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Adaptive Backstepping Motion Control of Induction Motors

���� : NSC 91-2213-E-009-071
���� : 91�8	1
�92�7	31

�
� : ����� ����������
������ :  !� ����������

1 Abstract

In this project, an adaptive backstepping controller is
proposed for position tracking of a mechanical system
driven by an induction motor. The mechanical system
is a single link fixed on the shaft of the induction motor
such as a single-link robot. The backstepping method-
ology provides a simpler design procedure for an adap-
tive control scheme and provides a method to define the
sliding surface if the robust sliding-mode control is ap-
plied. Thus, the backstepping control can be easily ex-
tended to work as an adaptive sliding-mode controller.
The presented position control system is shown to be
stable and robust to parameter variations and external
disturbances. The effectiveness of the proposed con-
trollers is demonstrated in experiments.

Keywords: Adaptive Backstepping Control, Sliding-
Mode Control, Induction Motor.
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2 Introduction

Featuring simple construction, ruggedness reliabili-
ty, and minimum maintenance, induction motors have
been widely used in many industry applications and re-
cently even in the field of robotic applications [1]. In

such applications the mechanical load driven by an in-
duction motor must track a time-varying trajectory that
specifies its desired positions [2]. To counteract these
variations, analyzing and designing the tracking per-
formance of a position controller for a torque-regulated
induction motor is proposed in this project.

A high performance motor drive must have good po-
sition command tracking and load regulating response.
In real practice, the induction motor drive is influenced
by uncertainties, which are usually composed of unpre-
dictable plant parameter variations, external load dis-
turbances, unmodelled and nonlinear dynamics of the
plant. Nonlinear control approaches have been devel-
oped to deal with such problems. The model reference
adaptive control (MRAC) technique is one method to
overcome parameter variation problems [4]. The other
method is adaptive backstepping control [5]. The lat-
ter is simpler in its control design procedure. To com-
pensate for uncertainties, much work has been done to
develop sliding-mode control schemes [8].

In this project, a new adaptive backstepping position
control scheme is developed. The backstepping control
method consists of applying a single-variable control
scheme to a multivariable control system. It first han-
dles one variable while assuming the other variables
can be assigned arbitrarily. Then, the rest of the s-
tate eqations, with the other variables, are treated by
the same procedure. The main contribution of this
project is to develop an adaptive sliding-mode back-
stepping position controller for a mechanical system
driven by an induction motor. This project empha-
sizes the motion control of a mechanical system, for a
high performance torque control induction motor. For
full information about the torque control scheme, the
reader is refered to [6]. Our proposed motion control
scheme combines adaptive backstepping and sliding-
mode technology, so that it can adaptively tune the
control gains with respect to changes in the system
parameters and can also compensate for uncertainties.
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The resulting control law provides a method to assign
the sliding surfaces for designing sliding-mode con-
trol. This special feature of the backstepping control
methodology is demonstrated in this project. The ro-
bustness of the proposed control scheme will be veri-
fied by an experiment with a sinusoidal disturbance.

3 Revisiting a Torque Control Law

This section briefly reviews the sliding-mode torque
control scheme, which is adopted as the inner loop of
the overall control system. The details of this torque
control scheme are presented in [6]. The mathemati-
cal model of a three-phase, Y-connected induction mo-
tor in a stator-fixed frame (αs, βs) can be described by
five nonlinear differential equations with four electri-
cal variables [stator currents(iαs, iβs) and rotor fluxes
(ϕαr, ϕβr)], a mechanical variable [rotor speed(ωm)],
and two control variables [stator voltages(uα, uβr)]
[7] as follows:

i̇αs = −γiαs +
K

Tr
ϕαr + pKωϕβr + αuαs (1)

i̇βs = −γiβs +
K

Tr
ϕβr − pKωϕαr + αuβs (2)

