
微積分實驗教材之研究 

 

交大是一所以理工為主的大學，全校除了外文系及管理科學系社會組二班之外，

所有的大一學生皆要修習微積分課程。但由於長期填鴨式教育及速食文化影響，

學生的學習興趣及效果卻不盡理想。1999年本人訪問美國數所參與微積分改革
之學校後，深深體會，提供學生多元化的微積分學習環境並以電腦科技結合數學

活動實為必然之趨勢。 

 

自九十學年度開始，交大的微積分課程便採取不分系、由學生自由選班上課。並

針對學生的不同需求，提供了三種課程：普通班課程、實驗班課程與榮譽班課程。

其中，實驗班的教材與普通班相同，唯不同於一般只由老師課堂教授的模式，學

生將透過電腦實驗主動學習。 
 
這兩年本人均負責一班的實驗班，部分的教學則以本計劃所設計之 problem-based
實驗活動為教材。，讓學生兩人一組在電腦室中，透過網路取得教材，實地操作

學習。 
 

一. 活動教材之設計目標 

 

以學習活動貫穿教材 

從活動中引導實做,互相討論. --想法是"做出來"的,而非"獲得的". 
強調學習過程而非僅止於學習結果. 

 

二. 教學執行之情形 

 

學生兩人一組在電腦室中，透過網路取得教材，實地操作學習，老師從旁指導。 

 

三. 預期學生在電腦室中的活動 

觀察(observation) → 認知(identification) → 探索(exploration) → 

分析(analysis) →  解說(explanation) (口頭、文字) 



 

四. 完成之教材 

http://xserve.math.nctu.edu.tw/people/cpai/CalculusLab/index.htm 
 
Lab 1 : Guessing limits Numerically ---Explore the concept of “ limit ” by 

graphs and numerical data. 
 
Lab 2 : Mathematical Models --- Establish a mathematical model from given 

data with elementary functions such as polynomials, exponential 
functions. 

 
Lab 3 : Implicit Functions and Implicit Differentiation --- Understand the 

concept of “ a function defined implicitly ” , visualize the idea of 
“ linearization “ and perform the procedure of implicit differentiation. 

 
Lab 4 : Graphical Analysis --- What is a good representative plot of a function 

and how the derivatives of a function affect its graph.  
 
Lab 5 : Area and Definite Integrals --- Start with the area problem and use 

the idea to formulate a definite integral. 
 
Lab 6 : Approximation of Integrals --- Left endpoint approximation, right 

endpoint approximation, Midpoint rule and Simpson’s rule. 
 
Lab 7 : Parametric Curves --- Understand the advantage of parametric 

descriptions of curves is that they are convenient for "combined 
motions." Realize that simple functions can do great graphic designs. 

 
附註：此單元學生反應十分良好，學生作品請參考網頁：

http://xserve.math.nctu.edu.tw/people/cpai/demo/gallery/cal91.htm 
 
Lab 8: Polar coordinates --- Be familiar with polar coordinates and explore 

some interesting curves defined by polar equations. 
 
Lab 9 : Taylor Polynomials --- Explore the fact that a polynomial could be 

completely determined by its value and the values of its derivatives at 
0=x . Find out that as terms of higher degree are added with the 



appropriate coefficients, approximation to the "target" polynomial 
improves in the sense that the two functions appear to match over a 
wider domain centered at 0. Further, extend this idea to approximations 
of a non-polynomial function. 

 
Lab 10 : Cylinders and Quadratic Surfaces --- Explore the graphs of 

cylinders and quadratic surfaces by their traces. Also, discover the 
interesting shapes that members of family of surfaces 

22 cybxyaxz ++= can take, by observing how the shape of the surface 
evolves as we vary the constants. 

 
Lab 11 : Cylindrical and Spherical Coordinates --- Be familiar with 

cylindrical and spherical coordinates and explore some interesting 
surfaces parametrized by cylindrical or spherical coordinates. 

 
Lab 12 : Limits of Multivariable Functions --- Understand the concept of “the 

limit of a two variable function” by level curves and graphs. 
 
Lab 13 : Parametric Representations of Surfaces --- Represent a given 

surface with suitable parametric equations and identify the grid curves. 
 
Lab 14 : Critical Points and Contour Plots --- Predict the location of the 

critical points of a two variable function f  by its level curves and 
whether f  has a saddle point or a local maximum or a local minimum 
at each of those points. Find the critical points of f  by 
two-dimensional Newton’s method. 

 
Lab 15 : Changes of Coordinates --- Investigate how a transformation can do 

to a region in 2R  and realize the “ Jacobian” of a transformation as 
“ change-in-area factor” for it. 

 

四. 學生的反應 

 

◎ Lab 的學習方式優於傳統教學? 
 



A. 贊成 

(1) 可和同學討論，運用課堂上所學解決問題，定義及其運用可更了解。 

(2) 可以了解圖形或者可以知道計算的思考路線。 

(3) 可以快速的得到結果，而無須以繁瑣的步驟處理。 

(4) 可以利用電腦軟體玩一些有趣的東西，提升學習興趣。 

(5) 自己動手做，比較能學到東西，加深印象，且不會睡著。 

(6) 可用電腦實做出比較難想像的東西。 

(7) 可以主動參與學習，自己找尋問題與答案。不會和在一般課堂上一樣只

單方面的教學，無互動。 

(8) 我們可以利用電腦的繪圖能力，更佳的了解問題。 

(9) 免除處理繁雜計算和作圖的時間，讓人可以更專注於解決問題的方向。 

(10) 除了簡單的題目可以手算，大多數的題目都要使用電腦。 

(11) 觀念會強，方法會學不少，有價值。 

(12) 比一般死氣沉沉的上課方式好玩。 

(14) 利用電腦軟體輔助教學可以提高學習效率。 

(15) 可以加強空間的概念，由電腦軟體展示圖形，並提供較深刻之理解。 

(16) 可以用動畫的方式使學生明白圖形如何隨著某些因素而改變，更加了解

圖形的含意。  

17.透過實際操作，可以對函數圖形或是微積分的基本原理有更深的了解。 

 

B.不贊成 

(1) 習慣有老師在講解，自己看的話有些都看不出來。 

(2) 因為Lab佔去部分上課時間，對於課本的內容就會比較不熟，希望有方

法改進。 

(3) 利用Maple做計算並不會提升自己的數學能力，考試時也不能使用

Maple。 

 

C.其他建議 

(1) Lab內容可以再活潑一點。 

(2) 第一次接觸Lab，覺得滿難的，希望有多一點時間讓大家和教授討論。 

(3) 一些較少用或較難的Maple指令教學可以放在網頁上，以供忘記時查詢。 

(4) 兩個人一組的好處是可以互相討論。但是往往最後會一人做一部分，學

習到的東西就比較少。不分組自己做自己的話，雖然一開始會怕，但是

會強迫自己去學。 

(5) 建議不要強迫分組，自己找伙伴，增加學習興趣。 

(6) 每次的工作量似乎有點多，希望採小組工作。 

(7) 建議以後的學生要買一本Maple使用手冊，如此使用Maple會較順手。

因為題目不會做都是因為指令不會寫或看不懂，上課說的指令根本不



夠。 

(8) 要先上課再上Lab，否則英文看不懂根本無法了解題意。 

(9) 因為我的電腦有問題，無法安裝Maple，做Lab作業時都必須向別人借 

電腦，所以除了作業上的指令會用之外，沒有機會看它的設明檔或其他指

令，覺得可惜！ 

 

 

◎ 印象最深刻的單元  
 

(1) Lab 7： Parametric Curves 
a. 圖形很有趣，尤其是最後一個圖。 
b. 可看出參數函數圖形上的點隨著參數的改變而移動的情形。 
c. 畫圖讓我們想了很久，可是很好玩，很有成就感。 
d. 自己動手去設計自己喜愛的圖形，相當有新鮮感。 
e. 讓我第一次體會到數學的應用，如畫圖。 
 

(2) Lab 8： Polar Coordinates  
a. 可以自由創作出令人意想不到的圖形，很好玩。 
b. 起初對極座標的意義不甚了解，但經過Maple圖形的輔助，讓我有進一
步的認識。 

c. 做了很久，解決了全部的問題，才知道牛頓真厲害，可用極座標加上參
數函數解釋行星運動的現象。 

 

詳細活動內容如下: 

 

Module 1 

Guessing limits Numerically 

Purpose:  

    Explore the concept of " limit " 
by graphs and numerical data.  

 



    We write  

 

and say " the limit of f(x), as x approaches a , 
equals L. " 

    If we can make the values of f(x) arbitarily 
close to L (as close to L as we like) by taking 
x to be sufficiently close to a, but not equal to 
a.  

    In the module, we are going to have fun 
exploring some interesting limits, such as 

, , 

, .  

    We write  

 

and say "the limit of f( x ), as x approaches a , equals L "  



    If we can make the values of f( x ) arbitarily close to L 
(as close to L as we like) by taking x to be sufficiently 
close to a, but not equal to a .  

  

Part I  

    We are interested in estimating .  

1. Consider the function and plot the graph of 

.  

> f :=x ->(1-cos(x))/x ^2;  
plot(f(x),x=-1..1);  

> f(0.0);  

2. What is the domain of f ? 
  

3. Let's look at the values of f (x) for x < 0 .  

> for n from 1 to 6  
do # This is the beginning of a "do loop". 

x:=-1/2 ^n: # Let .  

print(evalf(x),evalf(f(x))); # Print the values of x and 
f (x).  
od: # This is the end of our "do loop".  

4. Now let's look at some values of f (x) for x > 0.  



> for n from 1 to 6  
do 
x:=1/2 ^n: 
print(evalf(x),evalf(f(x))); 
od: 

Remarks:  

1. Different rates of convergence can be achieved by 

replacing by or .  

