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1. Introduction

A priori estimate for the solutions of non-uniform elliptic equations with periodic boundary
conditions is presented. The problem may arise from the study of flows in fractured media or
the study of stress in composite media, see [2,3,13,16] or references therein. Domain considered
is £2 =[0,L)® c R? containing two sub-regions, a connected high permeability region and a dis-
connected matrix block region with low permeability. Assume € is a positive number less than 1
and Y =[0,1]° is a cell consisting of a sub-domain Y, completely surrounded by another con-
nected sub-domain Yy (=Y \ Yp). The disconnected matrix block sub-region of the domain £ is
Qf={x: xee(Ym+j)C 2 forje 73}, the connected high permeability sub-region is £2¢ = 2\ £2¢,
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and the boundary of £ (resp. £25,) is 982 (resp. 9£25,). The non-uniform elliptic equations in 2 are
written as

—V - (KcVPe + Qe¢) =Fe in .Q;,

—€V - (€keVpe +qe) = fe in 27, (1)
(KeVPe + Qe) -1 = €(eke Vpe +¢qe) - 1€ 0n 9025,

Pe =pe on 3951.

with periodic boundary conditions on 32. Here n¢ is the unit outward normal vector on 325, It is
known that if K¢ (> 0), ke (> 0) satisfy periodic conditions and if K¢, Ke, Qe, qe, Fe, fe are smooth,
then the piecewise regular solutions of (1.1) exist [15]. By energy method, the L? gradient estimate
of the H! solutions of (1.1) in the connected sub-region is bounded uniformly in €. However, uni-
form estimate in € for the solutions under Lipschitz or higher order norm is not clear [13,16,20],
and in some cases, solutions under those norms may not be bounded uniformly (see [5,17] or one
example in Section 2). Similar problems had been considered by other authors. Existence and uniform
estimate in € of the piecewise smooth solutions in Hilbert spaces for elliptic diffraction problems
were studied in [13,15]. Uniform Lipschitz estimate in ¢ for the Laplace equation in perforated do-
mains was given in [20], and uniform LP estimate of the same problem was claimed in [18]. Lipschitz
estimate for uniform elliptic equations could be found in [16]. H6lder and Lipschitz estimates uniform
in € for the solutions of uniform elliptic equations in periodic domains were given in [4]. This work
gives estimates for non-uniform elliptic equations. It is shown that in the connected high permeability
sub-region the Holder and the Lipschitz estimates of the non-uniform elliptic solutions are bounded
uniformly in €.

The rest of the work is organized as follows: Notation and main results are stated in Section 2.
Some auxiliary lemmas are given in Section 3. Uniform Hoélder estimate of the solutions of (1.1) in
connected sub-region is shown in Section 4. Uniform Lipschitz estimate of the solutions of (1.1) in
connected sub-region is derived in Section 5. The last section is a proof of a trace theorem claimed
in Section 5.

2. Notation and main result

Let Ck@ denote the Holder space and L%, H!, WS denote the Sobolev spaces for k >0, « € (0, 1),
and i,s > 0 [11]. Define [[¢1,¢2, ..., &lls = 16118 + 11¢21l8 + -+ - + lI¢nllp for any Banach space B. For
any set D, D/r ={x: rxe D} for r > 0, D denotes the closure of D, |D| is the volume of D, Xp is a
characteristic function on D, and

1
][;(y)dy =5 / cy)dy ifgel!(D).
D D

Let B(x,r) denote a ball centered at x with radius r > 0. For any ¢ € L1(§2) and B(x,r) C £2,

Oxr = ][ Z(y)dy.

B(x,r)

If ¢ € C*¥(D) for k>0, € (0, 1) (resp. £ € WHS(D) for i, s > 0), define [|¢ || cka(py = 11 (€X) | cka(pc)

(resp. ¢ Nwispy = ||§(€X)HWLS(D/€))-
We shall assume that there are constants §, d4, ds > 0 such that

Al. Y, is a smooth simply connected sub-domain of Y,
A2. K¢, Ke € [dg,ds5], |d5s — dg] + || VKe ||Loo(91e,) + IVKellpo(¢) < cds where ¢ is a small number de-

pending on Yy,
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A3. FeXQ; + feXqg € ¥(2), Qe € W1‘3+5(9;). ge € WI3T(25),
A4, Zj€Z3 Ke Xe(v +j) + Ke Xe(yy+j) (resp. ZjEZ3 QeXe(v;+j) + de Xe(vy+j)) is a periodic function in
R3 with period €Y (resp. 2).

