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http://xserve.math.nctu.edu.tw/people/cpai/CalculusLab/index.htm

Lab 1: Guessing limits Numerically ---Explore the concept of “ limit ” by
graphs and numerical data.

Lab 2 : Mathematical Models --- Establish a mathematical model from given
data with elementary functions such as polynomials, exponential
functions.

Lab 3 : Implicit Functions and Implicit Differentiation --- Understand the
concept of “ a function defined implicitly ", visualize the idea of
“ linearization “ and perform the procedure of implicit differentiation.

Lab 4 : Graphical Analysis --- What is a good representative plot of a function
and how the derivatives of a function affect its graph.

Lab 5: Area and Definite Integrals --- Start with the area problem and use
the idea to formulate a definite integral.

Lab 6 : Approximation of Integrals --- Left endpoint approximation, right
endpoint approximation, Midpoint rule and Simpson’s rule.

Lab 7 : Parametric Curves --- Understand the advantage of parametric

descriptions of curves is that they are convenient for "combined
motions." Realize that simple functions can do great graphic designs.

http://xserve.math.nctu.edu.tw/people/cpai/demo/gallery/cal91.htm

Lab 8: Polar coordinates --- Be familiar with polar coordinates and explore
some interesting curves defined by polar equations.

Lab 9 : Taylor Polynomials --- Explore the fact that a polynomial could be
completely determined by its value and the values of its derivatives at
x =0. Find out that as terms of higher degree are added with the



appropriate coefficients, approximation to the "target" polynomial
improves in the sense that the two functions appear to match over a
wider domain centered at 0. Further, extend this idea to approximations
of a non-polynomial function.

Lab 10 : Cylinders and Quadratic Surfaces --- Explore the graphs of

cylinders and quadratic surfaces by their traces. Also, discover the
interesting shapes that members of family of surfaces

z=ax’ +bxy + cy’ can take, by observing how the shape of the surface
evolves as we vary the constants.

Lab 11 : Cylindrical and Spherical Coordinates --- Be familiar with

cylindrical and spherical coordinates and explore some interesting
surfaces parametrized by cylindrical or spherical coordinates.

Lab 12 : Limits of Multivariable Functions --- Understand the concept of “the

limit of a two variable function” by level curves and graphs.

Lab 13 : Parametric Representations of Surfaces --- Represent a given

surface with suitable parametric equations and identify the grid curves.

Lab 14 : Critical Points and Contour Plots --- Predict the location of the

critical points of a two variable function f by its level curves and
whether f has a saddle point or a local maximum or a local minimum
at each of those points. Find the critical points of f by
two-dimensional Newton’s method.

Lab 15: Changes of Coordinates --- Investigate how a transformation can do

to aregionin R*> and realize the “ Jacobian” of a transformation as
“ change-in-area factor” for it.

Lab ?
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Module 1

Guessing limits Numerically

Purpose:

Explore the concept of " limit "
by graphs and numerical data.



We write

lim fizx)=27L
X—=a

and say " the limit of f(x), as x approaches a,
equals L. "

If we can make the values of f(x) arbitarily
close to L (as close to L as we like) by taking
x to be sufficiently close to a, but not equal to
a.

In the module, we are going to have fun
exploring some interesting limits, such as

li !
m —
_ 1 - cos(x) (1)
lim -, 7 — 0 —
- ux
x—0 X 1— 3\' !
: () : (1)
lim 5111‘ — ‘ lm = sm‘ — ‘
L L
x—=0 x—=0
We write

lim fizx)=27L
X—=a

and say "the limit of f( x ), as x approaches a, equals L "



If we can make the values of f( x) arbitarily close to L
(as close to L as we like) by taking x to be sufficiently
close to a, but not equal to a..

_ 1—cos(x)
lm ———

We are interested in estimating *—=0 *

-

-

1. Consider the function and plot the graph of
1 —cos(x
L (x)

-

X

> f :=x ->(1-cos(x))/x "2;
plot(f(x),x=-1..1);
> £(0.0);

2. What is the domain of £ ?

3. Let's look at the values of f(x) for x<0.

> forn from 1to 6
do # This is the beginning of a "do loop".

x:=-1/2 "n: # Let

print(evalf(x),evalf(f(x))); # Print the values of x and
f (X).
od: # This is the end of our "do loop".

4. Now let's look at some values of f (x) for x> 0.



>fornfrom1to6
do
X:=1/2 *n:
print(evalf(x),evalf(f(x)));
od:

Remarks:

1. Different rates of convergence can be achieved by

1

2 10
: 4
replacing by or

2. Atthe end of the do loops in the above code, Maple

|

H
will think thatn=6 andx=+ ~ . (You can check
this by entering the commands n; and x; after each
loop.) This is important to know since if, subsequent
to the appropriate do loop, you wanted to reuse n or
x as a variable then you would have to redefine it as
a variable using the command n :="'n" or the

command x = 'x".

>n:='n"; xX:='x";

5. On the basis of these data, do you think

_ 1 - cos(x)
lm ————

x—10 x

4

-

exists? If so, what do you think it is

(to 4 decimal places of accuracy)? Justify your answer.



Part |l

> restart; # Clear Maple's memory.

1
.f']_'\

LoE
1. Define the function f(x) = 1-12 , and plot the

graph of f for xin [-1, 1].

2. Evaluate f(x) for x=0.1, 0.09, 0.08, 0.07, ..., 0.01.

3. Evaluate f(x) for x=-0.1, - 0.09, - 0.08, - 0.07, ..., -
0.01.

4. On the basis of these data, do you think

_ 1
lim 1
x—0 —
oA
1-2 exists ? Justify your answer.
Part Il
£
gin| —
VA
1. Define the function g(x) = , and plot the

graph of g for xin [-2, 2].

2. Evaluate g(x) for x=1, 1/2, 1/3, ..., 1/10.



3. Evaluate g(x) for x=2, 2/5,2/9, 2/13,..., 2/25.

4. What can be said about the behavior of g(x) ? Do

lim :‘;111| — |
x—=0 77

you think o exists? Justify your
answer.
Part IV
- I.-' 1 %
x :‘;111| — |
.\.lx Y,
Explore the functions and h(x) = . Do you
lim hix)
think * — 0 exists? If so, what do you think it is?
Justify your answer.
Module 2

Mathematical Models

Contents

Purpose:

Establish a mathematical
model with elementary functions



such as polynomials, exponential
functions.

r
: ¥
L
.i_-‘
W
::/
W
.I_(
rl.r

Part | Linear Model

Table Shown below lists the average carbon dioxide
level in the atmosphere, measured in parts per million at
Mauna Lao Observatory from 1972 to 1990.

COA

Year ~ level (in

ppm)
1972 327.3
1974 330.0
1976 332.0
1978 335.3
1980 338.5
1982 341.0
1984 344.3
1986 347.0
1988 351.3
1990 354.0

To enter this data in Maple, we define a list for each
column and then "zip" the lists together to make the list of
pairs, carbondata.

>Years:=[1972,1974,1976,1978,1980,1982,1984,1986,1988,1990];
c02:=[327.3,330.0,332.0,335.3,338.5,341.0,344.3,347.0,351.3,354.0];
co2data:=zip((x,y)->[x,y],Years,c0?2);

Edit and use the plot command below to generate a
scatter plot of the data.

> plot(co2data, style=point, symbol=circle);



The style and symbol entries are called "options."
You can use plot options to enhance your graphs in a
variety of ways. The general format for plot options is

> plot(data, option1, option2, option3, ...);
You can specify the x and y ranges:

X = Xmin..xmax
y = ymin..ymax

If you use either or both of these options, they must come
before other options.

You can set the color of plotted points:

color =red (or green, blue, yellow , violet ,
etc.)

You can label your axes:
labels =[Year', ppm’]
(Note backward quote, often found above the Tab key.)

See ?plot, ?plot,options for more details.

Complete and enter your enhanced plot command
below.

> plot(co2data, x=1970..1995, y=320..360,
style=point, symbol=circle, labels = [ Year",
ppmY);



1. Does the data points appear to lie close to a

straight line ? If so, find the equation of the fitting
line and explain your fitting procedure here.

The display command in plots package
used with several plots will plot them all on
the same graph. Complete the following
commands to plot your line and the data
points together.

> with(plots):
fitline:=plot(???, t=1970..1995, y=320..360,
color=blue):
dataplot:=plot(co2data, x=1970..1995, y=320..360,
style=point, symbol=circle, labels = [ Year",
‘ppm]):
display(fitline,dataplot);

2. Does the line look approximately like the data plot ?

If not, rework last step.

Maple has a built-in routine for fitting a line
to a data set. In the stats package is a fit
package that has a command called
leastsquare . If the variables in this
command are specified as [x,y] , then the
output for the fitted line is of the formy =b +
ax . Put your cursor in the line below, and
press Enter to construct the "least squares"
fitted line.

> with(stats):
fit[leastsquarel[t, y], y=a*t+b]] ([Years, co2]);



Use copy and paste to define the equation
above.

>yl :=t->??7?;

Next, we include the graph of this least
squares line with the other two graphs.

> fitCurve := plot(y1(t), t=1970..1995, color=green):
display(dataplot, fitline, fitCurve);

3. Which line fits better ?

COA
4. Predict the ~ level in 1992.

COA
5. According to your model, when will the ~ level

exceed 400 parts per million ?

Part Il Quadratic model

A ball is dropped from a tower, 450 meters above the
ground, and its height h above the ground is recorded at
1-second intervals in the table below.

Time Height

(seconds) ( meters)

0 450
445
431
408
375
332

ga b~ W NP



279

216

143
61

©O© 0 N O

1. Generate a scatter plot of the data.

2. Observe that a linear model is inappropriate. Does

the data points may lie on a parabola? If so, try to
find a parabola that fits the data.

3. Use your model to predict the time at which the ball

hits the ground.