ϕ̇αr =
M

Tr
iαs −

1
Tr
ϕαr − pωϕβr (3)

ϕ̇βr =
M

Tr
iβs −

1
Tr
ϕβr + pωϕαr (4)

ω̇ = −B
J
ω +

Te
J
− TL

J
(5)

whereRs andRr are the stator and rotor resistance,
Ls, Lr, andM are the stator, rotor, and mutual in-
ductance,B and J are the friction coefficient and
the moment of inertial of the motor,Te and TL are
the electromagnetic torque and external load torque,
τr = Lr/Rr is the rotor time constant, the param-
eters areσ ≡ 1 − M2/(LsLr), K ≡ M/(σLsLr),
α ≡ 1/(σLs), andγ ≡ Rs/(σLs) +RrM

2/(σLsL2
r).

Note that

Te = kT (iβsϕαr − iαsϕβr) (6)

wherekT ≡ (3P/4)(M/Lr), P is the number of pole-
pairs.

The torque control scheme is to construct a voltage
controlleru = [uαs uβs]T to ensure that the electro-
magnetic torqueTe follows the desired torque trajecto-
ry Teref . The sliding-mode torque control scheme [6]
proposes to use

u = −D−1

(
b + kcs +

[
µc1 Sat(s1)
µc2 Sat(s2)

])
(7)

wheres = [s1, s2]T are the sliding surfaces of torque
and flux,D, b, kc, and(µc1, µc2) are the nonlinear
control factors that are defined in detail in [6]. Note
that the saturation function Sat(si) is defined as

Sat(si) =
si

|si|+ λ
(8)

whereλ > 0 is a smooth factor.
Furthermore, the flux observer [6] is

˙̂ıαs = −γı̂αs +
K

Tr
ϕ̂αr + pKωϕ̂βr

+αuαs + Λ1 (9)

˙̂ıβs = −γı̂βs +
K

Tr
ϕ̂βr − pKωϕ̂αr

+αuβs + Λ2 (10)

˙̂ϕαr =
M

Tr
ı̂αs −

1
Tr
ϕ̂αr − pωϕ̂βr + Λ3 (11)

˙̂ϕβr =
M

Tr
ı̂βs −

1
Tr
ϕ̂βr + pωϕ̂αr + Λ4 (12)

whereı̂αs, ı̂βs, ϕ̂αr, ϕ̂βr are the estimators ofiαs, iβs,
ϕαr, ϕβr, respectively. Let the estimate errors bee =
[e1 e2 e3 e4]T =
[̂ıαs−iαs ı̂βs−iβs ϕ̂αr−ϕαr ϕ̂βr−ϕβr]T . The estimate
inputs are {

Λ1 = −ρ̂1sign(e1)− ζ̂1

Λ2 = −ρ̂2sign(e2)− ζ̂2
(13)

[
Λ3
Λ4

]
=

[
kφ −pω
pω kφ

] K
Tr

pKω

−pKω K
Tr

−1

[
Λ1
Λ2

]
−
[
ρ3 Sat(e3)
ρ4 Sat(e4)

]
(14)

where the adaptive laws are

˙̃ρ = ˙̂ρ =

[
˙̂ρ1
˙̂ρ2

]
=

[
|e1|
|e2|

]
(15)

˙̃
ζ = ˙̂

ζ =

 ˙̂
ζ1
˙̂
ζ2

 =

[
e1
e2

]
(16)

andkφ is a constant and[ρ3 ρ4]T are the upper bound
of the uncertainty of estimate flux equations.

4 Adaptive Backstepping Motion Control

This project tried to develop a new backstepping con-
trol law for motion tracking of an induction motor. The
sliding-mode torque control scheme [6] is implement-
ed as an inner loop of torque control. Fig. 1 shows
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the control structure with a rod fixed on the shaft ax-
is of the motor which is an example of a single link
robot. The following context is then concentrated on
the motion tracking of a mechanical system driven by
an induction motor.