Main results are:

Theorem 2.1. Under A1-A4, the solutions of (1.1) satisfy

[Pelcongsy + € IV Pellconas) + € IIVPellcon(ag

) ) €25

< C(” Qe, Fe ||]_3+5(_Q;) +1Iqe, fe ||L3+6(_Qg1) + élf“lll Qe |||c0,u(_rz;) + 627”"‘]6 |||c0.u(_rzg1 )7 (21)
[Pe]co.u(_(z;) + 617“|||VP€ |||C0»M(_Q;) + 627“|||Vp5 |||C0,/4(_an)

<c(lIQe. Fe ||L3+5(_Q;) +llge, fell 3+ ey + € MQe |||c0,u(97) +e'Mge lco.n e, ). (2.2)

where § > 0, ju = 1 — 52, and the constant c is independent of €.
Let &;, i = 1, 2, 3, be the unit vector in coordinate direction x; in R3. Define PI" x) = w

for i =1,2,3. Symbols l(l", !", FZ", kzi. Pli- qi", fé' are defined in a similar way.

Theorem 2.2. Under A1-A4, the solutions of (1.1) satisfy

sup IV Pe |”W1-3+5(5(Yf+j)) + sup ENVPellw1.3+5 ey
jez? jez?
€(Yp+j)Cs2} e(Ym+j)Cf2p,
3

. _ . _ +i
+ Z(” Pll ||Cov#(.(2?) +E] M’”VPZIMCOM(Q;) +62 “H|Vpe’ |”C0:M(Q§1))
i=1

3
< C(Z(” Qi ”L3+8(9;) + ”qzi’ fé ||L3+3((z,;) +[le' " Qd H|c0-u((z;)
i=1

+[e'#ql llcosege)) + sup (NQellwr3+s ey p1jy) + €MFell 35 ey 1jy)
JEZ

(Y f+i)c2s
+ SUP3 (llge w13+ v+ Tl fe |”L3+5(5(Ym+j)))>v (23)
JEZ
e(Ym+j)c2y
where § > 0, 1 =1 — 525, and the constant c is independent of €.

Clearly if the right-hand side of (2.1) is bounded independently of €, the Holder estimate of P, in
the connected sub-region of §2 is bounded uniformly in €. If the right-hand side of (2.3) is bounded
independently of €, the Lipschitz estimate of P, in the connected sub-region of £2 is bounded uni-
formly in €.

Next we give one example to show that Holder gradient estimate and LP estimate of the second
order derivatives of some elliptic solutions may not be bounded uniformly in €. For any smooth

function & in Y, define the left and the right limits, §_ and &4, on Yy as é-(x) =lim y_o &(x+x)
X+X'€Ym
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and &, (x)=lim y_o &(x+X) for x e dY,;. We find a periodic function X} in R3 with period Y as
x+x'eY
the solution of the following problem: In each cell Y, function X} satisfies

—A(X*—i—y]):O inYy,

—EA(XE +y1) = in Y,
V(XE4y1), By =€V(XE+y1)_-ny ondYn,

X*+_X* onaYpy,

/Xﬁdy:O,

Y

where n, denotes the unit outward normal vector on Yy, and y; is the first component of y e R3.
Clearly X} is solvable and smooth [15]. Define Xg x) = EX*( ) in £2. The function Xe satisfies

~AXc+x1)=0 in Q¢

fv
—2AKc +x1)=0 in 25,
Ve +x1)y -0 =2V +x1)_ -0€ onds,
§§6_+ = Xe,_ on a2y,

with periodic boundary conditions on 2. Here X is_the first component of x € R3. Since VXE x) =
VX#(%) and V2K (x) = 1V2X*( ), we see that [VXG]CM(Qe) for o € (0,1) and ||V? XSHLS(Q ) for

s € (1, 00) are not bounded uniformly in €.
3. Auxiliary result

First we recall an extension result.

Lemma 3.1. (See [1,14].) For 1 <'s < oo, there are a constant d1(Y ¢, s) and a linear continuous extension
operator ITe : W1 2(26) - W1S(2) such thatif; e W *(£2§), then

g =¢ in .Q; almost everywhere,

1T s 2y < di ||§||LS(.Q;),

VIS s 2y < di ||VC||LS(Q;),

ie=g inRif¢= g|_Q; for some linear function g in 2.