Part Il Exponential model

World Population in the 20th Century

Year Popwaﬂon
(millions)
1900 1650
1910 1750
1920 1860
1930 2070
1940 2300
1950 2520
1960 3020
1970 3700
1980 4450
1990 5300
1996 5770

1. Generate a scatter plot of the data.



>Y.=[ ??27?]:
P:=[ ??7?]:
datP:=zip((a,b)->[a,b], Y, P):
plot(datP, style=point, symbol=circle, color=blue);

There is a semilog command in the plots
package called logplot , which works in
much the same way as plot, but it does
logarithmic (base 10) scaling of the vertical
axis.

> with(plots):
logdatP:=logplot(datP, style=point,
symbol=circle):
display(logdatP);

. Does the data points in the semilog plot above look

like a straight line ? Can you conclude from this that
an exponential model should fit the population
data ?

. Find the equation of the line that fits the semilog

plot. (Note that Maple's name for the base-10
logarithm is log10 . Also recall evalf if you want to
see numerical values.)

. Find your population model here and compare it

with the population data. Explain why or why not
the model you get is a good one.

. Predict the size of the world population in the year

of 2001.

Module 3



Implicit Functions and Implicit Differentiation

Purpose:

Explore the concept of " a function defined implicitly ", visualize
the idea of " linearization " and perform the procedure of implicit
differentiation.

Part |

A function can be described either explicitly -- for example,

N
y=ax" +1 _

y=xsml(x)
or

or, in general, y = f(x) . Some functions, however, are defined implicitly by a
relation between x and y, such as

X+y'=25 or X+y =3xy.

In some case, it is possible to solve such an equation for y as an explicit
function (or several functions) of x. For instance, if we solve X*+ y*= 25 for y,

> solve(x"2+y"2=25, y);

2

yl(x) =af25—-x

two functions determined by the equation x>+ y*= 25 are

7 7
yl(ux)z—ax 25—-x7 yl(.x)zax 25 —x7

and . The graphs of and



are the upper and lower semicircles of the circle X* + y* =

The Maple command implicitplot is used for plotting equations.

> with(plots):
implicitplot(x"2+y~2=25,x=-5..5,y=-5..5,scaling=co
plot(sqrt(25-x"2),x=-5..5,scaling=constrained);
plot(-sqrt(25-x"2),x=-5..5,scaling=constrained);

Another example is the folium of Descartes ("folium" means leaf), which is
given by the equation X’ + y* = 3xy. It is difficult to solve this equation for
y explicitly as a function of x by hand. (A computer algebra system has no
trouble, but the expressions it obtains are very complicated. If you are really
curious, try it!) Here is its graph :

> eq = XN 3+y"N3=3*x*y,
implicitplot(eq, x=-3..3, y=-3..3, grid=[50,50],
scaling=constrained);

Note that this plot contains a loop, which cannot be described globally as
the graph of one function y = y(x). However, the plot is the graph of some
function near most points. For example, the lower piece of the loop over the
interval [-1,1] is the graph of a function y(x). Finding formula for y(x), we need
to solve the equation x* + y* = 3xy for y in terms of x. This is difficult since this
equation involves a cubic. It is possible to find numerical values of y(x) at
specific values of x. For example, the values of y at x = 1.5 can be found by
using the Maple command fsolve .



> x:=1.5;
fsolve(eq, y, y=1..2);

. Verify that (1.5,1.5) is on the curve.

A plot over a small range that limits the range of xand y also reveals
that the plot satisfies the vertical line test near x = 1.5. Hence, itis a
graph of a function.

> x:='x"
implicitplot(eq, x=1..1.75, y=1.25..1.75, scaling=co|

Over a very small plot range, the graph looks like a straight line.

. Do you think that the folium of Descartes has a tangent line at (1.5,1.5)?

If so, what is the equation of the tangent line? Justify your answer.

Implicit Differentiation is the procedure used to find the derivative of
an implicitly defined function:

Step 1. Differentiate both sides of the equation with respect to x.
( by viewing y as a function y(x) of x).
c
—v(x
ax T (=)
Step 2. Solve the resulting equation for y* ( or ).
The following sequence of commands used for implicit differentiation

will be applied to the circle x*+ y*= 25, but this sequence of commands
also applies equally to other implicitly defined expressions.



> x:="x"
eql:= x"2+y"2=25;
subs(y=y(x), %);

> diff(%,X);
solve(%, diff(y(x), x));

&)
a2 V(%)
The symbol (diff(y(x),x) ) stands for derivative of y with

respect to x.

. Verify the formula for y' obtained above by differentiating the two

2 7
yl(.x)zax 25 -7 Yalx)=—nf 25 -5~
and :

. Find the equation of the tangent line to the circle X* + y*=25 at

functions

(fﬁf)

. Find all the points at which the formula for y' obtained above does not

apply. Does the circle have tangent lines at those points?

. Use the method of implicit differentiation to find the tangent line to the

folium of Descartes at (1.5,1.5).



2 ¥
G. Does the curve have a tangent line at ( ~ » = ) ? Does the

curve have a tangent line at (0,0)? Justify your answers.

Part |l

Consider the curve with equation 2y’ + y*- y° = x*- 2x° + x°.

A. Graph this curve and describe what the curve looks like.

B. At what point does this curve have horizontal tangent lines? Justify your

answer.

C. Are there any points at which this curve have vertical tangent lines?

Justify your answer.

Module 4

Graphical Analysis

Purpose:

Understand what is a good representative plot of a function and
how the derivatives of a function affect its graph.

What Does f' Say about f ?

Play with the animation below and observe how the o
function affects the shape of its graph.



59 () =-7

On the part of the graph of f which is colored red, the tangent lines
have negative slope and so f'( x) < 0. While on the part of the graph of
f which is colored blue, the tangent lines have positive slope and so f
'(x)>0. It appears that f decreases when f'( x) <0 and increases when
f'(x)>0.

If the graph of f lies above all the tangent lines on an interval I, then it
is called concave upward on | . If the graph of f lies below all the
tangent lines on an interval | , then it is called concave downward on | .
A point P on a curve is called an inflection point if the curve changes
from concave upward to concave downward or from concave downward
to concave upward at P..



The figure above shows the graphs of two increasing functions, in the
graph on the left the curve lies above the tangents, so it is concave
upward. In the graph on the right the curve lies below the tangents, so it
is concave downward.

Play with the animation below.



g0 = -1.
S

=> >>

Notice that the interval on which the graph of fis colored red, fis
concave upward; while the interval on which the graph of fis colored
blue, fis concave downward. Do you see how the first and second
derivatives help to determine the intervals of concavity and inflection
points?

Good representative plots of functions try to exhibit all the changes in shape
of the graph and give a strong flavor of the global scale behavior.




A. Plot for xin [0, @] , where ais chosen to be large enough to see the
rising and falling of the curve.

> plot(x"3/exp(x),x=0..10);

B. Factor the derivative to find the exact turning point x at which the curve

changes direction, and explain why the curve cannot change direction at
any other point.

> diff(x"3/exp(x), X);
factor(%);

C. Explore functions and as what you have done in A, B.

D. Given a positive number r , factor the derivative of to explain why
.
V="

X
e

the curve first goes up as x advances from 0 and grows until x
reaches a point a after which the curve goes down. Find the exact value
of the turning point x in terms of r .

E. How does the results above reflect the fact that in the global scale as x

approaches « , the exponential growth of € dominates the power growth of X' ?



Part |l

7 . 2
¥y —58x +8

f(x)=-

6
2x + 11
Consider the function

Plot the function and its derivative together.

> restart;
with(plots):
fi=x->(x"7-58*x"2+8)/(2*x"6+11):
plot([f(x),D(f)(x)], x=-5..5, color=[red,blue], thickne

A. From the graph above, find the intervals of increase and the intervals of

decrease of f(x). Verify your answer by factoring the derivative of f(x).
7 3
x —58x7+8

6
2x + 11
B. Determine the maximum and minimum values of for
Xin [-1, 4].

C. Describe how the first derivative tells the concavity of the graph of f(x).

D. Plot f(x) and its second derivative together. Describe how the signs of

the second derivative reflect the concavity of the graph of f(x).

E. How does f(x) behave as x approaches « and as x approaches -co ?

We say the line y = mx + c is an asymptote of the graph of f(x) if



Ilim [f{x)-(mx+c)]=0
X — o

or

lim [f(x)—(mx+c)]=0
X —(—0)

F. Find all the asymptotes of the graph of f(x).

G. Does f(x) have the maximum and minimum values for all x in R ? Justify

your answer.

Part Il

s x )

-5

. 3—-2x+x .
Plot the graph of the function over [-6, 6] and discuss the

important aspects of the function such as the intervals of increase or decrease,
local maximum and minimum values, concavity and points of inflection, and
asymptotes.

Part IV

Consider f(x) = 2x° + o+ 2X.

A. Plot f(x) for different values of c.

B. Use the command animate in the plots package to create an animation

of f(x).



C.

> with(plots):
animate(2*x"3+a*x"2+2*x, x=-10..10, a=-10..10, fra
'view=[-10..10, - 40..100]");

To play an animation you must first select it by clicking on it. Then
choose Play from the Animation menu.

Describe in words how the graph of f(x) varies as ¢ changes and confirm

your answer with the help of calculus.

Summary

A.

Why does a good representative plot of a function normally include all

points at which its derivative is 0 ?

Comment on these statements:

1) If f'(a) = 0, then the plot of fis guaranteed to have a crest or a dip at x
= a.

2) If the plot of f has a crest or dip at (a, f(a)), then it is automatic that f'(a
= 0.

Describe how the first derivative tells the concavity of a function?

. What do you think the sign of " tells you about the concavity of the plot

of f?
If f has an inflection point at (a, f(a)), and f"(a) exists. Is it always that f

"@=07
On the other hand, does f"(a) = 0 guarantee that f has an inflection point
at (a f(a)) ?