2. At the end of the do loops in the above code, Maple 

will think that n = 6 and x = ± . (You can check 
this by entering the commands n; and x; after each 
loop.) This is important to know since if, subsequent 
to the appropriate do loop, you wanted to reuse n or 
x as a variable then you would have to redefine it as 
a variable using the command n := 'n' or the 

command x := 'x'.  

> n:='n'; x:='x'; 

5. On the basis of these data, do you think 

exists? If so, what do you think it is 

( to 4 decimal places of accuracy)? Justify your answer.  



  

Part II  

> restart; # Clear Maple's memory. 

1. Define the function f(x) = , and plot the 
graph of f for x in [-1, 1]. 

2. Evaluate f(x) for x = 0.1, 0.09, 0.08, 0.07, ..., 0.01.  

3. Evaluate f(x) for x = - 0.1, - 0.09, - 0.08, - 0.07, ..., - 

0.01.  

4. On the basis of these data, do you think 

exists ? Justify your answer.  

  

Part III  

1. Define the function g(x) = , and plot the 

graph of g for x in [-2, 2].  

2. Evaluate g(x) for x = 1, 1/2, 1/3, ..., 1/10. 



3. Evaluate g(x) for x = 2, 2/5, 2/9, 2/13,..., 2/25. 

4. What can be said about the behavior of g(x) ? Do 

you think exists? Justify your 

answer. 

  

Part IV  

    Explore the functions and h(x) = . Do you 

think exists? If so, what do you think it is? 
Justify your answer.  

 

Module 2 

Mathematical Models  

Contents 

Purpose:  

    Establish a mathematical 
model with elementary functions 



such as polynomials, exponential 
functions.  

Part I  Linear Model  

    Table Shown below lists the average carbon dioxide 
level in the atmosphere, measured in parts per million at 
Mauna Lao Observatory from 1972 to 1990.  

Year level  (in 

ppm) 
1972 327.3 
1974 330.0 
1976 332.0 
1978 335.3 
1980 338.5 
1982 341.0  
1984 344.3 
1986 347.0 
1988 351.3 
1990 354.0 

    To enter this data in Maple, we define a list for each 
column and then "zip" the lists together to make the list of 
pairs, carbondata.  

>Years:=[1972,1974,1976,1978,1980,1982,1984,1986,1988,1990];  
co2:=[327.3,330.0,332.0,335.3,338.5,341.0,344.3,347.0,351.3,354.0];
co2data:=zip((x,y)->[x,y],Years,co2);  

Edit and use the plot command below to generate a 
scatter plot of the data.  

> plot(co2data, style=point, symbol=circle);  



  

    The style and symbol entries are called "options." 
You can use plot options to enhance your graphs in a 
variety of ways. The general format for plot options is  

> plot(data, option1, option2, option3, ...);  

You can specify the x and y ranges:  

x = xmin..xmax 
y = ymin..ymax  

If you use either or both of these options, they must come 
before other options.  

You can set the color of plotted points:  

color = red (or green , blue , yellow , violet , 
etc.)  

You can label your axes:  

labels = [`Year`, `ppm`]  

(Note backward quote, often found above the Tab key.)  

See ?plot , ?plot,options for more details.  

  

    Complete and enter your enhanced plot command 
below.  

> plot(co2data, x=1970..1995, y=320..360, 
style=point, symbol=circle, labels = [`Year`, 
`ppm`]); 

  



1. Does the data points appear to lie close to a 

straight line ? If so, find the equation of the fitting 
line and explain your fitting procedure here.  

  
    The display command in plots package 
used with several plots will plot them all on 
the same graph. Complete the following 
commands to plot your line and the data 
points together.  

> with(plots): 
fitline:=plot(???, t=1970..1995, y=320..360, 
color=blue): 
dataplot:=plot(co2data, x=1970..1995, y=320..360, 
style=point, symbol=circle, labels = [`Year`, 
`ppm`]): 
display(fitline,dataplot); 

  

2. Does the line look approximately like the data plot ? 

If not, rework last step.  

    Maple has a built-in routine for fitting a line 
to a data set. In the stats package is a fit 
package that has a command called 
leastsquare . If the variables in this 
command are specified as [x,y] , then the 
output for the fitted line is of the form y = b + 
ax . Put your cursor in the line below, and 
press Enter to construct the "least squares" 
fitted line.  

> with(stats): 
fit[leastsquare[[t, y], y=a*t+b]] ([Years, co2]);  



Use copy and paste to define the equation 
above.  

> y1 := t->???; 

Next, we include the graph of this least 
squares line with the other two graphs.  

> fitCurve := plot(y1(t), t=1970..1995, color=green): 
display(dataplot, fitline, fitCurve);  

3. Which line fits better ?  

4. Predict the level in 1992.  

5. According to your model, when will the level 

exceed 400 parts per million ? 

  

Part II  Quadratic model  

    A ball is dropped from a tower, 450 meters above the 
ground, and its height h above the ground is recorded at 
1-second intervals in the table below.  

Time 
(seconds)

Height 
( meters) 

0 450 
1 445 
2 431 
3 408 
4 375 
5 332 



6 279 
7 216 
8 143 
9 61 

1. Generate a scatter plot of the data.  

2. Observe that a linear model is inappropriate. Does 

the data points may lie on a parabola? If so, try to 
find a parabola that fits the data.  

3. Use your model to predict the time at which the ball 

hits the ground.  

  

Part III  Exponential model  

World Population in the 20th Century 

Year Population
(millions)

1900 1650 
1910 1750 
1920 1860 
1930 2070 
1940 2300 
1950 2520 
1960 3020 
1970 3700 
1980 4450 
1990 5300 
1996 5770 

1. Generate a scatter plot of the data.  



> Y:=[ ??? ]: 
P:=[ ??? ]: 
datP:=zip((a,b)->[a,b], Y, P): 
plot(datP, style=point, symbol=circle, color=blue);

    There is a semilog command in the plots 
package called logplot , which works in 
much the same way as plot, but it does 
logarithmic (base 10) scaling of the vertical 
axis.  

> with(plots):  
logdatP:=logplot(datP, style=point, 
symbol=circle):  
display(logdatP);  

2. Does the data points in the semilog plot above look 

like a straight line ? Can you conclude from this that 
an exponential model should fit the population 
data ?  

3. Find the equation of the line that fits the semilog 

plot. (Note that Maple's name for the base-10 
logarithm is log10 . Also recall evalf if you want to 
see numerical values.)  

4. Find your population model here and compare it 

with the population data. Explain why or why not 
the model you get is a good one.  

5. Predict the size of the world population in the year 

of 2001.  

 

Module 3 



Implicit Functions and Implicit Differentiation  

Purpose:  

    Explore the concept of " a function defined implicitly ", visualize 
the idea of " linearization " and perform the procedure of implicit 
differentiation.  

Part I  

    A function can be described either explicitly -- for example,  

or  

or, in general, y = f(x) . Some functions, however, are defined implicitly by a 
relation between x and y , such as  

x2 + y2 = 25  or  x3 + y3 = 3xy .  

  

    In some case, it is possible to solve such an equation for y as an explicit 
function (or several functions) of x. For instance, if we solve x2 + y2 = 25 for y, 

> solve(x^2+y^2=25, y); 

two functions determined by the equation x2 + y2 = 25 are 

and . The graphs of and 



are the upper and lower semicircles of the circle x2 + y2 = 
25.  

    The Maple command implicitplot is used for plotting equations.  

> with(plots): 
implicitplot(x^2+y^2=25,x=-5..5,y=-5..5,scaling=co
plot(sqrt(25-x^2),x=-5..5,scaling=constrained); 
plot(-sqrt(25-x^2),x=-5..5,scaling=constrained); 

  

     

    Another example is the folium of Descartes ("folium" means leaf), which is 
given by the equation x3 + y3 = 3xy. It is difficult to solve this equation for 
y  explicitly as a function of x by hand. (A computer algebra system has no 
trouble, but the expressions it obtains are very complicated. If you are really 
curious, try it!) Here is its graph :  

> eq := x^3+y^3=3*x*y;  
implicitplot(eq, x=-3..3, y=-3..3, grid=[50,50], 
scaling=constrained);  

    Note that this plot contains a loop, which cannot be described globally as 
the graph of one function y = y(x). However, the plot is the graph of some 
function near most points. For example, the lower piece of the loop over the 
interval [-1,1] is the graph of a function y(x). Finding formula for y(x), we need 
to solve the equation x3 + y3 = 3xy for y in terms of x. This is difficult since this 
equation involves a cubic. It is possible to find numerical values of y(x) at 
specific values of x. For example, the values of y at x = 1.5 can be found by 
using the Maple command fsolve .  



> x:=1.5; 
fsolve(eq, y, y=1..2);  

  

A. Verify that (1.5,1.5) is on the curve.  

    A plot over a small range that limits the range of x and y  also reveals 
that the plot satisfies the vertical line test near x = 1.5. Hence, it is a 
graph of a function.  

> x:='x': 
implicitplot(eq, x=1..1.75, y=1.25..1.75, scaling=con

Over a very small plot range, the graph looks like a straight line.  

  

B. Do you think that the folium of Descartes has a tangent line at (1.5,1.5)? 

If so, what is the equation of the tangent line? Justify your answer. 

  

    Implicit Differentiation is the procedure used to find the derivative of 
an implicitly defined function:  

Step 1. Differentiate both sides of the equation with respect to x.  

     ( by viewing y as a function y(x) of x ).  

Step 2. Solve the resulting equation for y' ( or ).  

    The following sequence of commands used for implicit differentiation 
will be applied to the circle x2 + y2 = 25, but this sequence of commands 
also applies equally to other implicitly defined expressions.  