Moreover, et (x) = e g(rx) if £ (x) = g(rx), g € LS(.Q ), € LS(.QG/r) andr > 0.

It is known if K, Ke € [da, d5] with dg > 0, Q, Fe € L2(.Qf) and qe, fe € L?(£25,), then the H!
solutions of (1.1) exist. Moreover, we have

Lemma 3.2. If K¢, ke € [ds,ds] withds > 0, Q¢, Fe € LZ(Q;), and qe, fe € L?(£25,), then the H' solution
of (L1) with [, ITe P dx = 0 satisfies

||Pe||H1(_Q€)+||Pe’€VPe||L2(Q (||Q€7F€||L2(Q€)+”qE’fE”LZ(Q ) (3.1)

where c is a constant independent of €.
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Proof. If Pe Xo¢ + pe Xgg is an H' solution of (1.1), then P, Xge +peXgg +c s also an H' solution

of (1.1) for any constant c. Adjust ¢ so that f_Q ITc(P¢ 4+ c)dx = 0 (same notation for the adjusted
solution). In this case, by Poincaré inequality and Lemma 3.1, the adjusted solution satisfies

|Pe ||L2(Q;) < e Pe ||L2(.Q) <ClVIIePe ||1_2(_Q) < CZHVPSHLZ(Q;)v (32)
where c1, cp are independent of €. We also note, by Poincaré inequality and (1.1)4,
IPelli2(ne) < HIePelli2(gey + IPe — HePellp2(0¢)
S IMHIePelli2(g) + €3€lIVPe — VI Pell2(0¢, (33)

where c3 is independent of €. By energy method and (3.2)-(3.3), we see that the adjusted solution
satisfies (3.1). So this lemma holds. O

From now on, the H! solutions of (1.1) are required to satisfy fQ I P dx = 0. Under (1) A1-A2,
(2) 1 Qe, Fe ||Lz(9;) + e, fe 2 ¢2g) is bounded independently of €, and (3) QGXQ; converges to Q in

L%(£2) strongly, there is a subsequence of {P¢, Qc, Fe, fe} (same notation for subsequence) satisfying,
by Lemma 3.2 and compactness principle [11,14],

e Pe — Po in L?(£2) strongly
(KeVPe + QG)X_Q; — K*VPg+Q* in LZ(Q) weakly ase — 0,
FeXQ; + feXge — F in L%(£2) weakly

where X_Q; (resp. Xge) is the characteristic function of .jS (resp. £25,), K* is a positive definite

matrix depending on Ke, Yy, and function Q* depends on Q, K. Moreover, the function P € H L)
satisfies

-V (K*VPo+Q*)=F ing. (3.4)

Let G(x — y) denote the fundamental solution of the Laplace equation, see §6.2 [7]. Define single-
layer and double-layer potentials as, for any smooth function ¢ on the boundary 9D of a bounded
smooth domain D,

Vo)) = / G(x— y)t(y)do,
oD

Tap(g‘)(x)E/ayg(x—y)ﬁyt(y)day
oD

forxeaD,

where 0, is the unit vector outward normal to aD.

Lemma 3.3. If D is a bounded smooth domain, then:

1. Vyp, Typ are pseudo-differential operators of order —1 on aD.
2. Forany |B| > 1/2 and « € (0, 1), the linear operators

Vyp : C%(3D) — C1¥(3D),
Top : C%%(@D) — c1¥ (3 D), (3.5)
Bl — Typ : CH*(@D) — CL¥(3D)

are bounded and 81 — Typ is invertible in C1-* (3 D).
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3. Forany |B| > % and s € (2, o), the linear operators

Vip : WIT55(dD) - W?55(3D),
Top : WI=55(3D) — W2=55(3D), (3.6)
Bl — Typ : WE35(3D) — W2 55(3D)

are bounded and BI — Typ is invertible in Wz_%'s(aD),

Proof. By [7,13], V3p and 7p are pseudo-differential operators of order —1. By Theorem 2.5, Chap-
ter XI [21], operators Vip, 73p, and BI — T3p in (3.5) are bounded and linear. Tracing the proof of
Theorem 4.6.5 [7], we see BI —Typ is a Fredholm operator. Since 81 —T;p is invertible in L? space [9],
it is one-to-one and bounded as well as has closed range in C"®(9D). By inverse mapping theorem
[8], BI — Typ is invertible in C1-*(3D).