Module 5



Area and Definite Integrals

— SR SO, . U, SO, S, —
Purpose:
Start with the area problem and use the idea to formulate a
definite integral.
L S, G, WU, N, . W
, ) X
2.-
148
1
057
0”02 04 0608 1 1214 16 18 2
X
0 2 n

X=0
L
E



n=10 j r=10
2 L=2.4800 2 U=2 6500
151 1.57

14 — = E
0.5 057

D-”'I_"I.Eml_;l.finlfl.é"lfl.Ellm 92 U p2 040508 1 12

X b

E = 2000

>>

Restart “ <= “ =>

In this module we start with the area problem and use it to formulate the
idea of a definite integral.

We begin by attempting to find the area of the region that lies under the

.
y=x .
: 1 3

curve from and . illustrated below.



0912 14 16 18 2 22 24 26 28 3
X

Suppose we divide the region into four strips by drawing the vertical lines

3
x=_
Y =2

04 1214 16 18 2 22 24 26 28 3
b

We can approximate each strip by a rectangle whose base is the same as the
strip and whose height is the same as the right edge of the strip.

Here we use Maple's rightbox command to visualize the process of
approximating the area under a curve.

> fi=x->x"2:



In order to use Maple's leftbox (or rightbox ) command, one has to load the
student package first.

> with(student):
rightbox(f(x),x=1..3,4);

Moreover, we can compute the sum of these rectangles with the help of
Maple's sum command.

> dx:=(3-1)/4;
Sum(f(1+i*dx)*dx,i=1..4);
evalf(%);

> sum(f(1+i*dx)*dx,i=1..4);

1,3 M
In general, we can divide the interval [ ] into subintervals of egaul
. 2
flx)=x
length. The area under the graph of Is approximated by the sum
M M

of the areas of rectangles where the base of a rectangle is one of the

f(x)

subintervals and the height is the value of the function at the right or left

endpoint of the subinterval.

The leftbox command to illustrate rectangles that approximates area under

f(x)

the graph of with the left endpoints of the intervals.



> eftbox(f(x),x=1..3,4);

1. What is the sum of those rectangles illustrated above?

i R
. : : : 1
Divide the interval into subintervals of eqaul length, and let and

L
1]
be the sums of the rectangles with the heights of the right endpoints and

left endpoints, respectively.

RH LH n=10 20 40 80
2. Find and with : : : . What do you find out?

]
The following commands compute the rightsum for general , and the

7]
limit as goes to infinity.

> dx:=(3-1)/n;
right_area:=Sum(f(1+i*dx)*dx,i=1..n);
right_limit:=Limit(right_area,n=infinity);
value(%);



7]
3. Find the limit of the leftsums as goes to infinity. Does this limit agree

with the one of the rightsums?

f(x)

4. What do you think the area under the graph of is ? Why ?

M
5. Approximating the area by the sum of the areas of rectangles where

M
the base of a rectangle is one of the subintervals and the height is

f(x) X
the value of the function at any point , instead of the right or

left endpoint of the subinterval, d o you get the same answer as in (4) ?
. 2
f(x)=x
6. Can you figure out the area under the graph of over the

-1, 2 a, b a<b
interval [ ] ? over the interval [ ] for any ?

7. Use the same idea to find the area of the region bounded by the graph of

g(x)=simn(x) -, 7 x
on| ] and the -axis, illustrated below.



051

051

f a, b

If is a continuous function defined on | ], we divide the interval
b—a
Ax=
a, b i H
[ ] into subinterval of equal length . We let
Xg=a x| X, X, = b

: : be the endpints of these subintervals, and

C. x._qu.

I ! !
let be a point in the subinterval [ ]
b i h
Then the definite integral of  from to IS
B )

fis)dr= lim D, fic,)Ax

o ==



1
2 f({?i‘.)ﬂ.x
=1

The sum is called a Riemann sum .

Remarks :

.
A. In the definition above © can be chosen to be the right endpoint or the

XY
left endpoint of the subinterval | ]
b
I f(x) dx
“a
B. We can view the definite integral to be the " signed area"
f a, b
of  overthe interval [ ] as follows:
]
051 +
\ o 1T 2 3




We can use Maple commands int or Int to Integrate functions or
expressions.

. 2
flx)=x ab

For example, to integrate over [ ] one should enter

> Int(f(x),x=a..b);
value(%);

or

> int(f(x),x=a..b);

The antideivative of f (or indefinite integral) can also be evaluated.

> Int(f(x),x):
> F(x):=int(f(x),x);

Note: Maple does not insert the constant of integration.

b
f(x) dx

a F(x)
8. What is the relation between and ?

®

Module 6



Approximation of Integrals

Purpose:

Experiment with four different ways: Left endpoint
approximation, right endpoint approximation, Midpoint rule and
Simpson's rule, of approximating integrals, and find out which one
IS most efficient.

= —_ g _— e —— " - - e =

There are situations in which it is impossible to find the exact value of
a definite integral. For examples :

and

In these cases we need to approximate values of these definite integrals.

b
I f{x) cx
i'a
Recall that the definite integral is defined as a limit of
a, b [x;-1. %]
Riemann sums. If we divide into n subintervals ,
b-a
. LG
e VTP o il el H

( ), of equal length let ¢



Dl s e 1
[x;.1, %] 1=1
be any point in the i -th subinterval , then IS a
D
I f(x) dx
“a
good approximation for when n is sufficiently large.

By choosing ¢; to be the left endpoint or the right endpoint of
[x;-1. %]
, we have the left endpoint approximation or right endpoint

approximation, respectively.

;-1 %]
If we choose ¢; to be the midpoint of , then we have the

Midpoint Rule approximation , as shown below.
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To compromize the difference between the values of left endpoints
and right endpoints in each subintervals, we use the sum of areas of the
trapezoids lies above the subintervals . This is called Trapezoidal Rule.
The idea is shown below :



0.8
061
041

0.2
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X

Simpson's Rule

Another rule for approximation integration results from using the

[x;-1, %]
parabolas. As before ,we divide [a, b] into n subintervals ,
bh-a
I i Mok )
e VIS o Wil Ml "
( ), of equal length , but
this time we assume that nis an even number. Then on each

S [, Xi41] |
consecutive pair of intervals [x_; x] and , We approximate the

| (g Hxgap)
curve y = f(x) by a parabola passing through the points :

(x;. H(x;)) Lall W rpall 1))
, and as shown below. Let S, denote the sum

of the areas of these approximating parabolas.



In this module, we are going to explore these from methods and find
out which one is most efficient.
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Module 6

Approximation of Integrals

There are situations in which it is impossible to find the exact value of a
definite integral. For examples :



and

In these cases we need to approximate values of these definite integrals.

b
f{x) cx
J
Recall that the definite integral is defined as a limit of Riemann

sums. If we divide [a, b] into n subintervals [X_; ], i =1, ...,n (X = &, X, = b), of

h—a
Ax=
Fl
equal length , let ¢; be any point in the i -th subinterval [x_; X],
A W
N
Py ﬂci}ﬂx | f(x) dx
i=1 a
then is a good approximation for when nis

sufficiently large.

By choosing ¢; to be the left endpoint or the right endpoint of [x_; x], we
have the left endpoint approximation or right endpoint approximation,
respectively.



Divide [a, b] into n subintervals , let L, and R, be the left endpoint

b
f(x) dx
@
approximation and the right endpoint approximation for :
respectively.
(=x7)
e dx
i'{}
1. Approximate by Lo and R;, and estimate the error.

Justify your answer.

If we choose ¢ to be the midpoint of [x._;, ], then we have the Midpoint
Rule approximation , as shown below.
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Another approximation, called the Trapezoidal Rule. We use the sum of areas
of the trapezoids lies above the subintervals . The idea is shown below :
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Divide [a, b] into n subintervals , let M,, and T, be the Midpoint Rule
approximation and the Trapezoidal Rule approximation, respectively.

Lﬂ + R
E"’H = "
2. Show that
glx)="—
3. Let * on[1, 2], forn=5, 10, 20, compute L,, R,, M, and T, by

defining L,, R,, M, and T, as functions of n.

As the command leftsum and rightsum, the commands middlesum,
trapezoid can be found in Maple student package, you may have to
apply the command evalf to get the numerical values.

Check your answers by using those commands.
> int(g(x),x=1..2);

Now we can make a table of the errors of the approximation above by
the following commands.



> N:=3:
A:=matrix(N+1,5,(Row,Col)->0):
A[L1,1]:='n": A[1,2]:="E[L]": A[1,3]:="E[R]": A[1,4]:="E]
A[1,5]:='E[M]":
for k from1to N
do
n:=2"(k-1)*5;
Alk+1,1]:=n:
Alk+1,2]:=0.5-evalf(L(n)):
Alk+1,3]:=0.5-evalf(R(n)):
Alk+1,4]:=0.5-evalf(T(n)):
A[k+1,5]:=0.5-evalf(M(n)):
od:
eval(A);

4. What do you find out from the table above ?

Error Bounds

B
ET :.l f{x)cix—fﬂ
g
Suppose |f"(X)] < K for a<x < b. If
b
EM = l f(x)cix—Mﬂ
B
i
and are the errors involved in using the

b
‘ fx)
“a

Trapezoidal and Midpoint Rules to approximate , then



__}\:'{E:a—a}3 __ K{E:-—cz}3
|ET |< |EM | < S
7 12 # 7 24 5
and
(=x7)
e dx
0
5. Approximate by the Trapezoidal and Midpoint Rule for n

E
M
= 10 and estimate the errors of each approximation (i.e. 10 and

E
10 ) by the formula given above.

. By the formula given above, how large should we take nin order to

guarantee that the Midpoint Rule approximation and the Trapezoidal

%
A
-

9{_x }.:ix

Rule approximation for are accurate to 10 decimal places.