> x:='x':  
eq1:= x^2+y^2=25; 
subs(y=y(x), %);  
  

> diff(%,x); 
solve(%, diff(y(x), x));  

The symbol ( diff(y(x),x) ) stands for derivative of y with 

respect to x.  

  

C. Verify the formula for y' obtained above by differentiating the two 

functions and .  

D. Find the equation of the tangent line to the circle x2 + y2 = 25 at 

( ).  

E. Find all the points at which the formula for y' obtained above does not 

apply. Does the circle have tangent lines at those points?  

  

F. Use the method of implicit differentiation to find the tangent line to the 

folium of Descartes at (1.5,1.5).  



G. Does the curve have a tangent line at ( ) ? Does the 

curve have a tangent line at (0,0)? Justify your answers.  

  

Part II  

    Consider the curve with equation 2y3 + y2 - y5 = x4 - 2x3 + x2.  

A. Graph this curve and describe what the curve looks like.  

B. At what point does this curve have horizontal tangent lines? Justify your 

answer.  

C. Are there any points at which this curve have vertical tangent lines? 

Justify your answer.  

Module 4  

 Graphical Analysis 

 Purpose:  

    Understand what is a good representative plot of a function and 
how the derivatives of a function affect its graph. 

What Does f ' Say about f ?  

    Play with the animation below and observe how the d
function affects the shape of its graph.  



回到第一張    <=  =>  >>  

  

    On the part of the graph of f  which is colored red, the tangent lines 
have negative slope and so f '( x ) < 0. While on the part of the graph of 
f  which is colored blue, the tangent lines have positive slope and so f 
'( x ) > 0. It appears that f decreases when f '( x ) < 0 and increases when 
f '( x ) > 0. 

    If the graph of f lies above all the tangent lines on an interval I, then it 
is called concave upward on I . If the graph of f lies below all the 
tangent lines on an interval I , then it is called concave downward on I . 
A point P on a curve is called an inflection point if the curve changes 
from concave upward to concave downward or from concave downward 
to concave upward at P .  

  



    The figure above shows the graphs of two increasing functions, in the 
graph on the left the curve lies above the tangents, so it is concave 
upward. In the graph on the right the curve lies below the tangents, so it 
is concave downward.  

    Play with the animation below.  



 

 

回到第一張    <=  =>  >>   

Notice that the interval on which the graph of f is colored red, f is 
concave upward; while the interval on which the graph of f is colored 
blue, f is concave downward. Do you see how the first and second 
derivatives help to determine the intervals of concavity and inflection 
points?  

    Good representative plots of functions try to exhibit all the changes in shape 
of the graph and give a strong flavor of the global scale behavior. 

  

Part I  



A. Plot for x in [0, a] , where a is chosen to be large enough to see the 
rising and falling of the curve.  

> plot(x^3/exp(x),x=0..10);  

B. Factor the derivative to find the exact turning point x at which the curve 

changes direction, and explain why the curve cannot change direction at 
any other point.  

> diff(x^3/exp(x), x); 
factor(%);  

C. Explore functions and as what you have done in A, B.  

D. Given a positive number r , factor the derivative of to explain why 

the curve first goes up as x advances from 0 and grows until x
reaches a point a after which the curve goes down. Find the exact value 
of the turning point x in terms of r .  

E. How does the results above reflect the fact that in the global scale as x 

approaches ∞, the exponential growth of ex dominates the power growth of xr ? 



  

Part II  

    Consider the function .  

Plot the function and its derivative together.  

> restart; 
with(plots): 
f:=x->(x^7-58*x^2+8)/(2*x^6+11): 
plot([f(x),D(f)(x)], x=-5..5, color=[red,blue], thickne

A. From the graph above, find the intervals of increase and the intervals of 

decrease of f(x). Verify your answer by factoring the derivative of f(x).  

B. Determine the maximum and minimum values of for 
x in [-1, 4].  

C. Describe how the first derivative tells the concavity of the graph of f(x). 

D. Plot f(x) and its second derivative together. Describe how the signs of 

the second derivative reflect the concavity of the graph of f(x).  

E. How does f(x) behave as x approaches ∞ and as x approaches -∞?  

  

We say the line y = mx + c is an asymptote of the graph of f(x) if  



 

or  

.   

F. Find all the asymptotes of the graph of f(x). 

G. Does f(x) have the maximum and minimum values for all x in R ? Justify 

your answer.  

  

Part III  

    Plot the graph of the function over [-6, 6] and discuss the 
important aspects of the function such as the intervals of increase or decrease, 
local maximum and minimum values, concavity and points of inflection, and 
asymptotes.   

Part IV  

    Consider f(x) = 2x3 + cx2 + 2x.  

A. Plot f(x) for different values of c.  

B. Use the command animate in the plots package to create an animation 

of f(x).  



> with(plots): 
animate(2*x^3+a*x^2+2*x, x=-10..10, a=-10..10, fra
'view=[-10..10, - 40..100]');  

To play an animation you must first select it by clicking on it. Then 
choose Play from the Animation menu.  

C. Describe in words how the graph of f(x) varies as c changes and confirm 

your answer with the help of calculus.   

Summary  

A. Why does a good representative plot of a function normally include all 

points at which its derivative is 0 ?  

B. Comment on these statements: 

1) If f '(a) = 0, then the plot of f is guaranteed to have a crest or a dip at x 
= a. 
2) If the plot of f has a crest or dip at (a, f(a)), then it is automatic that f '(a)
= 0.  

C. Describe how the first derivative tells the concavity of a function?  

D. What do you think the sign of f '' tells you about the concavity of the plot 

of f ?  

E. If f has an inflection point at (a, f(a)), and f ''(a) exists. Is it always that f 

''(a) = 0 ?  
On the other hand, does f ''(a) = 0 guarantee that f has an inflection point 
at (a, f(a)) ?  

  

 

Module 5 



Area and Definite Integrals  

Purpose:  

    Start with the area problem and use the idea to formulate a 
definite integral.  

 積分問題的起源即是求面積的問題，基本概念十分類似阿基米德的窮盡法

(相關連結一, 相關連結二)。我們想要求出由紅色函數圖形、x 軸、x = 0 與 x

= 2 所圍出區域的面積，如下圖所示。  

 

   

    首先將 0 到 2 的區間分割成 n 個子區間，左圖長方形的高度為該子

區間函數的最小值，所以長方形的面積總和必小於所求之面積。相反地，

右圖長方形的高度則為子區間內函數的最大值，所以長方形面積的總和也

會大於所求之面積。隨著 n 越來越大，左圖長方形面積的總和 L 會越來

越大，而右圖長方形面積總和 U 會越來越小，兩者之間的差 E 會趨近



零。也就是說，兩者會同時趨近所求的區域面積。 

 

Restart    <=  =>  >>   

    In this module we start with the area problem and use it to formulate the 
idea of a definite integral.  

    We begin by attempting to find the area of the region that lies under the 

curve from and , illustrated below.  



 

    Suppose we divide the region into four strips by drawing the vertical lines 

, , and .  

 

We can approximate each strip by a rectangle whose base is the same as the 
strip and whose height is the same as the right edge of the strip.  

    Here we use Maple's rightbox command to visualize the process of 
approximating the area under a curve.  

> f:=x->x^2:  



In order to use Maple's leftbox (or rightbox ) command, one has to load the 
student package first.  

> with(student): 
rightbox(f(x),x=1..3,4);  

  

Moreover, we can compute the sum of these rectangles with the help of 
Maple's sum command.  

> dx:=(3-1)/4; 
Sum(f(1+i*dx)*dx,i=1..4); 
evalf(%); 

> sum(f(1+i*dx)*dx,i=1..4); 

  

    In general, we can divide the interval [ ] into subintervals of eqaul 

length. The area under the graph of is approximated by the sum 

of the areas of rectangles where the base of a rectangle is one of the 

subintervals and the height is the value of the function at the right or left 

endpoint of the subinterval.  

    The leftbox command to illustrate rectangles that approximates area under 

the graph of with the left endpoints of the intervals.  



> eftbox(f(x),x=1..3,4); 

  

1. What is the sum of those rectangles illustrated above?  

  

    Divide the interval into subintervals of eqaul length, and let and 

be the sums of the rectangles with the heights of the right endpoints and 

left endpoints, respectively.  

  

2. Find and with , , , . What do you find out?

  

    The following commands compute the rightsum for general , and the 

limit as goes to infinity.  

> dx:=(3-1)/n;  
right_area:=Sum(f(1+i*dx)*dx,i=1..n);  
right_limit:=Limit(right_area,n=infinity);  
value(%);  

  



3. Find the limit of the leftsums as goes to infinity. Does this limit agree 

with the one of the rightsums?  

4. What do you think the area under the graph of is ? Why ?  

5. Approximating the area by the sum of the areas of rectangles where 

the base of a rectangle is one of the subintervals and the height is 

the value of the function at any point , instead of the right or 

left endpoint of the subinterval, d o you get the same answer as in (4) ? 

6. Can you figure out the area under the graph of over the 

interval [ ] ? over the interval [ ] for any ?  

7. Use the same idea to find the area of the region bounded by the graph of 

on [ ] and the -axis, illustrated below.  



 

  

    If is a continuous function defined on [ ], we divide the interval 

[ ] into subinterval of equal length . We let 

, , ,...., be the endpints of these subintervals, and 

let be a point in the subinterval [ ].  

    Then the definite integral of from to is  

.  



The sum is called a Riemann sum .  

  

Remarks :  

A. In the definition above can be chosen to be the right endpoint or the 

left endpoint of the subinterval [ ].  

B. We can view the definite integral to be the " signed area" 

of over the interval [ ] as follows:  

 

  



    We can use Maple commands int or Int to Integrate functions or 
expressions.  