By theorem in §2.3.4 [22] and following the proof of Theorem 2.5, Chapter XI [21], operators Vjp,
Typ, and BI — Typ in (3.6) are bounded linear operators. An analogous argument as that for (3.5)

implies that BI — 7p is invertible in WZ*%'S(BD). O
Now we consider the following problem

—V-(KVU¢ + Q¢) = Fe inYy,
—eV - (ekVu Ge) = f inYp,
( ) e‘t‘k) fe i m 3.7)

(KVUe + Q) -ny = €(ekVue +Ge) -ny ondYp,

Ue = Ue ondYm,
where ny is the unit vector normal to 9Y,. Let D be a smooth domain satisfying Y, C D C
Y =Y;UYy and dg = min{dist(Yy,, D), dist(D, dY)} > 0. If we define D1 = {x € Y | dist(x, Vi) >
% dist(x,9Y) > %}, then 9D C D;.

Lemma 3.4. If the following conditions hold

1. K,k € [d4,ds] withds > 0,

2. |IK— d4”c°1*§<y ) + |k — d4“c°1*§(y ) < cdgq where 1 € (3, 00) and c is a small number depending
’ T f 4 T (Ym
onYyg,
3. ”UEHLZ(yf) + Qe IICOJ,%(Y” + €|1qe HCOJ*%(vm) + IIFeXy; + feXv,llir(v) is bounded independently

of € forr € (3, 00),
then the solutions of (3.7) satisfy

Ul + €2 ucell <c, (3.8)

3 3
CMITF (D\Ym) CHITT (V)

where c* is a constant depending on given data but independent of €.

Proof. Assume the coefficients and the solutions of (3.7) are smooth in Yy and Yp,. Consider (3.7);
in Y¢. Theorem 8.17 of [11] implies, for r € (3, 00),

IUell <G (3.9)

1-% ()
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where €7 is a constant depending on given data but independent of €. Let @i be a solution of

—€V - (€d4Vil + €(K— dg) Ve + Ge) = fe inYm,

. (3.10)
ulay,, =0,
and U a solution of
~V - (d4VU + (K- dg)VUc + Q) = Fc inD\ Y,
Ulay, =0, (3.11)
U —Uelsp =0.
Then, by (3.9),
24 14 s =2
e*dglit]l ,, 3 <C+8€%|(k—dy)Vue| 4,3 ,
C (Ym) C (Ym) (312)

dall U] &1+ (K—do) VU

<
CU=F D\Y) 017 (D\V)’

where ¢4 is a constant depending on given data but independent of ¢, and ¢, is a constant depending
on Yy. Define i =ue —1 in Y;y and U=U, — U in D\ Yy,. Egs. (3.7) and (3.10)-(3.11) imply

Alu=0 inYp,

AU =0 inD\ Yy,

Ulay, = oy (3.13)
VU -fiylay,, — €2 Vil - fiylay, = S/da,

Ulsp = 0.

The function S in (3.13) satisfies, by (3.12) and 9D C Dy,

IS1 <G+ 6€? | (k—dy) Vue|

3 3
CO1"F @Ym) COTF (Ym)

+& | (K—dy)VUC| (3.14)

3 s
€177 (D\Ym)

where ¢ is a constant depending on given data but independent of €, and ¢, is a constant depending
on Y. By Green’s formula, (3.13), and Theorem 6.5.1 [7], we see that

/2 + Ty, () = Vyy,, (On, 1)
. . . . ondYm,
U/2 = Tyy, (U) = —Vyy,,(3n,U) + Vyp(9n, Ulsp)
where anyl:”a[) is the normal derivative of U on 9D. Therefore,
5 .
€“+1 . Vip(n,Ul; Vay,, (S
Ly Ja= o0 On, Ulop) _ Vorn(S) Y. (3.15)
2(1 —€2?) 1—¢? (1 —€2)dy

Egs. (3.9), (3.12), (3.15), Lemma 3.3, and [21] imply
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Wil a3 gy <N Tovn @]+ Vavy (S/da)| + [Vop(n, Ulap)|[| .13 .
< Ez(IIS/d4||C0‘1,; ovm T |I8nyl7||c0,1,; (80)), (3.16)
dal|8n, U leor-z D) <& 40| (K—dy)VU| 12 Dy’ (3.17)

where ¢ is a constant depending on given data but independent of € and ¢; is a constant depending
on Y. By (3.12), (3.14), and (3.16)-(3.17), we obtain

da||Uc]| + €2dy|luc|

3 3
CM1=7 (D\Ypm) M7 (Ym)