Which approximation is better ?

Simpson's Rule

Another rule for approximation integration results from using the parabolas.
As before ,we divide [a, b] into n subintervals [x.; %], i=1,...,n (X = &, X, = b),

b-a
Ax=

i

of equal length , but this time we assume that nis an even



number. Then on each consecutive pair of intervals [x_;, X] and [X, X+], we
approximate the curve y = f(X) by a parabola passing through the points (i,
f(%-1)), (%, f(x)), and (X+1, f(X+1)) as shown below. Let S, denote the sum of the
areas of these approximating parabolas.

47

A A

A typical parabola y=AxX* + Bx+ C passes through three consecutive
points (-h, a), (0, b) and (h, c) as shown below.

|

e (0))
(s

h.c)




7. Find the area of the region shown above.

8. Use the result in (7) to get a formula for S and give a conjecture of the

formula for S,.

1o
9. Use Simpson's Rule with n= 6 to approximate . Check your

answer with Maple command simpson . What can you say about this
approximation?

Error Bound for Simpson's Rule

B
Eo = I f(.x)aix—SH
g
Suppose that |fYx)| < K for a < x < b. If is
B
f(x) dx
/
the error involved in using Simpson's Rule to approximate , then
K(b-a)
5y |«

f 180 »



10.By the formular given above, how large should we take nin order to

I
guarantee that the approximation for using Simpson's Rule

is accurate to 10 decimal places?
11.Compare the results from (6) and (10). What is your conclusion?

b
flx )
I [
12.Suppose f(X) is a cubic polynomial. Is the approximation of
exact by using Simpson's rule? Justify your answer.

Module 7

Parametric Curves

Purpose:

Understand the advantages of parametric description of curves
is that they are convenient for "combined motions." Realize that
simple functions can do great graphic designs.

If a particle moves along the curve C shown below, then the x
-coordinates and y -coordinates are functions of time. So we can write x

= (1), y = g(0.



t=3

Notice that the consecutive points marked on the curve appear at equal
time intervals but not at equal distances. That is because the patrticle
slows down and speeds up as t increases.

Suppose that x are y are both given as functions of a third variable t
(called parameter) by the equations

x=1£{1), y=g@®

(called parametric equations). Each value of t determines a point (X, y),
which we can plot in a coordinate plane. As t varies, the point (x, y) = (f(t),
g(t)) varies and traces out a curve C, which is called a parametric curve
If f(t) and g(t) are defined for all t in [a, b], then (a, f(a)) is called the initial
point of C and (b, f(b)) is called the final point of C. Imagine that a
particle moving along the curve C, we can interpret t as time and (x, y) =
(f(t), g(t)) as the position of a particle at time t. We say C is closed if
initial point and final point of C are the same.



Take a close look at the following animations, you should be able to
tell the difference of a curve, which is a set of points, and a parametric
curve, in which the points are traced in a particular way.

Ci: x=cos(t), y=sin(t), wheretin [0, 2x].

C,: x=cos(2t), y=sin(2t), wheretin [0, 2x].



=> >>

Cs: x=cos(-t), y=sin(-t), wheretin [0, 2x].

=>

>>




Parametric curves are used not only to represent letters and other
symbols on the laser printer but also in graphic design. Here is an
interesting graphic design using parametric curves by 94

. Try to make one yourself !

021020

ra
.I:r"
.i."‘
!|:_,.f
:|./
.{{
.|.(
r|._,.-
.I.f

Take a close look at the following animations, you should be able to tell the
difference of a curve, which is a set of points, and a parametric curve, in which
the points are traced in a particular way.

> with(plots):
animatecurve([cos(t), sin(t), t=0..2*Pi], scaling=col
> animatecurve([cos(2*t), sin(2*t), t=0..2*Pi] ,scaling
numpoints=50);
> animatecurve([cos(-t), sin(-t), t=0..2*Pi], scaling=c



1. What are the differences between these three parametric curves

C; %= cos(t) y=-=sm(t) ¢ 0,27
: ,forall  in| ],
Cy  x=cog(2f) y=sm(2}) ¢ 0,27
T Jforall  in| 1,
C; %= cos(—t) y=sm(-4) ¢ 0,27
: ,forall  in| 172

To plot the parametric equations

x=1(t) y=g(t) ¢ a, b
where isin]| ]

first we define the functions f and g and type the command plot( [f(t), g(t),
t=a..b] ).

X ¥
2. Verify that an an ellipse centered at ( 0770 ) with horizontal axes

i b
radius and vertical axes radius can be parametrized by
x=xp+a cos(t) yzyﬂ+b s )
and . Plot an arc of an ellipse with
the given parametric equations.

> a=2:
b:=5:

The following commands plots a small rectangle with viewing rectangle [0, 2
by [0, 2].

> u[l]:=1+.5*t: v[1]:=1:
linel:=plot(fu[l], v[1], t=0..1], 0..2,0..2):
u[2]:=1: v[2]:=1-.5*:



line2:=plot([u[2], v[2], t=0..1], 0..2,0..2):
u[3]:=1+.5*: v[3]:=.5:
line3:=plot([u[3],v[3],t=0..1], 0..2,0..2):

u[4]:=1.5: v[4].=1-.5%:

lined:=plot([u[4], v[4], t=0..1], 0..2,0..2):
display([linel, line2, line3, line4], scaling=constrai

1.1 2,3 5,3
3. Plot a parallelogram with vertices ( ), ( ), ( ) and

4,1 0, 6 0,4
( ) with viewing rectangle [ ] by [ ].

4. Plot the three parts of a capital letter B, using a straight line segment and

either two semicircles, or two semi-ellipses.

5. Repeat problem (4), but with the letter moved .5 unit above the x -axis

and .5 unit to the right of the y -axis, and with its size doubled.

One of the advantages of parametric description of curves is that they are
convenient for "combined motions."” This lets us plot curves obtained by adding
parametric motions. Here is an example :

The curve traced out by a point P on the circumference of a circle of radius r as
the circle rolls with a constant angular speed » along a straight line is called
cycloid . Play the animation below to get a better picture.



Click here to see how to derive the parametric equations for the cycloid and the
commands for the animation above.

6. Using the graph above to show that t he cycloid is given by the

parametric equations

X(0)=rsm(0)+70 v(B)=r+rcos(8)
and

B=wm!? t
where and s the rolling time.



x=acos(mt) yv=bsm(nt)

Parametric curves of the form : , With
t [0,27] t
in , are known as Lissajous curves. Here, is the parameter
a b m i
and : : and are constants which determine the particular curve

in the family. Here are two examples:

> plot([2*cos(3*), 7*sin(2*t), t=0..2*Pi]);
> plot([cos(5*t), 2*sin(3*t), t=0..2*Pi]);

Trace around these two curves until you understand how they are related to
the equations which define them. Then ask Maple to plot one or two other

Lissajous curves. See if you can guess what each one will look like before you
plot it.

) 7 i b
7. For fixed and , describe how the values of and affect the
shape of the corresponding Lissajous curve.
i b m=1
8. For fixed and , consider the Lissajous curves with :
n=K k ¢ 0,2m
for some integer and Isin| ]. Are the curves
e
closed ? Describe how the shape of the curve changes as varies.
i b m=1
9. For fixed and , consider the Lissajous curves with :
n=r F ¢ 0,2km

for some rational number , where isin]| ] for



i F
some integer . Are the curves still closed ? What if s irrational ?

Can you explain why ?

1
When Is an even number, the curve looks quite different.

> plot([cos(4*t),sin(5*t), t=0..2*Pi]);

10.Do you see what happened in the last curve? Explain it.

Here are some interesting parametric curves, explore how the shape of the

Fi Fl
curve varies for different values of and

> m:=3:
n.=2:
plot([t"m,t"n,t=-2..2]);
> m:=2:
n:=>5:
plot([t+2*sin(m*t),t+2*cos(n*t),t=0..2*Pi],scaling=c«
> m:=2:
n:=3:
plot([t+sin(m*t),t+cos(n*t),t=0..2*Pi]);

11.Design an interesting picture with plots of parametric curves.

Module 8

Polar Coordinates



Purpose:

Be familiar with polar coordinates and explore some interesting
curves defined by polar equations.

A coordinate system represents a point in the plane by an ordered
pair of numbers called coordinates. So far we have being using
Cartesian coordinates, which are directed distance from two
perpendicular axes. Here we describe a coordinate system introduced

by Newton, called polar coordinate system.

We choose a point in the plane called the pole (or the origin) and is
labeled O. Then we draw a half-line starting from O called polar axis.
This axis usually drawn horizontally to the right and corresponds to the

positive x-axis in Cartesian coordinates.

If P is any other point in the plane, let r be the distance from P to O
and let 6 be the angle between the polar axis and the line OP as shown
below. Then the point P is represented by the ordered pair (r,8) and r, 6

are called the polar coordinates of P.



0 polar axs X

We use the convention that an angle is positive if measured in the
counterclockwise direction from the polar axis and negative in the
clockwise direction. If P= O, then r = 0 and we agree that (0, 0)

represents the pole for any value of 6.

We extend the meaning of polar coordinates (r, 0) to the case in which
r is negative by agreeing that the points (-r, 6) and (r, 0) lie on the same
line through O and the same distance |r| from O, but on the opposite

sides of O. Notice that (-r, 8) and (r, 6 + n) represent the same point.

The connection between polar and Cartesian coordinates:

If the point P has Cartesian coordinates (x, y) and polar coordinates (r, 0),

then
X=rcos(0) y=r sin(0)

and



P=x"+y tan(0)=Yy/x

Grids in Cartesian coordinates :

104

8-

61

Grids in polar coordinates :
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A. Convert the point ( ), ( ) from polar to Cartesian

coordinates.
r, 0 0<r 0=0 2m
B. Find polar coordinates ( ), where and < , Of

1.1
the points given by the Cartesian coordinates ( ) and

31/;—3 r, 0 r<0

( ), and find polar coordinates ( ), where and

0=86 2n
< , of the points given by the Cartesian coordinates

1,3 —24/3.-2

( ) and ( ).