For example, to integrate over [ ] one should enter  

> Int(f(x),x=a..b); 
value(%);  

or  

> int(f(x),x=a..b); 

  

The antideivative of f (or indefinite integral) can also be evaluated.  

> Int(f(x),x);  
> F(x):=int(f(x),x);  

 

Note: Maple does not insert the constant of integration.  

    

8. What is the relation between and ?  

 

 

Module 6 



Approximation of Integrals  

Purpose:  

    Experiment with four different ways: Left endpoint 
approximation, right endpoint approximation, Midpoint rule and 
Simpson's rule, of approximating integrals, and find out which one 
is most efficient.  

    There are situations in which it is impossible to find the exact value of 
a definite integral. For examples : 

  and  .  

In these cases we need to approximate values of these definite integrals. 

    Recall that the definite integral is defined as a limit of 

Riemann sums. If we divide into n subintervals , 

(  ), of equal length , let ci 



be any point in the i -th subinterval , then is a 

good approximation for when n is sufficiently large.  

    By choosing ci to be the left endpoint or the right endpoint of 

, we have the left endpoint approximation or right endpoint 
approximation, respectively.  

    If we choose ci to be the midpoint of , then we have the 

Midpoint Rule approximation , as shown below.  

 

    To compromize the difference between the values of left endpoints 
and right endpoints in each subintervals, we use the sum of areas of the 
trapezoids lies above the subintervals . This is called Trapezoidal Rule. 
The idea is shown below :  



 

Simpson's Rule  

    Another rule for approximation integration results from using the 

parabolas. As before ,we divide [a, b] into n subintervals , 

(  ), of equal length , but 
this time we assume that n is an even number. Then on each 

consecutive pair of intervals [xi-1, xi] and , we approximate the 

curve y = f(x) by a parabola passing through the points , 

, and as shown below. Let Sn denote the sum 

of the areas of these approximating parabolas.  



 

  

    In this module, we are going to explore these from methods and find 
out which one is most efficient. 
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Module 6 

Approximation of Integrals 

    There are situations in which it is impossible to find the exact value of a 
definite integral. For examples : 



 and  .  

In these cases we need to approximate values of these definite integrals.  

    Recall that the definite integral is defined as a limit of Riemann 

sums. If we divide [a, b] into n subintervals [xi-1, xi], i = 1, ... , n (x0 = a, xn = b), of 

equal length , let ci be any point in the i -th subinterval [xi-1, xi], 

then is a good approximation for when n is 

sufficiently large.  

    By choosing ci to be the left endpoint or the right endpoint of [xi-1, xi], we 
have the left endpoint approximation or right endpoint approximation, 
respectively.  

  



    Divide [a, b] into n subintervals , let Ln and Rn be the left endpoint 

approximation and the right endpoint approximation for , 

respectively.  

1. Approximate by L10 and R10 and estimate the error. 

Justify your answer.  

       

    If we choose ci to be the midpoint of [xi-1, xi], then we have the Midpoint 
Rule approximation , as shown below.  

 

Another approximation, called the Trapezoidal Rule. We use the sum of areas 
of the trapezoids lies above the subintervals . The idea is shown below :  



 

  

    Divide [a, b] into n subintervals , let Mn and Tn be the Midpoint Rule 
approximation and the Trapezoidal Rule approximation, respectively.  

2. Show that .  

3. Let on [1, 2], for n = 5, 10, 20, compute Ln, Rn, Mn and Tn by 

defining Ln, Rn, Mn and Tn as functions of n.  

    As the command leftsum and rightsum, the commands middlesum, 
trapezoid can be found in Maple student package, you may have to 
apply the command evalf to get the numerical values.  

    Check your answers by using those commands.  

> int(g(x),x=1..2);  

Now we can make a table of the errors of the approximation above by 
the following commands.  



> N:=3:  
A:=matrix(N+1,5,(Row,Col)->0): 
A[1,1]:='n': A[1,2]:='E[L]': A[1,3]:='E[R]': A[1,4]:='E[
A[1,5]:='E[M]': 
for k from 1 to N  
do 
n:=2^(k-1)*5; 
A[k+1,1]:=n: 
A[k+1,2]:=0.5-evalf(L(n)): 
A[k+1,3]:=0.5-evalf(R(n)):  
A[k+1,4]:=0.5-evalf(T(n)): 
A[k+1,5]:=0.5-evalf(M(n)):  
od: 
eval(A);  

4. What do you find out from the table above ?  

  

Error Bounds  

    Suppose  |f "(x)| ≤ K  for  a ≤ x ≤ b.  If  

and   are the errors involved in using the 

Trapezoidal and Midpoint Rules to approximate , then  



and    

5. Approximate by the Trapezoidal and Midpoint Rule for n

= 10 and estimate the errors of each approximation ( i.e. and 

) by the formula given above.  

6. By the formula given above, how large should we take n in order to 

guarantee that the Midpoint Rule approximation and the Trapezoidal 

Rule approximation for are accurate to 10 decimal places. 

Which approximation is better ? 

  

Simpson's Rule  

    Another rule for approximation integration results from using the parabolas. 
As before ,we divide [a, b] into n subintervals [xi-1, xi], i = 1, ... , n (x0 = a, xn = b), 

of equal length , but this time we assume that n is an even 



number. Then on each consecutive pair of intervals [xi-1, xi] and [xi, xi+1], we 
approximate the curve y = f(x) by a parabola passing through the points (xi-1, 
f(xi-1)), (xi, f(xi)), and (xi+1, f(xi+1)) as shown below. Let Sn denote the sum of the 
areas of these approximating parabolas.  

   

  

    A typical parabola y = Ax2 + Bx + C  passes through three consecutive 
points (-h, a), (0, b) and (h, c) as shown below.  

 

  



7. Find the area of the region shown above.  

  

8. Use the result in (7) to get a formula for S6 and give a conjecture of the 

formula for Sn.  

9. Use Simpson's Rule with n = 6 to approximate . Check your 
answer with Maple command simpson . What can you say about this 
approximation?  

  

Error Bound for Simpson's Rule  

    Suppose that  |f(4)(x)| ≤ K  for  a ≤ x ≤ b.  If  is 

the error involved in using Simpson's Rule to approximate , then 

 

  



10. By the formular given above, how large should we take n in order to 

guarantee that the approximation for using Simpson's Rule 
is accurate to 10 decimal places?  

11. Compare the results from (6) and (10). What is your conclusion?  

12. Suppose f(x) is a cubic polynomial. Is the approximation of 
exact by using Simpson's rule? Justify your answer.  

 

Module 7 

Parametric Curves  

Purpose:  

    Understand the advantages of parametric description of curves 
is that they are convenient for "combined motions." Realize that 
simple functions can do great graphic designs. 

    If a particle moves along the curve C  shown below, then the x 
-coordinates and y -coordinates are functions of time. So we can write x 
= f(t), y = g(t).  



 

回到第一張    <=  =>  >>  

Notice that the consecutive points marked on the curve appear at equal 
time intervals but not at equal distances. That is because the particle 
slows down and speeds up as t increases.  

    Suppose that x are y are both given as functions of a third variable t 
(called parameter) by the equations  

x = f(t),    y = g(t) 

(called parametric equations). Each value of t determines a point (x, y), 
which we can plot in a coordinate plane. As t varies, the point (x, y) = (f(t), 
g(t)) varies and traces out a curve C, which is called a parametric curve
If f(t) and g(t) are defined for all t in [a, b], then (a, f(a)) is called the initial 
point  of C and (b, f(b)) is called the final point of C. Imagine that a 
particle moving along the curve C, we can interpret t as time and (x, y) = 
(f(t), g(t)) as the position of a particle at time t. We say C is closed if 
initial point and final point of C are the same.  



    Take a close look at the following animations, you should be able to 
tell the difference of a curve, which is a set of points, and a parametric 
curve, in which the points are traced in a particular way.  

  C1:  x = cos(t),  y = sin(t),  where t in [0, 2π].  

 
 

回到第一張    <=  =>  >>  

  

  C2:  x = cos(2t),  y = sin(2t),  where t in [0, 2π].  



 
 

回到第一張    <=  =>  >>  

   

  C3:  x = cos(-t),  y = sin(-t),  where t in [0, 2π].  

 
 

回到第一張    <=  =>  >>  



  

    Parametric curves  are used not only to represent letters and other 
symbols on the laser printer but also in graphic design. Here is an 
interesting graphic design using parametric curves by 電物 94級的歐迪
興同學. Try to make one yourself ! 

   

    Take a close look at the following animations, you should be able to tell the 
difference of a curve, which is a set of points, and a parametric curve, in which 
the points are traced in a particular way.  

> with(plots): 
animatecurve([cos(t), sin(t), t=0..2*Pi], scaling=con

> animatecurve([cos(2*t), sin(2*t), t=0..2*Pi] ,scaling
numpoints=50);  

> animatecurve([cos(-t), sin(-t), t=0..2*Pi], scaling=co

  



1. What are the differences between these three parametric curves  

: , for all in [ ] ,  

: , for all in [ ] ,  

: , for all in [ ] ?  

  

    To plot the parametric equations  

where is in [ ]  

first we define the functions f and g and type the command plot( [f(t), g(t), 
t=a..b] ) .   

2. Verify that an an ellipse centered at ( ) with horizontal axes 

radius and vertical axes radius can be parametrized by 

and . Plot an arc of an ellipse with 
the given parametric equations.  

> a:=2: 
b:=5: 

  

    The following commands plots a small rectangle with viewing rectangle [0, 2]
by [0, 2].  