<& +62€%| (k- dg) Vue ||CO,17% _— c||(K—day)VU| @13 o1y’

where ¢; is a constant depending on given data but independent of €, and ¢, is a constant de-
pending on Y¢. By the smallness assumption on K —d4 and K — d4, we obtain d4“U6”C“‘%(D\Y ) +
m

ol W) < C1, where ¢y is a constant depending on given data but independent of €. So we
m

prove (3.8) for the smooth coefficient case.
The estimate (3.8) for non-smooth coefficient case is directly from the estimate (3.8) for smooth
coefficient case, approximation method, §16, Chapter 3 [15], and energy method. O

2
€“dyllucl

By a straightforward modification of the proof of Lemma 3.4, we see

Lemma 3.5. If the following conditions hold

1. K,k € [d4,ds] withds > 0,
2. |IK —dg4]|

013 + Ik —dall 4,3 < cdgq where 1 € (3, 00) and c is a small number depending
cO1=7 (vp) COI=F (Ym)
on Yf,
3. ||Ue HLZ(yf) +11Qe “CO.I—% V) +lGe ”Co,v% W) + | Fe Xy, +€7 1 fe Xy, |l (vy is bounded independently
of € forr € (3, 00),
then the solutions of (3.7) satisfy
Uell +elluell <ct,

3 3
CHIF (D\Ym) ChIT (Ym)

where c* is a constant depending on given data but independent of .
Lemma 3.6. If the following conditions hold

1. K,k € [dg,ds] withdg > 0,
2. |IK— d4||w1,r(yf) + 1K —dallyrr(y,) < cda wherer € (3, 00) and c is a small number depending on Yy,

3. Uellay,y + 1 Qe lwrry )+ ldelw ey + IFe Xy, + €1 fe Xy, |l (v) is bounded independently of €
forre (3, 00),

then the solutions of (3.7) satisfy
IUellwzr oy, +€luellwzr iy, < c*,

where c* is a constant depending on given data but independent of €.
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Lemmas 3.4, 3.5, 3.6 are proved if Y,; is a connected set. An analogous argument also proves
Lemmas 3.4, 3.5, 3.6 if Yy, is the union of several non-overlapping connected sets.

4. Uniform Hoélder estimate

In this section we prove Theorem 2.1. For convenience, let us assume B(0,1) C 2.

Lemma 4.1. Under A1-A2, for any § > 0, there are constant 6 € (0, 1) (depending on §, K*, Y ¢ ) and constant
€p € (0,1) (depending on 0, 8, da, ds) such that if Ky, Pe v, Qe.v, Fe v, Ku, De,v, Qe v, fe v Satisfy

=V Ky VPcy+ Qev)=Fe in 3(0,1)09}),
—€V - (€kyVDpe,v +qe,v) =€ fev in B(071)m‘(2]},)1v

(KyVPey+ Qev) - n’ = €(€kyVpey +qe ) - n” onB(0,1)N 39,%
Pe v =Dpev on B(0,1)Nas2y,

(41)

and

max{||P€,v||L2(B(0,1)mQJ‘§)7 GHpG,V”LZ(B(OJ)ﬂQ,‘;I)v ||q6,v||L3+5(3(0,1)n_Q#1),

€ 1QewXoy. FevXay +vfenXayllomon ) < 1. (4.2)

then, for any € < v < €y,

2
‘vae,v - (UuPe,v)o,e‘ dx < QZM,

B(0,0
©.0) (43)

2
€%pe.v — Ty Pe v)o0| " dx < 6.

B(0,0)n$2Y,

Here K* is the positive definite matrix in (3.4), ¥ is the unit vector normal to 952), d4 and ds are defined

in A2, = 1— 335, and I1, is the extension operator defined in Lemma 3.1.