F(r,0)=0 F
The graph of a polar equation , consists of all points that
r, 8
have at least one polar representation ( ) whose coordinates satisfy the
equation.

We can use the plot command the same way as for parametric equations by
specifying the coordinates to be polar.

> plot([2, theta, theta=0..2*Pi], coords=polar,
scaling=constrained);
> plot([r, Pi/3, r=0..1], coords=polar, scaling=constre



F=2
C. What curve is represented by the polar equation ? What curve is

T
="
3

represented by the polar equation ?

We can also use a command in Maple's plots package, called polarplot , to

r=18)
plot polar equations of the form . We start by loading the plots
package.
r=2coz(8)
D. Plot the curve and find a Cartesian equation for this
curve.

> with(plots):
f:=theta->2*cos(theta);

polarplot(f(theta),theta=0..2*Pi,scaling=constraine

The animation below will give you a better picture of how the curve
goes.

> animatecurve([f(theta)*cos(theta), f(theta)*sin(thel

theta=0..2*Pi], scaling=constrained, numpoints=2(

r=cos(a 8) a
E. Plot the curve for different integer and describe how

)
the curve varies with

r=1+hz2n(8) b
F. Plot the curve for different value of and observe
b b
how the curve varies with . Find the transitional values of where
the basic shape of the curve changes.



The animation below probably will help.

> animate([1+b*sin(t), t, t=0..2*Pi], b=-2..2, coords=p
scaling=constrained);

2 2 ’ 2 2
G. Graph the curve (x7"+y7) =457y by finding a polar equation for
the curve.
10

10 = _ :
p= [ T
3—-2cos(0) 3—-2coglB——

H. Graph the two ellipses and S

find the vertices and foci of each of them respectively. What is the
relation between these two ellipses.
1
e
1 —sin(0)
|.  Graph the parabola given in polar form by and find the

Cartesian coordinate expression for this parabola.

Remark : Here you will find that the command polarplot will not give you a
good picture. ( Why? )

In order to get a good plot, you should get a proper parametric equation of
the curve, then plot the parametic curve.

> polarplot(1/(1-sin(theta)), theta=-Pi/2..Pi/2, numpoi
> X:=?7?7?;

y:=?7?7?;

plot([x(t), y(t), t=0..2*Pi], -5..5, -5..5);



A polar equation of the form

a @ a
r= F= r=
1 -2 cos(8) 1+ecos(B) 1—esm(0)
or or or
a

F=
1+esm(8)

&
represents a conic section with eccentricity . The conic section is an ellipse

g <1 g=1 | B
if , a parabola if , or a hyperbola if

> animate([cos(t)/(1+e*sin(t)), sin(t)/(1+e*sin(t)), t=O0.
e=-1.5..1.5, view=[-10..10, -10..10], scaling=constre

numpoints=200, frames=50),

Module 9

Taylor Polynomials

L
ra
:I:r’
(Fi
4
W
:|./
.{{
.I.(
L

Purpose:

Explore the fact that a polynomial could be completely
determined by its value and the values of its derivatives at x = 0.
Find out that as terms of higher degree are added with the



appropriate coefficients, approximation to the "target" polynomial
improves in the sense that the two functions appear to match over
a wider domain centered at 0. Further, extend this idea to
approximations of a non-polynomial function.

A polynomial can be completely determined by its value and the
values of its derivatives at x = 0.

3007

200

>>

Can we extend this idea to approximations of a nonpolynomial
function? Of course, we can't expect to get an exact fit in finite steps.

The idea of polynomial approximation is very powerful in later work,
and we shall study it in the context of familiar functions like € and sin(x)
in this module.



= n - e g —y = . i “ur - s i . =

Part 1. Polynomial Coefficients
The following figure shows the graph of a fourth-degree polynomial, that is,

p(x)

a function of the form

2 3

p(.T)anJrnlrJr An X+ a3 X +ayx

p
We are given the following information about and its derivatives at

x=0

p(0)=453
P'(0)=40
P'(0)=-120
2(0)=90
PY0)=-24



Ap, Ay, (ny, Ao,
o . . 0D 7273 4
Our objective is to determine the coefficients : from

this information.

-2
ad
e

a, (n) n=0 1
1. How is related to £ (0),for , , , , ,

respectively. Enter your answer here:

2. One at atime, determine appropriate values for the coefficients N

a 0
, and replace the 'sin the foIIowing definitions. With each new

p(x)

definition of , the plot will be automatic when you enter the
p(x)
following block of commands. Compare with the graph of in the

web page.

> a[0]:=0; a[1]:=0; a[2]:=0; a[3]:=0; a[4]:=0;
p:=x->a[0]+a[l]*x+a[2]*x" 2+a[ 3]*x" 3+a[4]*x"4;

plot(p(x),x=-2..10,y=-600..200,thickness=2);

Part 2. Taylor Polynomials

In Part 1 we saw that a polynomial could be completely determined by its
value and the values of its derivatives at x= 0. Further, we found that, as we
added terms of higher degree (with the appropriate coefficients), our
approximation to the "target" polynomial improved in the sense that the two
functions appeared to match over a wider domain centered at 0 . In this part we
extend this idea to approximations of a nonpolynomial function. Thus, we don't



expect to get an exact fit in five steps -- or ever.

The idea of polynomial approximation is very powerful in later work, and it
makes sense to study it first in the context of familiar functions.

1.

How do we know that the exponential function IS not a polynomial ?

State at least one property of this function that could not be a property of
any polynomial.

f(x)=¢"
Let , find a polynomial

2 3

P(x)=ag+ayx+a,x" +ayx" +ayx

of degree 4 with the

nl —
property that £70)=p"(0) , for 1,2,3,4.

fooop

Enter functions and coefficients here, and plot  and together.

~ restart;
with(plots):
X:='X":f:=x->exp(x);
a[0]:=?; a[1]:=?; a[2]:=7?; a[3]:="?; a[4]:=7?;
p:=x->a[0]+a[1]*x+a[2]*x" 2+a[3]*x" 3+a[4]*x"4;

plotl:=plot(f(x),x=-3..3,y=-2..16,thickness=2, color:



plot2:=plot(p(x),x=-3..3,y=-2..16,thickness=2, colot1
display(plotl,plot2);

f{x)—p(x)

3. Plot the error function and describe the extent to which

p(x)

does and does not approximate

f(x)=e"
Let's try to find better approximations of with higher-degree

polynomials. We look for an nth-degree polynomial

—_— ] ] ] : ] 3 ] };
px)=cpteyx+esx +eyx ¢, X
+...+ such that
k=0
790y = p*(0) i ial i
, for all , 1, 2,..,n. The resulting polynomial is called
e.*r:
' 0
the nth-degree Taylor polynomial of centered at
e.*r:
c “ k=10
4. How is related to the k th-derivatives of , for ,1,2,..,n

Enter your answer here:



p,(x)

P1p(x)
5. Enter the general formula for and plot and
together. Compare the approximation here and that in (2), which one

M
looks better ? Try with larger 's, what do you find out ?

6. Find the general formula for the nth-degree Taylor polynomial centered

0 g(x)==sm(x) g
at for the function . Graph together with the
Taylor polynomials of degree 2, 4, 6, 8 and comment on how well they
g

approximate
f{ x)
In general, given a n -defferentiable function ,the polynomial

¥ 3
T (x)=cy+cy(x—a)+cy(x—a) +e3(x— n):}

+ .+
n
¢, (x—a)
k=0
By ol
where ay=T (@) for all ,1,2,..,n,is called the nth-degree
f(x) a

Taylor polynomial of centered at



TH(.T)
7. Find the general formula for :

1
8. Find the nth-degree Taylor polynomial centered at for the function
1
A
[
. n
flx)= D ¢ (v—a)
n=1 ‘r—n‘{R
9. Suppose that for all

[ a

What is the nth-degree Taylor polynomial of | at ?

Module 10

Cylinders and Quadratic Surfaces

Purpose:

Explore the graphs of cylinders and quadratic surfaces by their
traces. Discover the interesting shapes that members of family of



surfaces z= ax’ + bxy+ ¢y’ can take, by observing how the
shape of the surface evolves as we vary the constants.

In this project we investigate two types of surfaces --- cylinders and
guadratic surfaces.

A cylinder is a surface that consists of all lines (called rulings ) that
are parallel to a given line and pass through a given plane curve. The
animation below shows how the surface is formed by taking the
parabola z=x* in the xz-plane and moving in the direction of the y
-axis.

; -0.8
0.2
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A quadratic surface is the graph of a second-degree equation in
three variables x, y and z. The most general such equation is

AX+by +CZ+Dxy+Eyz+Fxz+Gx+Hy+1z+J=0



where A, B, C, ..., J are constants. There are six basic shapes :

(1) ellipsoid

(2) Elliptic Paraboloid




(3) Hyperbolic Paraboloid

(4) Cone

(5) Hyperboloid of one sheet



IV

(6) Hyerboloid of Two sheets




We will also discover the interesting shapes that members of family of
surfaces z=ax + by + cxy can take, by observing how the shape of
the surface evolves as we vary the constants.
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PART | Cylinders

A cylinder is a surface that consists of all lines (called rulings ) that are
parallel to a given line and pass through a given plane curve.



You may use the Maple command plot3d to plot an explicit function
z=1(x.y)
or use the command implicitplot3d in the plots package to plot a

F(z,y,z)=0
surface defined by the equation

[

1. Graph the parabolic cylinder

> plot3d(y"2, x=-4..4, y=-4..4, view=0..16, axes=norm
implicitplot3d(z=y"2, x=-4..4, y=-4..4, z=0..16, grid-

axes=normal);

y=x
2. Graph the parabolic cylinder and compare with the one in 1.
2. 2
x +y =1
3. Graph and compare the circular cylinders and
2 2
y +z =1

4. Here is a graph of a cylinder. Observe the graph, make a good guess of

its equation and justify your answer.