> u[1]:=1+.5*t:  v[1]:=1: 
line1:=plot([u[1], v[1], t=0..1], 0..2,0..2): 
u[2]:=1:  v[2]:=1-.5*t: 



line2:=plot([u[2], v[2], t=0..1], 0..2,0..2): 
u[3]:=1+.5*t:  v[3]:=.5: 
line3:=plot([u[3],v[3],t=0..1], 0..2,0..2): 
u[4]:=1.5:  v[4]:=1-.5*t: 
line4:=plot([u[4], v[4], t=0..1], 0..2,0..2): 
display([line1, line2, line3, line4], scaling=constrai

  

3. Plot a parallelogram with vertices ( ), ( ), ( ) and 

( ) with viewing rectangle [ ] by [ ].  

4. Plot the three parts of a capital letter B, using a straight line segment and 

either two semicircles, or two semi-ellipses. 

5. Repeat problem (4), but with the letter moved .5 unit above the x -axis 

and .5 unit to the right of the y -axis, and with its size doubled.  

   

    One of the advantages of parametric description of curves is that they are 
convenient for "combined motions." This lets us plot curves obtained by adding 
parametric motions. Here is an example :  

The curve traced out by a point P on the circumference of a circle of radius r as 
the circle rolls with a constant angular speed ω along a straight line is called 
cycloid . Play the animation below to get a better picture.  



 

Click here to see how to derive the parametric equations for the cycloid and the 
commands for the animation above.  

  

 

6. Using the graph above to show that t he cycloid is given by the 

parametric equations  

and  

where and is the rolling time.  



  

    Parametric curves of the form , , with 

in , are known as Lissajous curves. Here, is the parameter 

and , , and are constants which determine the particular curve 

in the family. Here are two examples:  

> plot([2*cos(3*t), 7*sin(2*t), t=0..2*Pi]);  
> plot([cos(5*t), 2*sin(3*t), t=0..2*Pi]);  

  

    Trace around these two curves until you understand how they are related to 
the equations which define them. Then ask Maple to plot one or two other 
Lissajous curves. See if you can guess what each one will look like before you 
plot it.   

7. For fixed and , describe how the values of and affect the 
shape of the corresponding Lissajous curve.  

8. For fixed and , consider the Lissajous curves with , 

for some integer and is in [ ]. Are the curves 

closed ? Describe how the shape of the curve changes as varies. 

9. For fixed and , consider the Lissajous curves with , 

for some rational number , where is in [ ] for 



some integer . Are the curves still closed ? What if is irrational ? 
Can you explain why ? 

     When is an even number, the curve looks quite different.  

> plot([cos(4*t),sin(5*t), t=0..2*Pi]);  

10. Do you see what happened in the last curve? Explain it.   

 

    Here are some interesting parametric curves, explore how the shape of the 

curve varies for different values of and .  

> m:=3: 
n:=2: 
plot([t^m,t^n,t=-2..2]);  

> m:=2: 
n:=5: 
plot([t+2*sin(m*t),t+2*cos(n*t),t=0..2*Pi],scaling=co

> m:=2: 
n:=3: 
plot([t+sin(m*t),t+cos(n*t),t=0..2*Pi]);  

  

11. Design an interesting picture with plots of parametric curves.  

  
Module 8 

Polar Coordinates 



Purpose:  

    Be familiar with polar coordinates and explore some interesting 
curves defined by polar equations. 

    A coordinate system represents a point in the plane by an ordered 

pair of numbers called coordinates. So far we have being using 

Cartesian coordinates, which are directed distance from two 

perpendicular axes. Here we describe a coordinate system introduced 

by Newton, called polar coordinate system.  

    We choose a point in the plane called the pole (or the origin) and is 

labeled O. Then we draw a half-line starting from O called polar axis. 

This axis usually drawn horizontally to the right and corresponds to the 

positive x-axis in Cartesian coordinates.  

    If P is any other point in the plane, let r be the distance from P to O 

and let θ be the angle between the polar axis and the line OP as shown 

below. Then the point P is represented by the ordered pair (r, θ) and r, θ 

are called the polar coordinates of P.  



 

    We use the convention that an angle is positive if measured in the 

counterclockwise direction from the polar axis and negative in the 

clockwise direction. If P = O, then r = 0 and we agree that (0, θ) 

represents the pole for any value of θ.  

    We extend the meaning of polar coordinates (r, θ) to the case in which 

r is negative by agreeing that the points (-r, θ) and (r, θ) lie on the same 

line through O and the same distance |r| from O, but on the opposite 

sides of O. Notice that (-r, θ) and (r, θ + π) represent the same point.  

  

    The connection between polar and Cartesian coordinates:  

If the point P has Cartesian coordinates (x, y) and polar coordinates (r, θ), 

then 

x = r cos(θ)    y = r sin(θ) 

and  



r2 = x2 + y2    tan(θ) = y / x  

  

Grids in Cartesian coordinates :   

 

  

Grids in polar coordinates :  

   

  



A. Convert the point ( ), ( ) from polar to Cartesian 

coordinates.  

B. Find polar coordinates ( ), where and < , of 

the points given by the Cartesian coordinates ( ) and 

( ), and find polar coordinates ( ), where and 

< , of the points given by the Cartesian coordinates 

( ) and ( ).  

  

    The graph of a polar equation , consists of all points that 

have at least one polar representation ( ) whose coordinates satisfy the 
equation.  

    We can use the plot command the same way as for parametric equations by 
specifying the coordinates to be polar.  

> plot([2, theta, theta=0..2*Pi], coords=polar, 
scaling=constrained);  

> plot([r, Pi/3, r=0..1], coords=polar, scaling=constra

  



C. What curve is represented by the polar equation ? What curve is 

represented by the polar equation ? 

  

    We can also use a command in Maple's plots package, called polarplot , to 

plot polar equations of the form . We start by loading the plots 
package.  

D. Plot the curve and find a Cartesian equation for this 
curve.  

> with(plots):  

f:=theta->2*cos(theta); 

polarplot(f(theta),theta=0..2*Pi,scaling=constraine

    The animation below will give you a better picture of how the curve 
goes.  

> animatecurve([f(theta)*cos(theta), f(theta)*sin(thet

theta=0..2*Pi], scaling=constrained, numpoints=20

E. Plot the curve for different integer and describe how 

the curve varies with .  

F. Plot the curve for different value of and observe 

how the curve varies with . Find the transitional values of where 
the basic shape of the curve changes.  



    The animation below probably will help.  

> animate([1+b*sin(t), t, t=0..2*Pi], b=-2..2, coords=p
scaling=constrained);  

G. Graph the curve by finding a polar equation for 
the curve.  

H. Graph the two ellipses and , 

find the vertices and foci of each of them respectively. What is the 
relation between these two ellipses.  

I. Graph the parabola given in polar form by and find the 

Cartesian coordinate expression for this parabola.  

  

Remark : Here you will find that the command polarplot will not give you a 
good picture. ( Why? )  

  

    In order to get a good plot, you should get a proper parametric equation of 
the curve, then plot the parametic curve.  

> polarplot(1/(1-sin(theta)), theta=-Pi/2..Pi/2, numpoi
> x:=???; 

y:=???; 
plot([x(t), y(t), t=0..2*Pi], -5..5, -5..5);  

   



    A polar equation of the form  

or or or 

 

represents a conic section with eccentricity . The conic section is an ellipse 

if , a parabola if , or a hyperbola if .  

> animate([cos(t)/(1+e*sin(t)), sin(t)/(1+e*sin(t)), t=0.

e=-1.5..1.5, view=[-10..10, -10..10], scaling=constra

numpoints=200, frames=50);  

 

 

Module 9 

Taylor Polynomials 

Purpose:  

    Explore the fact that a polynomial could be completely 
determined by its value and the values of its derivatives at x = 0. 
Find out that as terms of higher degree are added with the 



appropriate coefficients, approximation to the "target" polynomial 
improves in the sense that the two functions appear to match over 
a wider domain centered at 0. Further, extend this idea to 
approximations of a non-polynomial function. 

    A polynomial can be completely determined by its value and the 
values of its derivatives at x = 0.    

  

 
 

回到第一張    <=  =>  >>  

  

    Can we extend this idea to approximations of a nonpolynomial 
function? Of course, we can't expect to get an exact fit in finite steps. 
 
    The idea of polynomial approximation is very powerful in later work, 
and we shall study it in the context of familiar functions like ex and sin(x) 
in this module. 
  



Part 1. Polynomial Coefficients  

    The following figure shows the graph of a fourth-degree polynomial, that is, 

a function of the form 

 

 

We are given the following information about and its derivatives at 

: 

 



Our objective is to determine the coefficients , from 

this information.  

1. How is related to , for , , , , , 

respectively. Enter your answer here:  

2. One at a time, determine appropriate values for the coefficients , ..., 

, and replace the 's in the following definitions. With each new 

definition of , the plot will be automatic when you enter the 

following block of commands. Compare with the graph of in the 

web page.  

> a[0]:=0; a[1]:=0; a[2]:=0; a[3]:=0; a[4]:=0;  

p:=x->a[0]+a[1]*x+a[2]*x^2+a[3]*x^3+a[4]*x^4;  

plot(p(x),x=-2..10,y=-600..200,thickness=2);  

  

Part 2. Taylor Polynomials  

    In Part 1 we saw that a polynomial could be completely determined by its 
value and the values of its derivatives at x = 0. Further, we found that, as we 
added terms of higher degree (with the appropriate coefficients), our 
approximation to the "target" polynomial improved in the sense that the two 
functions appeared to match over a wider domain centered at 0 . In this part we 
extend this idea to approximations of a nonpolynomial function. Thus, we don't 



expect to get an exact fit in five steps -- or ever. 
 
The idea of polynomial approximation is very powerful in later work, and it 
makes sense to study it first in the context of familiar functions. 

1. How do we know that the exponential function is not a polynomial ? 

State at least one property of this function that could not be a property of 
any polynomial. 