The dynamics of the mechanical system are

Jθ̈m = −Bθ̇m −mgl sin(θm + θ0) + kTuT

= −Bθ̇m −mgl cos θ0 sin θm
−mgl sin θ0 cos θm + kTuT (17)

whereθm is the angular displacement of the shaft,m
is the mass of the rod,l is the distance from the shaft
center to the center of mass of the rod,g is the gravi-
tational acceleration, andθ0 is the null angle from the
line of gravity. Furthermore, (17) is simplified as

θ̈m = −BJ θ̇m−Ls sin θm−Lc cos θm+KJuT (18)

where BJ ≡ B/J , Ls ≡ mgl cos θ0/J , Lc ≡
mgl sin θ0/J ,KJ ≡ kT /J . Note thatJ > 0.

Fig. 1: Overall system of the position control of an
induction motor.

The control objective is to design a controlleruT
that forces the position variableθm to track a desired
trajectory denoted byθ∗m which is secon-order con-
tinuously differentiable. Define the tracking error as
ep = θ∗m − θm. The system in (18) can be rewritten as

ėp = es = θ̇∗m − θ̇m
ės = ëp = θ̈∗m +BJ θ̇m + Ls sin θm

+Lc cos θm −KJuT

(19)

The concept of the backstepping is first to consider on-
ly one of the states. We considere and let Lyapunov-
like function beV0 = e2

p/2. The derivative ofV0 along
the trajectory ofep is

V̇0 = epėp = −c1e
2
p + ep(es + c1ep) (20)

The purpose of the special form of (20) is to achieve
V̇0 = −c1e

2
p < 0 for ep 6= 0 if es were kept to be

−c1ep. However,es cannot be arbitrarily assigned.
The backstepping design is then to consider the error

z ≡ es − (−c1ep). According to (19), the dynamics of
z are

ż = KJ

(
hT x̄− uT

)
(21)

where

h =


1/KJ

BJ/KJ

Ls/KJ

Lc/KJ

 , x̄ =


θ̈∗m + c1(θ̇∗m − θ̇m)

θ̇m
sin θm
cos θm


(22)

Note that the parameters ofh are assumed unknown.
We need to design an adaptive backstepping controller
to estimate these parameters on line. The estimates of
the unknown parameters are denoted byĥ and the es-
timation error ish̃ = h − ĥ. Now, consider a new
Lyapunov-like function:

V1 =
1
2

(
e2
p + z2 +KJ h̃TΓh̃

)
(23)

whereΓ is a positive definite matrix. The derivative of
V1 along the trajectory of the system (19) is

V̇1 = −c1e
2
p + epz + zKJ

(
hT x̄− uT

)
+KJ h̃TΓ ˙̃h

= −εTFε (24)

where

ε =

[
ep
z

]
, F =

[
c1 −1/2
−1/2 c2

]
(25)

if the controller and the adaptive law are, respectively,

uT = ĥTx (26)

˙̂h = zΓ−1x (27)

wherexT = x̄T + [c2z, 0, 0, 0]. It is easy to show
that the symmetrical matrixF is positive definite and
thenV̇1 ≤ 0 if c1c2 > 1/4.

Proposition 1.Consider the system (18). The an-
gular displacementθm of the system will asymptoti-
cally converge to the desired trajectoryθ∗m if the con-
troller and the adaptive law are, respectively, (26) and
(27) with c1c2 > 1/4.

Proof.V1 in (23) is a Lyapunov-like function, so we
cannot directly apply the Lyapunov stability theory.

However,V1 is bounded below and non-increasing,
which implies thatlimt→∞ V (t)1 = V1∞ exists [3].
Thus,ep, z, h̃ ∈ L∞, so thatĥ ∈ L∞ sinceh is con-
stants. It then follows from (19) and (21) thatėp,ż ∈
L∞. Integrating (24), we obtainV1(t)|t=0 − V1∞ ≥∫∞
0 εTΓε, and thenε ∈ L2. A corollary of Barbalat’s

lemma [3] states thatε ∈ L∞ andε ∈ L2 imply ε→ 0
ast→∞. This completes the proof. Q.E.D.