PART Il Quadratic Surfaces

A quadratic surface is the graph of a second-degree equation in three
variables x, y and z. The most general such equation is

AX+by +CZ+Dxy+Eyz+Fxz+Gx+Hy+1z+J=0

where A, B, C, ..., J are constants. There are six basic shapes :

In order to sketch the graph of a surface, it is useful to determine the curves
of intersection of the surface with planes parallel to the coordinate planes.
These curves are called traces (or cross-sections) of the surface. The

y=FK
following animation shows the vertical traces in of the surface

2, 2
z=4x" +y
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. Graph the ellipsoid and identify the horizontal
traces and vertical traces.
2. 2
z=4x" +y
. Graph the elliptic paraboloid and identify the horizontal
traces and vertical traces.
2 2
Z=x —y
. Graph the hyperbolic paraboloid and identify the
horizontal traces and vertical traces.
2 2
X 1z .
A
FEREA
. Graph the hyperboloid of one sheet and identify

the horizontal traces and vertical traces.

2 2 2
4x -y +2z  +4=10
. Graph the hyperboloid of two sheet and
identify the horizontal traces and vertical traces.



PART Il Families of Surfaces
3 2
z=x"+y +cxy
1. Investigate the family of surfaces . In particular, you

&
should determine the transitional values of for which the surface

changes from one type of quadratic surface to another. Justify your

answer.
. g
z=ax +hy +cxy
2. Investigate the family of surfaces . In particular,
a b o
you should determine the transitional values of : and for

which the surface changes from one type of quadric surface to another.
Justify your answer.

Module 11

Cylindrical and Spherical Coordinates

Purpose:

Be familiar with cylindrical and spherical coordinates and
explore some interesting surfaces parametrized by cylindrical or
spherical coordinates.



PART | Cylindrical coordinates

P
In cylindrical coordinate system, a point in three-dimentional space is
r 8,z r B0
represented by the ordered triple ( ), where and are polar
P
coordinates of the projection of (as shown below) onto the xy -plane and
z P
is the directed distance from the xy -plane to
2
151 ¢
1:
057 z
0- 15 2

To convert from cylindrical to rectanglular coordinates we use the equations

-

x=rcox(B) y=rsm(0) z

whereas to convert from rectanglular to cylindrical coordinates we use the
equations



N
9 g p - .
Fm=x" 4y tan(o) = -

L1

L1

1. Find the rectangular coordinates of the point with cylindrical coordinates

4,-—.4
3
( )-

2. Find the cylindrical coordinates of the point with rectangular coordinates

1,-4/3.2

( ).

r=18)
We can plot a surface with equation in cylindrical coordinates
using the Maple command plot3d with the option specifying cylindrical
coordinates :

r=1
3. What is the surface with equation in cylindrical coordinates ?

> plot3d(1,theta=0..2*Pi,z=0..1,coords=cylindrical);

We can also plot a surface given by parametric equations in cylindrical
coordinates using the Maple command plot3d with the option specifying
cylindrical coordinates :

> plot3d([r,Pi/4,z],r=0..6,z=0..4,axes=normal,scaling-

coords=cylindrical);



4. What is the surface with equation in cylindrical coordinates ?

z=1
5. What is the surface with equation in cylindrical coordinates ?

> plot3d([r, theta, 1], r=0..6, theta=0..2*Pi, view=0..6,

scaling=constrained, coords=cylindrical);

=0
6. Plot the surface with equation in cylindrical coordinates.
zZ=r
7. Plot the surface with equation in cylindrical coordinates and find
the equation of the surface in rectangular coordinates .
z=0
8. Plot the surface with equation in cylindrical coordinates.
PART Il Spherical coordinates
P, 0, ¢ P
The spherical coordinates ( ) of a point in space are shown
p O P 0
below, where Is the distance from the origin to : Is the same
angle as in cylindrical coordinates, and is the angle between the positive z
P 0=p
-axis and the line segment joining the origin and . Note that and

{ 0,7
isin| ]



The relationship between rectangular and spherical coordinates is given by
the equations:

x=psm(¢)cos(0) yv=psm(¢)sm(0) z=pcos(§)

and
2 2 2 2
P =x +7v 4=
2_
z
TT
2,
4 3
1. Find the rectangular coordinates of the point ( ) given in
spherical coordinates.
0.2+3.-2
2. Find the spherical coordinates of the point ( ) given in
rectangular coordinates.
| _p=HB0) |
We can plot a surface with equation in cylindrical coordinates

using the Maple command plot3d with the option specifying cylindrical
coordinates; we can also plot a surface given by parametic equations in



cylindrical coordinates using the Maple command plot3d with the option
specifying cylindrical coordinates.

> plot3d(1, theta=0..2*Pi, phi=0..Pi, coords=spherice
scaling=constrained);

> plot3d([1, theta, phi], theta=0..2*Pi, phi=0..Pi, coor
scaling=constrained);

3. Find the equation in rectangular coordinates of the surface given by the

p=1
equation in spherical coordinates.
b
B=—
4
4. Plot the surface with equation in spherical coordinates. What is
the surface?
) b
4
5. Plot the surface with equation in spherical coordinates. What is
the surface?
| _P=0 | |
6. Plot the surface with equation in spherical coordinates.
p=06
7. Plot the surface with equation in spherical coordinates.
p=sm(0)sm()
8. Plot the surface with equation in spherical

coordinates. Find the equation of the surface in rectangular coordinates
and identify the surface.

PART Il



1.

Draw a picture of the solid that remains when a whole of radius 2 is

drilled through the center of a sphere of radius 3.

Members of the family of surfaces given in spherical coordinates by the

equation
p=1+ 2sm(mO)sin(n )

have been suggested as models for tumors and have been called bumpy
spheres and wrinkled spheres .

m ]
Investigate this family of surfaces, assuming that and are

m 7]
positive integers. What roles do the values of and play in the

shape of the surfaces?

Module 12

Limits of multivariable Functions

Purpose:

Understand the concept of " the limit of a two variable function "
by level curves and graphs of the function.

= - - ~ — " g —— i - . - -



Let f be a function of two variables whose domain D includes points

arbitrarily close to (a, b). Then we say

lim fix, y)=71L
xy—(a b)

if for every € > 0 there is a corresponding number 6 > 0 such that

fxy)-Lf<e

«/{x—a}lﬂy—b}:

whenever (x,y) in D and 0 < <9.

lim fix,y)=1L
if x.y—(a.b) , then f(x, y) approaches L as (x, y)
approaches (a, b) along any path Cin D. In other words, if f(X, y)

approaches L, as (X, y) approaches (a, b) along a path C, in D and f(x, y)

approaches L, as (X, y) approaches (a, b) along a path C, in D, where ,

lim f(x, v)
where L, # Ly, then %.¥ —>(a. &) does not exist.

T, . o e e pp — L —— ey =

Let f be a function of two variables whose domain D includes points
arbitrarily close to (a, b ). Then we say

lim fz.y)=1L
xy—(a b)

£ 0

if for every > 0 there is a corresponding number > 0 such that



|ﬂxﬁy}—£|-:; €

«/{x—a}lﬂy—b}l .

0
whenever (x,y)inDand 0 < <
lim fx.y)=71L
if %y —(a. b) ,thenf(x,y)approachesLas (x,y)
approaches (a, b) along any path C in D . In other words, if f (x ,y)
f’l a, b C*l
approaches as (x,y) approaches ( ) along a path inD and f
L, X,y ,
(x,y)approaches ~ as/( ) approaches (a,b)alongapath ~ in

Io=7 lim f(x, ¥)
D, where , where == then ¥ — (a, &) does not exist.




x sl y)
Haoy) =" flx. y)
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1. Let , plot together with the paths you

picked as the graph above and determine whether

_ x sl y)
lim —

7 2
%y = (0.0) 27 +y exists. Explain your answer.

X _}’3
gxny)=" ¢
Tty g(x, )
2. Let , plot together with the paths you

picked as the graph above and determine whether

3
) XY
lim —

) :
.y —(0,0) ux‘—l—yﬁ
exists. Explain your answer.

2 2
x x
lim S =1 lun
2 2 2 2
2y—(0,0) x7+y y—=(0,0) x7+y
The fact that and

does not exist can be detected using contour plots.

3. Execute the following command and execute this commands again with

0.01 replaced by 0.001; does the pattern seem to change ?

with(plots):
contourplot(x”2*y/(x"2+y"2),x=-0.01..0.01,y=-0.01..0.01



grid=[40,40]);
4. How does those graphs support the conclusion that

2
. £ ¥
lun
2 2
y—=(0,0) x7+y
exists ?

5. How do the contour plots support the conclusion that

2
_ x
lim
2 2
y—=(0,0) x7+y
does not exist ?

_ x s y)
lim —

2 2
6. Based on the contour plots, do you think that < (0.0) =" +y

exists ? Explain your answer.

r, 0 X,y 0=r
If ( ) are polar coordinates of the point ( ) with , hote that

r—= 0755 (#.3)=(0.0) fence

lim fix,y)=7L lm  f{7cos(0), rsm(0))
x.y—(ab) exists if and only if 7 — 0+
exists.




13 + ¥
fx.y)="7—"7

x4y f(x, y)
. Let , graph and use polar coordinates to
! 13 +J»’3
lin —
5y —=(0,0) 7 +y"
determine whether exists .
Frl ek Fl Fl

. Let and be positive integers. Find all the values of and

moA
. x ¥
lim

.9 —2(0,0) x7+y"
such that exists.

Module 13

Parametric representations of Surfaces

Purpose:

Represent a given surface with suitable parametric equations
and identify the grid curves.