Proof. Let Lo = —V - (K*V) denote a differential operator, where K* is the positive definite matrix
n (3.4). If LoPo =0 and if ' satisfies u < i’ <1, then

[ oo | s
B(0.0) B(0,1)
for 0 sufficiently small. This is due to Theorem 1.2 on p. 70 [10] and that L£o-harmonic functions are

bounded in C%(B(0,6)), for some 6 < 1, uniformly by their L? norm [10,11]. Fix a value # and we
claim (4.3);. If not, there is a sequence {Ky, Pe v, Qe v, Fe v, Ky, Pe v, Qe,v, fev} satisfying (4.1) and

max{”Pé,l)”LZ(B(O,])ﬂQ;)v €||Pe,v||L2(B(o,1)n_Q”V1)’ ||Qe,v||L3+6(B(O,1)mQ;)} <1,

lim ,F v =0,
camy 1Qe.v e,v||L3+5(B(0,1)mQ;) + v fewlips+s 0,102y (45)

2
|HUPE,U - (nvpe,v)0,9| dx > 92“,
B(0,0)
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By Lemma 3.1 and compactness principle, we can extract a subsequence (same notation for subse-
quence) such that, as e <v — 0,

IyPe,y — Po in LZ(B(O, 0)) strongly,
Ky Xy VPe v — K*'VPo in L?(B(0, 0)) weakly, (4.6)
Qe.qu;, Fe,vXQ;s VfevXgy — 0 in LZ(B(O, 1)) strongly.

We note that Pg satisfies LoPg = 0. Eqs. (4.4)-(4.6) imply, for & small enough (depending on §,
K*, Yp),

0%* < lim ][ |HvPe,v_(HvPe,v)0,6|2dX

ev—0
B(0.6)
2 2
= lim |HUP€,,,|2dx—‘ ][ IyPey| = ][ P(z)dx_’][ Py
e<v—0
B(0.6) B(0,0) B(0.6) B(0,0)
= ][ |Po—(1’0)0,9|2dx<92“’ ][ P2dx < 6%
B(0,0) B(0,1)

So we get QZM < 62, which is impossible. Therefore we prove (4.3);.
Define P =60~ (I1,Pe, — (I1yP¢ 1v)0,0) and p =0"H(pe.y — (ITy Pe 1)0.9). Then (4.1); 4 imply, for
any smooth function ¢ with support in v(Ym + j) C B(0,0) N £}, for some j Z3,

€2 / (p— P)V - (k,V¢)dx

v(¥Ym+J)
= / (€’ky VP +€071qc ) Vi dx — [ €0™H fe v dx. (4.7)
v(Ym+]j) v(Ym+J)

If ¢ is the solution of

{V(kVV§):p_P mv(ym'i‘l) foerZB, (48)
=0 onv(@Yn, + j)
then

! 12w vmtiy < NVEN2@ntj) < C2vID— 13||L2(U(Ym+j))7 (4.9)

where cq, c; are independent of v. If we take the solution ¢ of (4.8) as the test function in (4.7), then
(4.7) and (4.9) imply

205 _ D2 p —K 2
1D =PIt v,y < CIVER VP + 007G v [ oy, 1)

+c|v?~ (4.10)

2
el 2ewms iy

where c is independent of €, v. Therefore, by (4.3); and (4.10),
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— 2
62K f €2|Pe,v - (vae,v)0,0| dx

B(0.0)N$2Y,
= ][ lep>dx <co~> / lep — e P dx + ce? ][ |2 dx
B(0,0)N$2Y, B(0,0)N$2Y, B(0.9)
<co3 / (|vekvvf’+v9”‘qg,v]2+ }UZO”‘fG,V|2)dx+ce2, (411)
B(0.0)NS2Y,

where c is independent of €,v. By (4.2) and energy method, ”P€,V”H](B(O,6)ﬂ9‘f’) is bounded by a
constant depending on 6 and given data. Note € < v < €p. If €g is small enough, the right-hand side
of (4.11) is smaller than 1. So (4.3); follows. 0O

Lemma 4.2. Under A1-A2, for any § > 0, there are constant 6 € (0, 1) (depending on 8, K*, Y ) and constant
€0 €(0,1) (depending on 0, §, dg, ds) such that ifKe, Pe, Qe, Fe,Ke, Pe, qe, fe satisfy

—V - (KeVPe + Qe) = Fe in B(0,1) N £25,
—€V - (€keVpe +qe) = fe in B(0,1) N 25, (412)
(KeVPe + Qe) -1 = €(eke Vpe +qe) -0€ on B(0,1) N 325,
Pe = pe on B(0,1) N3¢,

then, for all € < € and k satisfying € /6% < €,

2
][ |H€P€ - (nepe)0,9k| dx < QZkMJz,

B(0.6%)
5 (413)
][ €%|pe — (ITePe)g g |” dx < 624 J2.