It should be remarked thatuT in (26) is used as the
reference active torqueuTref for the inner loop torque
control (see Fig. 1).
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5 Extension to Robustness

The above mechanical model is an ideal case. We now
consider a more practical case by introducing an uncer-
tainty in (18) to obtain

θ̈m = −BJ θ̇m − Ls sin θm − Lc cos θm +KJuT + ∆
(28)

where∆ ≡ KJ∆1 is a bounded uncertainty satisfy-
ing |∆1| ≤ ρ, in which ρ > 0 is an unknown bound.
After introducing the uncertainty, (21) should also be
modified as

ż = KJ

(
hT x̄−∆1 − uT

)
(29)

Let the sliding surface bes = ε and define the Lya-
punov function asV = (1/2)sT s. It can be shown that
a sliding-mode controlleruT = hTx + ρ sign(z) can
draw the overall system to the sliding surfaces = 0
and thenθm asymptotically approaches the targetθ∗m,
if all system parameters are known. However, we as-
sume that the parameters are unknown. Thus, we re-
quire the following adaptive sliding-mode backstep-
ping controller.

Proposition 2.Consider the system (28). The an-
gular displacementθm of the system will asymptotical-
ly converge to the desired trajectoryθ∗m if the controller
and the adaptive law are, respectively,

uT = ĥTx + ρ̂ sign(z) (30)

˙̂h = zΓ−1x (31)

˙̂ρ = γ−1
ρ |z| (32)

with c1c2 > 1/4 for x andγρ > 0.
Proof. Let the Lyapunov-like functionV2 be

V2 =
1
2

(
εTε+KJ h̃TΓh̃ +KJγρρ̃

2
)

(33)

whereρ̃ = ρ− ρ̂. Applying (30), we obtain the deriva-
tive of V2 along the trajectory of the system (28) as

V̇2 = −εTFε− zKJ(∆1 + ρ̂ sign(z)) +KJγρρ̃ ˙̃ρ
≤ −εTFε+KJ(ρ|z| − ρ̂|z|) +KJγρρ̃ ˙̃ρ
= −εTFε ≤ 0 (34)

Note that−∆1z ≤ |∆1z| ≤ ρ|z|. ThenV2 is bounded
below and non-increasing. The rest of the proof is sim-
ilar to the last part of the proof of Proposition 1 and is
omitted. Q.E.D.

6 Experiments

The experimental system for the proposed adaptive
sliding-mode backstepping position control is shown in
Fig. 2. This is a PC-based control system and the ram-
p comparison modulation circuit is to drive the volt-
age source inverter. The induction motor in the exper-
imental system is a 4-pole, 5HP, 220V motor with the
rated current, speed, and torque of 13.4A, 1730rpm,
and 18Nm, respectively. The encoder has 4096 coun-
ters per revolution. The parameters of the motor are
Rs = 0.3Ω, Rr = 0.36Ω, Ls = 48mH, Lr = 48mH,
andLm = 45mH. Those of the mechanical system
areJ ≈ 0.0042kgm2, l ≈ 0.5m, andm ≈ 1.7kg.

Fig. 2: Experimental system.

Two experiments are conducted: 1) reference trajec-
tory generated by set-point positions, and 2) robust po-
sition control.

In the first experiment, the motor is asked to go to
θm = π/2 at t = 0.5s, then toθm = π at t = 5s, and
finally to return toθm = π/2 again att = 8s. Howev-
er, the desired trajectory is generated by the reference
model of