  

2. Let , find a polynomial 

of degree 4 with the 

property that , for , 1 , 2, 3, 4 .  

Enter functions and coefficients here, and plot and together.  

> restart; 

with(plots):  

x:='x':f:=x->exp(x);  

a[0]:=?; a[1]:=?; a[2]:=?; a[3]:=?; a[4]:=?;  

p:=x->a[0]+a[1]*x+a[2]*x^2+a[3]*x^3+a[4]*x^4;  

plot1:=plot(f(x),x=-3..3,y=-2..16,thickness=2, color=



plot2:=plot(p(x),x=-3..3,y=-2..16,thickness=2, color

display(plot1,plot2);  

  

3. Plot the error function and describe the extent to which 

does and does not approximate .  

  

    Let's try to find better approximations of with higher-degree 

polynomials. We look for an nth-degree polynomial 

+ ... + such that 

, for all , 1, 2,.., n . The resulting polynomial is called 

the nth-degree Taylor polynomial of centered at .  

4. How is related to the k th-derivatives of , for , 1, 2,.., n ?

Enter your answer here:  



5. Enter the general formula for and plot and 

together. Compare the approximation here and that in (2), which one 

looks better ? Try with larger 's, what do you find out ?  

6. Find the general formula for the nth-degree Taylor polynomial centered 

at for the function . Graph together with the 

Taylor polynomials of degree 2, 4, 6, 8 and comment on how well they 

approximate .  

  

    In general, given a n -defferentiable function ,the polynomial  

+ ... + 

 

where for all , 1, 2,.., n , is called the nth-degree 

Taylor polynomial of centered at . 

  



7. Find the general formula for .  

8. Find the nth-degree Taylor polynomial centered at for the function 

.  

9. Suppose that for all . 

What is the nth-degree Taylor polynomial of at ?  

 

 

 

Module 10 

Cylinders and Quadratic Surfaces 

Purpose:  

    Explore the graphs of cylinders and quadratic surfaces by their 
traces. Discover the interesting shapes that members of family of 



surfaces z = a x2 + b x y + c y2 can take, by observing how the 
shape of the surface evolves as we vary the constants.  

    In this project we investigate two types of surfaces --- cylinders and 
quadratic surfaces.  

    A cylinder is a surface that consists of all lines (called rulings ) that 
are parallel to a given line and pass through a given plane curve. The 
animation below shows how the surface is formed by taking the 
parabola  z = x2  in the xz -plane and moving in the direction of the y 
-axis.  

 

 

Restart    <=  =>  >>    

  

    A quadratic surface is the graph of a second-degree equation in 
three variables x, y and z. The most general such equation is  

A x2 + b y2 + C z2 + D x y + E y z + F x z + G x + H y + I z + J = 0  



where A, B, C, ... , J are constants. There are six basic shapes :  

(1) ellipsoid  

 

(2) Elliptic Paraboloid  

 



(3) Hyperbolic Paraboloid  

 

(4) Cone  

 

(5) Hyperboloid of one sheet  



 

(6) Hyerboloid of Two sheets  

 

     



    We will also discover the interesting shapes that members of family of 
surfaces  z = a x2 + b y2 + c x y  can take, by observing how the shape of 
the surface evolves as we vary the constants.  

 

 

Restart    <=  =>  >>    

PART I  Cylinders  

    A cylinder is a surface that consists of all lines (called rulings ) that are 
parallel to a given line and pass through a given plane curve. 
  



    You may use the Maple command plot3d to plot an explicit function 

or use the command implicitplot3d in the plots package to plot a 

surface defined by the equation .  

1. Graph the parabolic cylinder .  

> plot3d(y^2, x=-4..4, y=-4..4, view=0..16, axes=norm

implicitplot3d(z=y^2, x=-4..4, y=-4..4, z=0..16, grid=

axes=normal); 

2. Graph the parabolic cylinder and compare with the one in 1. 

3. Graph and compare the circular cylinders and 

.  

4. Here is a graph of a cylinder. Observe the graph, make a good guess of 

its equation and justify your answer.  



 

  

PART II  Quadratic Surfaces  

    A quadratic surface is the graph of a second-degree equation in three 
variables x, y and z. The most general such equation is  

A x2 + b y2 + C z2 + D x y + E y z + F x z + G x + H y + I z + J = 0  

where A, B, C, ... , J are constants. There are six basic shapes :  

  

    In order to sketch the graph of a surface, it is useful to determine the curves 
of intersection of the surface with planes parallel to the coordinate planes. 
These curves are called traces (or cross-sections) of the surface. The 

following animation shows the vertical traces in of the surface 

.  



 

  

1. Graph the ellipsoid and identify the horizontal 

traces and vertical traces.  

2. Graph the elliptic paraboloid and identify the horizontal 
traces and vertical traces.  

3. Graph the hyperbolic paraboloid and identify the 
horizontal traces and vertical traces.  

4. Graph the hyperboloid of one sheet and identify 

the horizontal traces and vertical traces.  

5. Graph the hyperboloid of two sheet and 
identify the horizontal traces and vertical traces.  



  

PART III  Families of Surfaces  

1. Investigate the family of surfaces . In particular, you 

should determine the transitional values of for which the surface 
changes from one type of quadratic surface to another. Justify your 
answer.  

2. Investigate the family of surfaces . In particular, 

you should determine the transitional values of , and for 
which the surface changes from one type of quadric surface to another. 
Justify your answer.  

 

Module 11 

Cylindrical and Spherical Coordinates  

Purpose:  

    Be familiar with cylindrical and spherical coordinates and 
explore some interesting surfaces parametrized by cylindrical or 
spherical coordinates.  

  



PART I  Cylindrical coordinates 

    In cylindrical coordinate system, a point in three-dimentional space is 

represented by the ordered triple ( ), where and are polar 

coordinates of the projection of (as shown below) onto the xy -plane and 

is the directed distance from the xy -plane to .  

 

  

    To convert from cylindrical to rectanglular coordinates we use the equations 

 

whereas to convert from rectanglular to cylindrical coordinates we use the 
equations  



 

1. Find the rectangular coordinates of the point with cylindrical coordinates 

( ).  

2. Find the cylindrical coordinates of the point with rectangular coordinates 

( ).  

  

    We can plot a surface with equation in cylindrical coordinates 
using the Maple command plot3d with the option specifying cylindrical 
coordinates :  

3. What is the surface with equation in cylindrical coordinates ?  

> plot3d(1,theta=0..2*Pi,z=0..1,coords=cylindrical); 

    We can also plot a surface given by parametric equations in cylindrical 
coordinates using the Maple command plot3d with the option specifying 
cylindrical coordinates :  

> plot3d([r,Pi/4,z],r=0..6,z=0..4,axes=normal,scaling=

coords=cylindrical);  
  



4. What is the surface with equation in cylindrical coordinates ?  

5. What is the surface with equation in cylindrical coordinates ?  

> plot3d([r, theta, 1], r=0..6, theta=0..2*Pi, view=0..6, 

scaling=constrained, coords=cylindrical);  

6. Plot the surface with equation in cylindrical coordinates.  

7. Plot the surface with equation in cylindrical coordinates and find 
the equation of the surface in rectangular coordinates .  

8. Plot the surface with equation in cylindrical coordinates.  

   

PART II  Spherical coordinates  

    The spherical coordinates ( ) of a point in space are shown 

below, where is the distance from the origin to , is the same 

angle as in cylindrical coordinates, and is the angle between the positive z

-axis and the line segment joining the origin and . Note that and 

is in [ ].  



    The relationship between rectangular and spherical coordinates is given by 
the equations:  

 

and  

 

 

1. Find the rectangular coordinates of the point ( ) given in 

spherical coordinates.  

2. Find the spherical coordinates of the point ( ) given in 

rectangular coordinates.  

    We can plot a surface with equation in cylindrical coordinates 
using the Maple command plot3d with the option specifying cylindrical 
coordinates; we can also plot a surface given by parametic equations in 



cylindrical coordinates using the Maple command plot3d with the option 
specifying cylindrical coordinates.  

> plot3d(1, theta=0..2*Pi, phi=0..Pi, coords=spherica
scaling=constrained);  

> plot3d([1, theta, phi], theta=0..2*Pi, phi=0..Pi, coord
scaling=constrained);  

  

3. Find the equation in rectangular coordinates of the surface given by the 

equation in spherical coordinates.  

4. Plot the surface with equation in spherical coordinates. What is 

the surface?  

5. Plot the surface with equation in spherical coordinates. What is 

the surface? 

6. Plot the surface with equation in spherical coordinates.  

7. Plot the surface with equation in spherical coordinates.  

8. Plot the surface with equation in spherical 
coordinates. Find the equation of the surface in rectangular coordinates 
and identify the surface.  

  

PART III  



1. Draw a picture of the solid that remains when a whole of radius 2 is 

drilled through the center of a sphere of radius 3.  

  

2. Members of the family of surfaces given in spherical coordinates by the 

equation  

 

have been suggested as models for tumors and have been called bumpy 
spheres and wrinkled spheres .  

    Investigate this family of surfaces, assuming that and are 

positive integers. What roles do the values of and play in the 

shape of the surfaces?  

  
Module 12 

Limits of multivariable Functions 

Purpose:  

    Understand the concept of " the limit of a two variable function " 
by level curves and graphs of the function.  



    Let f be a function of two variables whose domain D  includes points 

arbitrarily close to (a, b). Then we say  

 

if for every ε > 0 there is a corresponding number δ > 0 such that  

|f(x, y) - L| < ε 

whenever (x, y) in D and 0 < < δ.  