= e g _— e —— - -

So far we have learned to describe surfaces in three dimensional
space as :

graphs of functions of two variables,



level sets for functions of three variables,
graphs of equations in three variables.

For example, the surface below

e _
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can be described as

the graph of the function f(x, y) =X’ +y*,
the graph of the equation z=x*+y*, or
a level set of the function f(x, y, 2) = X*+ y*- z

Unfortunately, some surfaces are hard to be represented in any of
those ways, for example, the torus shown below.



Recall that we described a space curve by a vector function of a single
parameter t

r(t)=(x(t),y(t),z(t))

In much of the same way, we can describe a surface by a vector function
of two parameters uand v

(U, V) =(x(U, V), y(U,V),z(U,V)).

So far we have learned to describe surfaces in three dimensional
space as:

graphs of functions of two variables,
level sets for functions of three variables,
graphs of equations in three variables.

For example, the surface below



> plot3d(x*2+y"2, x=-1..1, y=-1..1, axes=boxed);
can be described as

the graph of the function f(x, y) = x>+ y*,
the graph of the equation z=x*+y*, or
a level set of the function f(x,y, 2) = X+ y*- z

> with(plots):
implicitplot3d(z=x"2+y~2,x=-1..1,y=-1..1,z=0..2,axe

Some surfaces are hard to be represented in any of those ways.

Recall that we described a space curve by a vector function of a single
parameter t

x(2). y(¢), ()
r(t)=( )

In much of the same way, we can describe a surface by a vector function of
two parameters u and v

U,V x(u, v), v(u, v), z(u, v)

r( ) =(

Take the surface above, for instance, we can parameterize the surface in a
natural way :

3}
-

u.ov M v
PR

r( )=( )
However, there is another parameterization that is better for plotting the

2 2
flx,y)=x"+y
surface. Notice that the level curves of are circles centered

0,0
at ( ) , SO we can parameterize them with



x=rcox(B0) y=r=m(B)

We can get the surface by putting together these circles with various sizes of
radius. Hence we get the following parameterization

3
reog(0), ran(0), #”

1. Use the same idea to find a parametric representation of the elliptic

7

(y-1)"
z= +
4 9

paraboloid given by the equation and check

your answer by plotting the parameterized surfaces.



M,V
If a parametric surface S is given by a vector function r ( ) , then there

bEl
are two useful families of curves that lies on S, one family with constant

y
and the other with constant.

H=1U Ha, W

If we keep u constant by putting 0 , thenr ( 0 ) defines a curve
o v y=yv
lying on S . Similarly, if we keep constant by putting , thenr
M, ¥ Cn
( ) defines acurve ~ lying on S . We call these curves grid curves .

Notice that when Maple graphs a parametric surface, it usually depicts the
surface by plotting these grid curves, as we see in the following example.

> plot3d([x, y, x*2+y"2], x=-3..3, y=-3..3, axes=boxec
plot3d([r*cos(theta), r*sin(theta),r*2], r=0..4, theta:
axes=boxed);

2. Find the grid curves of the surface

U,V 2 cos(u), v, 2 sm(x)

r( )=(

L ¥
Which grid curves have constant ? Which grid curves have

constant ?

Another way to look at the parametric equation in (1) is by converting from
Cartesian coordinates to Cylindrical coordinates.

We routinely use parameterized surfaces when we are converting a surface
from a coordinate system to another coordinate system. We may, for example,



want to consider a sphere of radius 1 centered about the origin, which is easy
in spherical coordinates, in Cartesian coordinates for some reason. Then we
can parameterize the sphere by

x=cos(0)sm(dp) y=sm(0)sm(P) z=rcos(d)
g 0 2m i 0 by
where is from to and is from to
> plot3d([cos(theta)*sin(phi), sin(theta)*sin(phi), cos
theta=0..2*Pi, phi=0..Pi, axes=boxed, scaling=con:
3. Find a parametric representation of the ellipsoid
2 2 2
X (y—1) z
+ +
4 9 16

=1
and check your answer by plotting the

parameterized surfaces.

4. Find a parametric representation of the part of the sphere

2 2 2 2 2
x4y 4z =4 Z=afx ty

that lies above the cone

5. Graph the surface with parametric equations

2 2
uo+v =1
I=UHY  Yy=U+Y Z=U—W
) : . where

Do you recognize this surface ?

We are of course, interested in using parameterization to describe surfaces
that can easily be parameterized, but are hard to describe as graphs of



functions. A class of examples is surfaces of revolution . For example, the

v=1(x)
curve , With x in [a, b], revolved around the x axis.
-0.51
II'IIIIIz D.""I" Tl
i 040812
0.5
] X
i
J =0
Notice that the vertical trace corresponding to , Where c is a constant, is
() c, 0,0

a circles of radius centered at ( ).



6. Find a parametric representation of the surface obtained by revolving the

curve

0,2
, With X in [ ]

around the x -axis and check your answer by plotting the parameterized
surfaces.

7. Find a parametric representation of the surface obtained by revolving the

curve

, With X in [ ]



around the y -axis and check your answer by plotting the parameterized
surfaces.

The same construction works when the original curve is a parameterized
curve rather than the graph of a function.

8. Find a parametric representation for the torus obtained by rotating about

3,0,0 1
the z-axis the circle in xz-plane with center ( ) and radius




9. Graph the surface

M,V (3 +cos(v))cos(u), (3+cos(v))sml(z), 1+ sm(v)

r( ) =(

Y 0,27
where arein | ].

M
Find the grid curves of the surface. Which grid curves have

y
constant ? Which grid curves have constant ?

Compare this surface with the torus above and state your comment.



cos()
10.(a) What happens to the spiral tube in problem 7 if we replace

s 2 ) s 2 ) cos()
by and by

cos() cos(2 ) 21 2 )
(b) What happens if we replace by and by

sin 2 1)
?

11.  The surface with parametric equations

r'e'\
x=2cos(0)+rcos .
bk S
r'e'\
y=2sm(0)+rcos .
Nk

."'E"\

Z=rsm —

'\-.__2-_2'

11
r 272 v 0,2m
with in [ ] and in [ ], is called a Mobius strip .

Graph this surface. What is unusual about it ?

Module 14

Critical Points and Contour Plots



Purpose:

Predict the location of the critical points of a two variable
function f by its level curves and determine whether f has a saddle
point or a local maximum or a local minimum at each of those
points. Find the critical points of f by two-dimensional Newton'’s
method.

Here we will investigate the critical points of the function
2

)
T
flz.y)=cos(x—y)xy e( )

by its level curves.

015
0.1
0.05

-0.05

Theoretically, given a two variable function f, we can find all the
critical points of f by solving



ar

&{x*y}:o
af

_ Il :U
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However, we often encounter the cases that it is alomost impossible to
solve the equations above.

The one dimensional Newton's Method uses the linear approximation
to find an approximate solution to an equation of the form f(x) = 0. If X, is
an initial approximation to the solution, then the tangent line to y = f(x) at
X =X, intersects the x-axis at a point ( X;, 0) and X, is usually a better
approximation to the solution than X, . So the process can be iterated
using x; as the new initial approximation. A short derivation shows that at
each stage

_ f{‘xi}

A = A I

F)
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The same as the one dimensional Newton's Method, the 2
dimensional Newton's Method uses the linear approximation to find an
approximate solution to a pair of equations of the form f(x, y) = 0 and g(x,
y) =0 . Basically, if ( X, Yo ) is an initial approximation to the solution, then
the tangent plane to z= f(x, y) at ( X, Yo ) and the tangent plane to z= g(x,
y) at ( X, Yo ) intersect the xy-plane at a common point ( x;, y;, 0 ) and ( xi,
y; ) is usually a better approximation to the solution than ( X, Yo ). So the
process can be iterated using ( X;, y; ) as the new initial approximation.

. . ot . S S NS, W ) — .

PART | Exploration of a Surface

Here we will investigate the critical points of the function

g 7
_ux-._ -
flz.y)=cos(x—y)xy e( )

The graph of this function over the domain [-3,3] x [-3,3] is shown in the
following figure.

> f :=(X,y)->cos(X-y)*x*y*exp(-x"2-y"2);
plot3d(f(x,y),x=-3..3,y=-3..3,grid=[35,35] ,axes=box¢

1. Make a contour plot of f over the domain [-3,3] x [-3,3], and identify a part

of the domain that you think contains a local maximum or minimum.
Explain what features of the contour plot indicate a local maximum or
minimum.

> with(plots):
contourplot(f(x,y), x=-3..3, y=-3..3, contours=15, gi
coloring=[yellow,red], filled=true);



2. Zoom in on your selected part of the contour plot until you can find a

two-significant-digit (2SD) approximation to the coordinates of the critical
point.

3. Return to the original domain, and identify another region that you think

contains a saddle point. Explain what features of the contour plot
indicate a saddle point.

4. Zoom in on this new region until you can find a 2SD approximation to the

coordinates of this critical point.

5. Calculate and display the partial derivatives for f, and f,. Explain why it is

likely to be difficult to solve f, =0 and f, = 0 for critical points.

The following commands define the partial derivatives f; and f, as
functions.

> fx:= D[1](f);
fy:= D[2](f);

PART Il Newton's method in 2 dimensions

The one dimensional Newton's Method uses the linear approximation to find

f{x)=0 X0
an approximate solution to an equation of the form f Is an
- . | =)
initial approximation to the solution, then the tangent line to at
x=x x x4, 0 x

intersects the -axis at a point ( 1 ) and L is usually a better

X
approximation to the solution than 0 . So the process can be iterated using

x
as the new initial approximation. A short derivation shows that at each

stage
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The same as the one dimensional Newton's Method, the 2-dimensional
Newton's Method uses the linear approximation to find an approximate solution
_ _ Hx,y)=0 glx,y)=0 _ _
to a pair of equations of the form and . Basically, if

X ¥
( 0770 ) is an initial approximation to the solution, then the tangent plane to

z=1x,y) XY z=g(x,y) 00 Y0
at ( ) and the tangent plane to at ( )

intersect the xy -plane at a common point ( ) and ( ) is

X ¥
usually a better approximation to the solution than ( 0°70 ). So the process

Xq. ¥
can be iterated using ( 7l ) as the new initial approximation.