θ̈∗m = −ktθ̇∗m − ksθ∗m + ksθr (35)

whereθr is the angular displacement command, and
kt andks are positive constants, which can be selected
thats2 + kts+ ks = (s+ p1)(s+ p2) with p1, p2 > 0.
The gains of the reference model arekt = 10 and
ks = 24. It should be remarked that the reference
active torqueuTref in the inner loop is equal touT
generated by the adaptive sliding-mode backstepping
controller stated in Proposition 2, while the reference
flux φref is given as a constant of0.43 Wb. The ex-
periment results are shown in Fig. 3. It can be seen
that the steady-state error is negligible, and the tran-
sient response also meets the reference model. The
history of the estimated torque shows that the values
are around zero forθm = π and around about 14Nm
for θm = π/2, which is consistent with the physical
property.
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The second experiment asks the motor to go toθm =
π/2 at t = 0.5s. The desired trajectory is also gen-
erated by (35). However, there is disturbance torque
Tl = 3.5sin2(t − 3)Nm, ∀t > 0, beginning att = 3s,
which is generated by an external DC-motor. The ex-
perimental results for the control laws in Propositions 1
and 2 are shown in Fig. 4. It can be seen that the adap-
tive sliding-mode backstepping controller can compen-
sate for the sinusoidal disturbance, whereas the control
law in Proposition 1 cannot. This verifies the robust-
ness of the proposed control law in Proposition 2.

Fig. 3: Responses of a set point positions command:
(a) position; (b) torque command and estimated torque;
(c) tracking error (θ∗m − θm); (d) rotor flux.

Fig. 4: Responses of a set point position command: in
the adaptive backstepping controller: (a) position; (b)
torque command and estimated torque; in the adaptive
sliding-mode backstepping controller: (c) position; (d)
torque command and estimated torque

7 Conclusion

This project presents a new adaptive backstepping mo-
tion control for a mechanical system driven by an
induction motor. We adopt the sliding-mode direct
torque control proposed in [6] as the inner loop con-
troller, which ensures that the electromagnetic torque
of the motor will closely follow the torque command.
The main topic of this project is then only to design

a position controller, which generates the torque com-
mand to the inner loop controller so that the asymp-
totical stability can be ensured. This position con-
troller is derived based on the backstepping method-
ology. On the other hand, the backstepping method
provides a way to define the sliding surface for the
sliding-mode control. We use this concept to extend
the result to the system with an uncertainty. The pro-
posed control scheme is the so-called adaptive sliding-
mode backstepping controller stated in Proposition 2.
The control system is implemented on a PC-based sys-
tem to control an induction motor with a rod fixed on
the shaft. Both set-point and tracking position control
experiments verify the control theory and show that the
proposed control scheme is useful for industrial appli-
cations.

References

[1] Hu J., D.M. Dawson, and Z. Qian, ”Position track-
ing control for robot manipulators driven by induc-
tion motors without flux measurements,”IEEE Trans.
Robotics Automatic, vol. 12, pp. 419-438, 1996.

[2] Fusco, G., ”Tracking performance of anH∞ position
controller for current-fed induction motors under me-
chanical load variations,”IEEE/ASME Int. Conf. on
Advanced Intelligent Mechatronics Proc., Como, Italy,
pp. 713-718, 2001.

[3] Ioannou, P.A. and J. Sun,Robust Adaptive Control.
Prentice-Hall Press, 1996.

[4] Ko, J.S. and C.H. Jeon, ”New MRAC load torque ob-
server for the position control of BLDC motor,”Proc.
IEEE Int. Conf. on Industrial Technology, (ICIT ’96),
pp. 565 -569, 1996.

[5] Jankovic, M., ”Adaptive Nonlinear Output Feedback
Tracking with a Partial High-Gain Observer and Back-
stepping,” IEEE Transactions on Automatic Control,
vol. 42, no. 1, pp. 106-113, 1997.

[6] Lin, S.K. and C.H. Fang, ”Sliding-mode direct torque
control of an induction motor,”The 27th Annual Con-
ference of the IEEE Industrial Electronics Societ, pp.
2171-2177, 2001.

[7] Novotny, D.W. and T.A. Lipo,Vector control and dy-
namics of AC drives.Oxford Press, 1996.

[8] Xia, Y., X. Yu, and W. Oghanna, ”Adaptive robust fast
control for induction motors,”IEEE Trans. Ind. Elec-
tronic, vol. 47, pp. 854 -862, 2000.

5