    If , then f(x, y) approaches L as (x, y) 

approaches (a, b) along any path C in D. In other words, if f(x, y) 

approaches L1 as (x, y) approaches (a, b) along a path C1 in D and f(x, y)

approaches L2 as (x, y) approaches (a, b) along a path C2 in D, where , 

where L1 ≠ L2, then does not exist.  

    Let f be a function of two variables whose domain D includes points 
arbitrarily close to ( a , b ). Then we say  

 

if for every > 0 there is a corresponding number > 0 such that  



 

whenever ( x , y ) in D and 0 < < .  

    If , then f ( x , y ) approaches L as ( x , y ) 
approaches ( a , b ) along any path C in D . In other words, if f ( x , y ) 

approaches as ( x , y ) approaches ( ) along a path in D and f

( x , y ) approaches as ( ) approaches ( a , b ) along a path in 

D, where , where , then does not exist.  

 



1. Let , plot together with the paths you 

picked as the graph above and determine whether 

exists. Explain your answer.  

2. Let , plot together with the paths you 

picked as the graph above and determine whether 

exists. Explain your answer.  

  

    The fact that and 

does not exist can be detected using contour plots.  

  

3. Execute the following command and execute this commands again with 

0.01 replaced by 0.001; does the pattern seem to change ?  

>with(plots): 
contourplot(x^2*y/(x^2+y^2),x=-0.01..0.01,y=-0.01..0.01



grid=[40,40]); 

4. How does those graphs support the conclusion that 

exists ?  

5. How do the contour plots support the conclusion that 

does not exist ?  

6. Based on the contour plots, do you think that 

exists ? Explain your answer.  

  

    If ( ) are polar coordinates of the point ( ) with , note that 

as . Hence  

exists if and only if 
exists. 

   



7. Let , graph and use polar coordinates to 

determine whether exists .  

8. Let and be positive integers. Find all the values of and 

such that exists.  

   

  
Module 13 

Parametric representations of Surfaces 

Purpose:  

    Represent a given surface with suitable parametric equations 
and identify the grid curves.  

    So far we have learned to describe surfaces in three dimensional 
space as :  

graphs of functions of two variables,  



level sets for functions of three variables,  
graphs of equations in three variables.   

   

    For example, the surface below  

 

can be described as  

the graph of the function f(x, y) = x2 + y2 , 
the graph of the equation z = x2 + y2, or  
a level set of the function f(x, y, z) = x2 + y2 - z  

  

    Unfortunately, some surfaces are hard to be represented in any of 
those ways, for example, the torus shown below.  



 

    Recall that we described a space curve by a vector function of a single 
parameter t 

r( t ) = ( x( t ), y( t ), z( t ) )  

In much of the same way, we can describe a surface by a vector function 
of two parameters u and v  

r( u, v ) = ( x( u, v ), y( u, v ), z( u, v ) ). 

  

    So far we have learned to describe surfaces in three dimensional 
space  as :  

• graphs of functions of two variables, 
• level sets for functions of three variables,  
• graphs of equations in three variables.   

    For example, the surface below  



> plot3d(x^2+y^2, x=-1..1, y=-1..1, axes=boxed);  

can be described as  

• the graph of the function f(x, y) = x2 + y2 , 
• the graph of the equation z = x2 + y2, or  
• a level set of the function f(x, y, z) = x2 + y2 - z  

> with(plots): 
implicitplot3d(z=x^2+y^2,x=-1..1,y=-1..1,z=0..2,axe

  

    Some surfaces are hard to be represented in any of those ways.  

    Recall that we described a space curve by a vector function of a single 
parameter t 

r ( t ) = ( ) 

In much of the same way, we can describe a surface by a vector function of 
two parameters u and v  

r ( ) = ( )  

Take the surface above, for instance, we can parameterize the surface in a 
natural way :  

r ( ) = ( )  

    However, there is another parameterization that is better for plotting the 

surface. Notice that the level curves of are circles centered 

at ( ) , so we can parameterize them with  



,  

We can get the surface by putting together these circles with various sizes of 
radius. Hence we get the following parameterization  

r ( ) = ( ) ----- (1)  

 

1. Use the same idea to find a parametric representation of the elliptic 

paraboloid given by the equation and check 

your answer by plotting the parameterized surfaces.  



  

    If a parametric surface S is given by a vector function r ( ) , then there 

are two useful families of curves that lies on S , one family with constant 

and the other with constant.  

    If we keep u constant by putting , then r ( ) defines a curve 

lying on S . Similarly, if we keep constant by putting , then r 

( ) defines a curve lying on S . We call these curves grid curves . 
Notice that when Maple graphs a parametric surface, it usually depicts the 
surface by plotting these grid curves, as we see in the following example.  

> plot3d([x, y, x^2+y^2], x=-3..3, y=-3..3, axes=boxed
plot3d([r*cos(theta), r*sin(theta),r^2], r=0..4, theta=
axes=boxed);  

  

2. Find the grid curves of the surface  

r ( ) = ( )  

Which grid curves have constant ? Which grid curves have 
constant ?  

  

    Another way to look at the parametric equation in (1) is by converting from 
Cartesian coordinates to Cylindrical coordinates.  

    We routinely use parameterized surfaces when we are converting a surface 
from a coordinate system to another coordinate system. We may, for example, 



want to consider a sphere of radius 1 centered about the origin, which is easy 
in spherical coordinates, in Cartesian coordinates for some reason. Then we 
can parameterize the sphere by  

, ,  

where is from to and is from to .  

> plot3d([cos(theta)*sin(phi), sin(theta)*sin(phi), cos
theta=0..2*Pi, phi=0..Pi, axes=boxed, scaling=cons

3. Find a parametric representation of the ellipsoid 

and check your answer by plotting the 

parameterized surfaces.  

4. Find a parametric representation of the part of the sphere 

that lies above the cone . 

5. Graph the surface with parametric equations  

, , , where  

Do you recognize this surface ?  

  

    We are of course, interested in using parameterization to describe surfaces 
that can easily be parameterized, but are hard to describe as graphs of 



functions. A class of examples is surfaces of revolution . For example, the 

curve , with x in [a, b], revolved around the x axis.  

 

Notice that the vertical trace corresponding to , where c is a constant, is 

a circles of radius centered at ( ).  



 

6. Find a parametric representation of the surface obtained by revolving the 

curve  

, with x in [ ]  

around the x -axis and check your answer by plotting the parameterized 
surfaces. 

7. Find a parametric representation of the surface obtained by revolving the 

curve  

, with x in [ ]  



around the y -axis and check your answer by plotting the parameterized 
surfaces.  

   

    The same construction works when the original curve is a parameterized 
curve rather than the graph of a function.  

   

8. Find a parametric representation for the torus obtained by rotating about 

the z-axis the circle in xz-plane with center ( ) and radius . 

 



 

9. Graph the surface  

r ( ) = ( ) , 

where are in [ ] . 

    Find the grid curves of the surface. Which grid curves have 

constant ? Which grid curves have constant ?  

    Compare this surface with the torus above and state your comment. 

  



10. (a) What happens to the spiral tube in problem 7 if we replace 

by and by ?  

(b) What happens if we replace by and by 

?  

11. The surface with parametric equations  

 

 

 

with in [ ] and in [ ] , is called a Mobius strip . 

Graph this surface. What is unusual about it ?  

 

  
Module 14 

Critical Points and Contour Plots 



 

Purpose:  

    Predict the location of the critical points of a two variable 
function f by its level curves and determine whether f has a saddle 
point or a local maximum or a local minimum at each of those 
points. Find the critical points of f by two-dimensional Newton’s 
method.  

    Here we will investigate the critical points of the function  

 

by its level curves. 

 
  

    Theoretically, given a two variable function f, we can find all the 
critical points of f by solving  



 

However, we often encounter the cases that it is alomost impossible to 
solve the equations above. 

  

    The one dimensional Newton's Method uses the linear approximation 
to find an approximate solution to an equation of the form f(x) = 0. If x0 is 
an initial approximation to the solution, then the tangent line to y = f(x) at 
x = x0 intersects the x-axis at a point ( x1, 0 ) and x1 is usually a better 
approximation to the solution than x0 . So the process can be iterated 
using x1 as the new initial approximation. A short derivation shows that at 
each stage  

. 

  

 
 



Restart
  
 <=  =>  >> 

 

  

    The same as the one dimensional Newton's Method, the 2 
dimensional Newton's Method uses the linear approximation to find an 
approximate solution to a pair of equations of the form f(x, y) = 0 and g(x, 
y) = 0 . Basically, if ( x0, y0 ) is an initial approximation to the solution, then 
the tangent plane to z = f(x, y) at ( x0, y0 ) and the tangent plane to z = g(x, 
y) at ( x0, y0 ) intersect the xy-plane at a common point ( x1, y1, 0 ) and ( x1, 
y1 ) is usually a better approximation to the solution than ( x0, y0 ). So the 
process can be iterated using ( x1, y1 ) as the new initial approximation.  

PART I  Exploration of a Surface 

    Here we will investigate the critical points of the function  

 

The graph of this function over the domain [-3,3] x [-3,3] is shown in the 
following figure.  

> f :=(x,y)->cos(x-y)*x*y*exp(-x^2-y^2); 
plot3d(f(x,y),x=-3..3,y=-3..3,grid=[35,35],axes=boxe

1. Make a contour plot of f over the domain [-3,3] x [-3,3], and identify a part 

of the domain that you think contains a local maximum or minimum. 
Explain what features of the contour plot indicate a local maximum or 
minimum.  

> with(plots): 
contourplot(f(x,y), x=-3..3, y=-3..3, contours=15, gr
coloring=[yellow,red], filled=true);  



2. Zoom in on your selected part of the contour plot until you can find a 

two-significant-digit (2SD) approximation to the coordinates of the critical 
point.  

3. Return to the original domain, and identify another region that you think 

contains a saddle point. Explain what features of the contour plot 
indicate a saddle point.  