1. Derive that at each stage



78,-1,z fe-re,

X =x.— V. =y. -
I+1 7 f:tgy_j}gx I+1 i fxgy_f}gx
and
A T R
where the functions  and and their partial derivatives : :
E. b4 K Vs

and “ are all evaluated at ( ! ).

. Construct a Maple function called newt2d which acts on an initial

X ¥
approximation ( 0770 ) and produces the next approximation. (Or
write a Maple procedure which will automatically control the iterations of

I

newt2d. The procedure should take as arguments, the functions  and
g . - - -

, the number of digits of accuracy desired and the maximum number
of iterations to allow to prevent an infinite loop.)

. Enter the first of your approximate critical points in PART | -- the one that

f X0y
should lead to a maximum or minimum value of  --as( 0 ) . Use

your Maple function or your Maple procedure to find the solution to the

_ Jy=0 =0 |
equations and in the region that you have chosen for
this critical point. Give your answer to 10 digits of accuracy (See ?Digits).
you can use fsolve to check your solution.

> evalf(sqrt(2),10);
X0:=?7?7?;
y0:=?7?7?;

fsolve({fx(x,y)=0,fy(x,y)=0}{x,y},x=?..?,y=2..?);

. Have you found a local maximum point or a local minimum point? How

can you tell? (Hint: Use the second derivative test.)



> fxx:=D[1,1](f):
fxy:=DJ[1,2](f):
fyy:=D[2,2](f):

5. Repeat the process in problem 3 for your second estimated critical point,

the one that should lead to a saddle point.

6. Have you in fact located a saddle point? How can you tell?

I

7. Go back to your contour plot of  in PART I, and approximate a third
critical point. If you have already found a local maximum, find a local
minimum. If you have found a local minimum, find a local maximum.
Then use your Maple function or your Maple procedure to find the
coordinates of this point to 10 digits of accuracy.

I

8. Go back to your contour plot of  in PART [, and approximate a fourth
critical point that should lead to another saddle point. Then use your
Maple function or your Maple procedure to find the coordinates of this
point to 10 digits of accuracy.

PART lll Different behavior of functions of two variables

For functions of one variable it is impossible for a continuous function to
have two local maxima and no minimum. But for functions of two variables
such functions exist.

1. Show that the function

2 2

fxy)=—(x—1) — (5 y—x—-1)



has only two critical points, but has local maxima at both of them. Then
use Maple to produce a graph with carefully chosen domain and
viewpoint to see how this is possible.

If a function of one variable is continuous on an interval and has only one
critical point, then a local maximum has to be an absolute maximum. But this is
not true for functions of two variables.

(3y)
_g{xﬁy}zixey—.xi—e 7

2. Show that the function has exactly one

g
critical point, and that has a local maximum there that is not an
absolute maximum. Then use Maple to produce a graph with carefully
chosen domain and viewpoint to see how this is possible.

Module 15

Changes of Coordinates

It is often useful to convert one set of parameters to another. This is
called a change of coordinates (or changes of variables) and can be
expressed as a set of functions ( a pair of functions in two-dimensional
case) from one set of parameters, or coordinates, to the other set.

Given a transformation

T(U, v) = (X y)



where x and y are related to u and v by the equations

X= X(U, V)a y= Y(U, V)

08

061

0.4

0.2

The left figure shows a coordinate grid in the uv -plane, with the
curves u = constant in blue and the curves v = constant in red. Then a
blue curve, say u=c, is transformed in the right figure to a blue curve
parameterized by ( x(c, v), y(c, v) ) . Similarly, a red curve, say v=Kk, is
transformed in the right figure to a red curve parameterized by ( x(u, k),
y(u, K) ) . In the process, a typical coordinate rectangle Rin the uv -plane
Is transformed into a "curvilinear rectangle” Sin the xy -plane. The
boundaries of Sare formed by the parameterized curves.

The local change-in-area factor is the ratio of the area of Sto the area
of R-- that is, the factor by which the area grows or shrinks under the
transformation.

Given a transformation



T(u, v) = (x(u, v), y(u, v))

What is the local change-in-area factor for this transformation ?

It is often useful to convert one set of parameters to another. This is called a
change of coordinates (or changes of variables) and can be expressed as a set
of functions ( a pair of functions in two-dimensioal case) from one set of
parameters, or coordinates, to the other set. For example, as we experienced
in the Module "Parametric surfaces", to better describe the surface z=1 - x* - y?
above the xy -plane, we use the polar coordinates instead of the Cartesian
coordinates. The new variables r and 0 are related to the old variables x and y
by the equations

x(r, 0) =r cos(0), y(r,0)=r sin(9)




More generally, in two-dimentioal case, we consider a change of variables
that is given by a transformation T from uv -plane to xy -plane :

T(u,v)=(Xxy)

where x and y are related to u and v by the equations

Xx=g,u,Vv) y=h(uyv)

or, as more often we write

X=x,U,v) y=y(u,V).

T{Mlﬁvl}z{xlﬁyl} Y

If , then the point ( Il ) is called the image of
M,V hy
the point ( ). If T transform a region in the uv -plane onto a region
R R 5
in the xy -plane, then we say is the image of

Let S=[-1, 1] x[-1, 1] in the uv -plane (See the figure below.) and let

T(u,v)=(Xxy)

where x and y are related to u and v by the equations

XM, v)=u+y oyl v)=u—v
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Let be the image of under the transformation T, graph the image
o Xy
of in the -plane.

( Hint: Consider separately the boundary : : :
v=1
. In each case you get a parametric representation for one of the

R
boundaries of )

R =
How is the area of related to the area of ?

Hx,y)=xy g, v)=1(x(2, v), y(u. v))
Let . Set , where the

o, v) oy -1, 1
change of variables is the one in (1). Graph over =] |

-1.1 f(x. y)
X[ ] , compare it with the graphs of by plotting them

x J
together. Are they the same ? What are the ranges for and ?

How do your answers from (1) and (2) change if you change the

coordinate functions to



X(u,v)=u+2v vi.v)=u—2v
and ?

We have already seen one useful changes of variables for simplifying
certain integrals, the change from Cartesian to polar coordinates in the plane.

5. Compute the iterated integral

[
-

i']-i'o

Plot the domain over which the integration is being carried out.

In the shift from Cartesian to polar coordinates in double integrals, we see
that dxdy becomes rdrd6 , but where does the "r" come from? In deriving this
integral formula, as we subdivide the domain with a polar grid, as shown in the

left graph below, we have to calculate the area of each little region.
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Elementary geometry shows that the area of the region S shown above is

rArABG
approximately equal to

region by its distance from the origin. So
for the Cartesian-to-polar transformation

Now let's reconsider the transformation given by the equations

X, v)=u+v

F

, that means we have to "scale" each little

is the local change-in-area factor

Vi, v)=u—v
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The figure on the left shows a coordinate grid in the -plane, with the
L i
curves = constant in red and the curves = constant in blue. A red curve,
=0
say , Is transformed in the right figure to a red curve parameterized by
v+o,o— v x+y=21c
( ), which is a segment on the line . Similarly, a blue
v=~F
curve, say , IS transformed in the right figure to a blue curve
Ntk ou—k
parameterized by ( ) , which is a segment on the line
x—y=2Fk R IRY
. In this way, a typical coordinate rectangle in the -plane
hy Xy
Is transformed into a parallelogram in the -plane as shown above.

6. What is the local change-in-area factor for this transformation ?



-

: : _ W_oxydA
7. Use the given transformation to evaluate the double integral --F J :

x+y=2 x+y=-1 x-—-y=12
where Ris the region bounded by :

x—y=-2
. Check your answer by evaluating the integral using
Cartesian coordinates.

In general case, given a transformation

T(u,v)=(xy)

where x and y are related to u and v by the equations

X=x,U,V) y=y(UV)

What is the local change-in-area factor for this transformation?

Y
The left figure shows a coordinate grid in the -plane, with the curves

L A
= constant in blue and the curves = constant in red. Then a blue curve,
=7
say , Is transformed in the right figure to a blue curve parameterized by
X(e,v), vie, v) V=K
( ) . Similarly, a red curve, say , Is transformed in the
X( 2, &), v, &)
right figure to a red curve parameterized by ( ) . In the
K MV
process, a typical coordinate rectangle in the -plane is transformed
hy Xy hy
into a "curvilinear rectangle" in the -plane. The boundaries of are
formed by the parameterized curves.
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Here is a closer look at R and S :

AV R S

i

(xfu,v) , plwv

(1, v) AH

The local change-in-area factor is the ratio of the area of S to the area of R
-- that is, the factor by which the area grows or shrinks under the
transformation. We can calculate the area of S approximately as the area of
the parallelogram determined by the two tangent vectors shown on the right.

8. Show that



a=(x (., v)Auy (u,v)Au) s b=(x(u.v)Av.y (e, v)Av)

i b
So the approximate area of S is | X | , where now we are thinking

of the planar vectors as being in space.

9. Show that, in general, the local change-in-area factor is
|.xM{M* v) (1) =2, (6, v) y, (i v)]|

This expression is called the Jacobian of the coordinate transformation.

2
10.Show that the polar coordinate change-in-area factor is . What is the

Xy 0,1 0,2
image in the -plane of the coordinate rectangle [ 1 xI ]

r 8
in the -plane ? How is the area of this image related to the area of

the coordinate rectangle ?
11.Calculate the local change-in-area factor for the transformation

X, v)=u+v  ylu,v)=u—v

How is this related to your answer in (6) ?



