 在變溫 微螢光光譜圖中,我們亦發現到近帶躍 遷之轉換溫度約 150K;六角丘型結構 相關譜峰躍遷之轉換溫度為 120K。

二、英文摘要

The hexagonal hillocks in AlGaN films was deposited on the sapphire substrate by MOVPE system. The spatial variation of optical properties of hexagonal hillocks were studied by micro-PL. We can see that the spectra are dominated by the near-band-edge emission (I_{nbe}) at 341 nm as the laser spot moves far away from the hillocks. When the laser spot focused on the hillocks, the most significant change in the μ -PL spectra is the appearance of a new broad peak at 351nm (I_H). Moreover, the peak intensity of I_H is five times larger than I_{nbe}. We also performed dependent temperature u-PL measurement from 10 to 300K. It was found that the transition temperature of I_{nbe} and I_{H} line was 150K and 120K, respectively.

三、緣由與目的

氮化鋁鎵材料由於可以藉由長晶 參數調變,獲得不同鋁組成之氮化鋁鎵 薄膜,使得其能隙分佈可以由氮化鎵 (3.4eV)延伸至氮化鋁(6.2eV),大幅度 地增進了氮化鋁鎵材料的應用範圍,目 前氮化鋁鎵已被廣泛地應用於如:高電 子遷移率電晶體(HEMT),紫外光發光二 極體、雷射二極體(UV-LED、UV-LD)、 紫外光光檢測器(UV-detector)..等光 電元件製作,此外更是面射型藍光雷射 二極體(VCSEL)之布拉格反射層(DBR) 製作極為重要之材料[1-2]。

由於氮化物成長於藍寶石基板,其 晶格不匹配度相差極大,無可避免地將 有差排、點缺陷...等微結構的形成 [3],而不同種類的微結構其所擁有的 光學與電學的特性皆有所差異,因此瞭 解微結構的成因與特性對元件性能提 昇將十分有助益,此外更可進一步運用 微結構中所擁有之特殊光電特性,發展 出性能更好之光電半導體元件。

四、實驗步驟

本實驗採用低壓有機金屬化學氣 相沉積系統(MOVPE)成長所需之薄膜, 首先將兩吋(0001)面之 Sapphire 基板放 入反應腔後,升高反應腔溫度至 1120 通入氫氣下先進行十分鐘的熱處理,再 將低成長溫度至 650 成長厚度約 25nm 之氮化鋁緩衝層,以降低氮化鋁 鎵與 Sapphire 間晶格不匹配產生之應 力。在成長 AIN 緩衝層後,將反應腔 溫度升高至 1120 ,通入 TMAL TMGa 及 NH₃ 反應氣體,成長厚度約 0.7 µ m 表面為六角丘型結構的氮化鋁鎵薄膜

樣品分析方面,使用微螢光光譜儀 (Micro-PL)觀察氮化鎵量子點之光學 特性, Micro-PL 為本實驗室自行架設, 我們使用 100 倍的顯微鏡頭將 325nm 雷射光聚焦至試片,其光點直徑大小約 1.5 µ m。

五、結果與討論

圖一為六角丘型結構之氮化鋁鎵 光學顯微影像圖,其幾何形狀直徑約6 µm,密度約1×10⁶ cm⁻²。我們並使用 微光光譜儀之空間解析能力,針對此六 角丘型微結構作光學特性分析,由圖二 光譜顯示當雷射光點遠離六角丘型氮 化鋁鎵微結構時,僅有341nm相關於 氮化鋁鎵近帶躍遷的譜峰;而當雷射光 束往六角丘型結構內部移動時,341nm 的譜峰逐漸變弱,並產生一個新的譜峰 351nm,譜峰強度於六角丘型結構中心 時達到最強,約為近帶躍遷譜峰強度五 倍左右(如圖三)。

圖一 六角丘型氮化鋁鎵光學顯微影像圖

圖二 六角丘型氮化鋁鎵室溫顯微螢光光譜空 間解析圖

圖三 室溫顯微螢光光譜近帶躍遷與六角丘型 結構躍遷之譜峰強度與位置關係圖

圖四所示為近帶躍遷與六角丘型 結構躍遷譜峰之半高寬與位置關係 圖,圖中可以發現與六角丘型結構相關 之譜峰半高寬隨著雷射光束由遠離丘 型結構往丘型結構中心移動其值由~ 80 meV 減低至 52 meV。由以上分析可 推斷六角丘型結構為一個高發光效率 的微結構。

圖四 氮化鎵量子點成長於氮化鋁鎵六角丘型 結構上室溫顯微螢光光譜圖

為了進一步了解氮化鋁鎵薄膜中 六角丘型結構之特殊躍遷譜峰在溫度 上的響應,我們進行溫度調變之低溫 µ -PL 光譜量測,溫度量測範圍由 300K 遞減至 10K,實驗譜圖如圖五所示。在

圖五 六角丘型結構變溫之顯微螢光光譜圖。

對 I_H作歸一化處理後,發現到 I_H與 I_{nbe} 均與一般氮化鋁鎵塊材之近帶躍遷一 樣具有 S shape, S shape 行為為氮化鋁 家薄膜所特有之特性,當鋁取代鎵原子 成為氮化鋁鎵此現象便發生。圖六為六 角丘型結構與近帶躍遷譜峰躍遷能量 與溫度關係圖,在高溫區時我們使用 Varshni's equation[4]來模擬分析 I_{nbe}與 I_H 譜峰躍遷能量,其方程式如下所示:

$$E(T) = E(T=0) - \frac{\alpha T^2}{(T+\beta)}$$

對於近帶躍遷 I_{nbe} 而言,偏離此模擬曲 線的轉換溫度(T_C)約為 150K;而 I_H 約 為 120K。此轉換溫度對於一般相同濃 度之氮化鋁鎵塊材而言偏高;以鋁組成 11%的氮化鋁鎵薄膜來說,其轉換溫度 約 70K[5]。轉換溫度越高表示侷限能 態的侷限量越高。

圖六 近帶躍遷與六角丘型結構譜峰位置與溫 度關係圖

六、結論

本計劃中我們使用自行架設之微 螢光光譜儀分析氮化鋁鎵薄膜中之六 角丘型微結構,實驗發現此六角丘型微 結構為一發光特性優越之微結構,並經 由變溫微螢光光譜發現與一般氮化鋁 鎵塊材一樣具有 S-shape 行為,但其轉 換溫度比一般氮化鋁鎵塊材高,顯示具 有較大的特徵侷限能量。

參考資料

- 1. S. Nakamura, M. Senoh and T. Mukai, Jpn. J. Appl. Phys., 32, L8(1993).
- S. Nakamura, M. Senoh, N. Iwasa and S. Nagahama, Jpn. J. Appl. Phys., 34, L797(1995).
- F. A. Ponce, J. S. Major, Jr., W. E. Plano, and D. F. Welch, Appl. Phys. Lett., 65, 2302(1994).
- 4. B. Monemar, Phys. Rev. B., 10, 676(1974).
- 5. H. S. Kim, R. A. Mair, J. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett., 76, 1252(2000).