4. Zoom in on this new region until you can find a 2SD approximation to the 

coordinates of this critical point.  

5. Calculate and display the partial derivatives for fx and fy. Explain why it is 

likely to be difficult to solve fx = 0 and fy = 0 for critical points.  

    The following commands define the partial derivatives fx and fy as 
functions.  

> fx:= D[1](f); 
fy:= D[2](f); 

   

PART II  Newton's method in 2 dimensions  

    The one dimensional Newton's Method uses the linear approximation to find 

an approximate solution to an equation of the form . If is an 

initial approximation to the solution, then the tangent line to at 

intersects the -axis at a point ( ) and is usually a better 

approximation to the solution than . So the process can be iterated using 

as the new initial approximation. A short derivation shows that at each 
stage  



 

 

    The same as the one dimensional Newton's Method, the 2-dimensional 
Newton's Method uses the linear approximation to find an approximate solution 

to a pair of equations of the form and . Basically, if 

( ) is an initial approximation to the solution, then the tangent plane to 

at ( ) and the tangent plane to at ( ) 

intersect the xy -plane at a common point ( ) and ( ) is 

usually a better approximation to the solution than ( ). So the process 

can be iterated using ( ) as the new initial approximation.  

  

1. Derive that at each stage  



and  

where the functions and and their partial derivatives , , 

and are all evaluated at ( ).  

2. Construct a Maple function called newt2d which acts on an initial 

approximation ( ) and produces the next approximation. (Or 
write a Maple procedure which will automatically control the iterations of 

newt2d. The procedure should take as arguments, the functions and 

, the number of digits of accuracy desired and the maximum number 
of iterations to allow to prevent an infinite loop.)  

3. Enter the first of your approximate critical points in PART I -- the one that 

should lead to a maximum or minimum value of -- as ( ) . Use 
your Maple function or your Maple procedure to find the solution to the 

equations and in the region that you have chosen for 
this critical point. Give your answer to 10 digits of accuracy (See ?Digits). 
you can use fsolve to check your solution.  

> evalf(sqrt(2),10); 
x0:=???; 
y0:=???;  
fsolve({fx(x,y)=0,fy(x,y)=0},{x,y},x=?..?,y=?..?);  

4. Have you found a local maximum point or a local minimum point? How 

can you tell? (Hint: Use the second derivative test.) 



> fxx:=D[1,1](f): 
fxy:=D[1,2](f): 
fyy:=D[2,2](f):  

5. Repeat the process in problem 3 for your second estimated critical point, 

the one that should lead to a saddle point. 

6. Have you in fact located a saddle point? How can you tell?  

7. Go back to your contour plot of in PART I, and approximate a third 
critical point. If you have already found a local maximum, find a local 
minimum. If you have found a local minimum, find a local maximum. 
Then use your Maple function or your Maple procedure to find the 
coordinates of this point to 10 digits of accuracy.  

8. Go back to your contour plot of in PART I, and approximate a fourth 
critical point that should lead to another saddle point. Then use your 
Maple function or your Maple procedure to find the coordinates of this 
point to 10 digits of accuracy. 

  

PART III  Different behavior of functions of two variables  

    For functions of one variable it is impossible for a continuous function to 
have two local maxima and no minimum. But for functions of two variables 
such functions exist.  

   

1. Show that the function  

 



has only two critical points, but has local maxima at both of them. Then 
use Maple to produce a graph with carefully chosen domain and 
viewpoint to see how this is possible.  

  

    If a function of one variable is continuous on an interval and has only one 
critical point, then a local maximum has to be an absolute maximum. But this is 
not true for functions of two variables.  

  

2. Show that the function has exactly one 

critical point, and that has a local maximum there that is not an 
absolute maximum. Then use Maple to produce a graph with carefully 
chosen domain and viewpoint to see how this is possible.  

Module 15 

Changes of Coordinates  

    It is often useful to convert one set of parameters to another. This is 
called a change of coordinates (or changes of variables) and can be 
expressed as a set of functions ( a pair of functions in two-dimensional 
case) from one set of parameters, or coordinates, to the other set.  
  

    Given a transformation  

T(u, v) = (x, y)  



where x and y are related to u and v by the equations  

x = x(u, v),  y = y(u, v)  

  

 
  

    The left figure shows a coordinate grid in the uv -plane, with the 
curves u = constant in blue and the curves v = constant in red. Then a 
blue curve, say u = c, is transformed in the right figure to a blue curve 
parameterized by ( x(c, v), y(c, v) ) . Similarly, a red curve, say v = k , is 
transformed in the right figure to a red curve parameterized by ( x(u, k), 
y(u, k) ) . In the process, a typical coordinate rectangle R in the uv -plane 
is transformed into a "curvilinear rectangle" S in the xy -plane. The 
boundaries of S are formed by the parameterized curves.  
  

    The local change-in-area factor is the ratio of the area of S to the area 
of R -- that is, the factor by which the area grows or shrinks under the 
transformation.  
  

    Given a transformation  



T(u, v) = (x(u, v), y(u, v))  

What is the local change-in-area factor for this transformation ?  

  

    It is often useful to convert one set of parameters to another. This is called a 
change of coordinates (or changes of variables) and can be expressed as a set 
of functions ( a pair of functions in two-dimensioal case) from one set of 
parameters, or coordinates, to the other set. For example, as we experienced 
in the Module "Parametric surfaces", to better describe the surface z = 1 - x2 - y2

above the xy -plane, we use the polar coordinates instead of the Cartesian 
coordinates. The new variables r and θ are related to the old variables x and y 
by the equations  

x(r, θ) = r cos(θ),    y(r, θ) = r sin(θ)  

 



    More generally, in two-dimentioal case, we consider a change of variables 
that is given by a transformation T from uv -plane to xy -plane :  

T(u, v) = (x, y)  

where x and y are related to u and v by the equations  

x = g,(u, v)    y = h(u, v) 

or, as more often we write  

x = x,(u, v)    y = y(u, v). 

   

    If , then the point ( ) is called the image of 

the point ( ). If T transform a region in the uv -plane onto a region 

in the xy -plane, then we say is the image of .  

   

    Let S = [-1, 1] x [-1, 1] in the uv -plane (See the figure below.) and let  

T(u, v) = (x, y)   

where x and y are related to u and v by the equations  

,  



 

1. Let be the image of under the transformation T , graph the image 

of in the -plane.  

( Hint: Consider separately the boundary , , , 

. In each case you get a parametric representation for one of the 

boundaries of .)  

2. How is the area of related to the area of ?  

3. Let . Set , where the 

change of variables is the one in (1). Graph over = [ ]

x [ ] , compare it with the graphs of by plotting them 

together. Are they the same ? What are the ranges for and ?  

4. How do your answers from (1) and (2) change if you change the 

coordinate functions to  



and ?  

  

    We have already seen one useful changes of variables for simplifying 
certain integrals, the change from Cartesian to polar coordinates in the plane. 

  

5. Compute the iterated integral  

 

Plot the domain over which the integration is being carried out.  

   

    In the shift from Cartesian to polar coordinates in double integrals, we see 
that dxdy becomes rdrdθ , but where does the "r" come from? In deriving this 
integral formula, as we subdivide the domain with a polar grid, as shown in the 

left graph below, we have to calculate the area of each little region.   



  

 

    Elementary geometry shows that the area of the region S shown above is 

approximately equal to , that means we have to "scale" each little 

region by its distance from the origin. So is the local change-in-area factor 
for the Cartesian-to-polar transformation.  

    Now let's reconsider the transformation given by the equations  

,  



The figure on the left shows a coordinate grid in the -plane, with the 

curves = constant in red and the curves = constant in blue. A red curve, 

say , is transformed in the right figure to a red curve parameterized by 

( ), which is a segment on the line . Similarly, a blue 

curve, say , is transformed in the right figure to a blue curve 

parameterized by ( ) , which is a segment on the line 

. In this way, a typical coordinate rectangle in the -plane 

is transformed into a parallelogram in the -plane as shown above. 

  

6. What is the local change-in-area factor for this transformation ?  



7. Use the given transformation to evaluate the double integral , 

where R is the region bounded by , , , 

. Check your answer by evaluating the integral using 
Cartesian coordinates. 

   

    In general case, given a transformation  

T(u, v) = (x, y)   

where x and y are related to u and v by the equations  

x = x,(u, v)    y = y(u, v) 

What is the local change-in-area factor for this transformation?  

    The left figure shows a coordinate grid in the -plane, with the curves 

= constant in blue and the curves = constant in red. Then a blue curve, 

say , is transformed in the right figure to a blue curve parameterized by 

( ) . Similarly, a red curve, say , is transformed in the 

right figure to a red curve parameterized by ( ) . In the 

process, a typical coordinate rectangle in the -plane is transformed 

into a "curvilinear rectangle" in the -plane. The boundaries of are 
formed by the parameterized curves.  



Here is a closer look at R and S :  

 

   

    The local change-in-area factor is the ratio of the area of S to the area of R
-- that is, the factor by which the area grows or shrinks under the 
transformation. We can calculate the area of S approximately as the area of 
the parallelogram determined by the two tangent vectors shown on the right. 

  

8. Show that  



and  

So the approximate area of S is | x | , where now we are thinking 
of the planar vectors as being in space. 

  

9. Show that, in general, the local change-in-area factor is 

  .  

This expression is called the Jacobian of the coordinate transformation. 

10. Show that the polar coordinate change-in-area factor is . What is the 

image in the -plane of the coordinate rectangle [ ] x [ ] 

in the -plane ? How is the area of this image related to the area of 
the coordinate rectangle ?  

11. Calculate the local change-in-area factor for the transformation 

, . 

 How is this related to your answer in (6) ?  

 

 