B(0,65N%5
Here K* is the matrix in (3.4), d4 and ds are definedin A2, u =1 — 3+5, and
Je= ||P6X.QJ€ +epeXog lli280,1y) + Gelli3+s80,1)n28)
+ 60_1 l QeXQ;, Fe X.Qj + feXag I3+ 80,1))- (414)

Proof. We assume Je < 0, 0therw1se it lS clear. This is done by induction on k. For k =1, we
define Pe = ]_- Qe = ] ) FE = ] , Pe = j e = le—z fe = — . Then 1(67P€,QG,FéikéapanGafE
satisfy (4.12) and

maX{HPEHLZ(B(oJ)mQ;y€||1A76||L2(B(o,1)m9 )s ||q6||L3+6(B(o 1HNRE)

661 ”Q€XQ;7 IA:eX.Q; + feXqe ||L3+5(B(0,1))} <1
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By Lemma 4.1 (in this case v =€ < &),

][ \MePe — (TePeyos| dx <67,
B(0,0)
A A 2
€’|be — (e Pe)o,o|~dx < 0%,

B(0,0)NR25

This implies (4.13) for k =1 case. Suppose (4.13) holds for some k satisfying € /6% < eg, we define

Ke (x) = Ke (6°%)

Pe(x) = 7107 (P (0%%) — (TTe Pe)g or)
Qe = J10* 171 Qe (6%)

Fe) = JZ10M1E  (6%x)

in B(0, 1) N 2§ /6",

ke () = ke (6%x)

Pe(0) = ];]Q_IW (pé (Qkx) — (e Pe)(),@k)
Ge() = I 1041 Mqe ()

Fey= ]9 fe(64%)

in B(0, 1) N 25, /6*.

Then they satisfy

—V-(KeVPe + Qe) = Fe in B(0, 1) N 82§ /6",
—€V - (€Ke Ve +Ge) = fe in B(0, 1) N £25/6%,
KeVPe + Qc) -1i = €(€ke Ve +Ge) -1t on B(0, 1) N a2, /6%,
Pe = pe on B(0, 1) N385, /6%,

where 1 is the unit vector normal to 3825 /6%. By induction,

max{ I Pe ||L2(B(0,1)m9;/0k)» €llpe ||L2(B(0,1)ﬁ(2,$1/9")’ IGe ”L3+5(B(0,1)ﬁ(2,$1/9")’

1A A _k &
€0 1QeXqe ok, FeXge i +0 “FeXae okl go.ny ) < 1.
Note € < €/6% < €g. By Lemma 4.1 (in this case v = €/6¥),

A A 2
f |H€/91<P€—(H€/9kpe)0‘9| dxg@zﬂ,
B(0,6)
A A 2
f €2|p€ - (Hg/gkpe)0,0| dx < OZM.

B(0,0)Ns2f, /6%

(4.15)

By Lemma 3.1,
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f | /glch_ /gk 5)00| dX— f €€ € < 09+1 d N (416)

J292k/1.
B(0,0) B(0,0k+1)

[pe — (e Pe)0,9k+1 |2
]ggzm

. - 2
][ |pe — (He/nge)0,9| dx = dx. (417)

B(0,0)N$25, /6% B(0,6k )N,
Egs. (4.15)-(4.17) imply Eq. (4.13) for k+ 1 case. O

Lemma 4.3. Under A1-A3, for any § > 0, there is €p > 0 (depending on §, d4, ds) such that the solutions
of (1.1) satisfy, for all € < €,

[PG]CO*/’“(B(O,%)D_QG) + 61_“|||Vpe |”C0'/‘(B(O,%)MQE) + 63_“|||Vpe ”|C0’/’“(B(O,%)ﬂ.(2§1)
(.]E +e€ _M|||Qe|||c0 (25) +e _M|||Qe|||c0 M(_Qm)) (4.18)
1—p 2—1
[Pe]co.u(g(oy%)m_q;) +e€ IV Pe |”C°v“(3(0,%)ﬁ9;) te€ |||Vpe|||cﬂ.u(3(o,%)n_(zgq)

c(Je+€ T Qellcong) + €' lldellconag))- (4.19)

Here d4 and ds are definedin A2, u=1— 3% J is defined in (4.14), and the constant c is independent of €.

Proof. We denote by ¢ a constant independent of €. Lemma 4.2 implies that the solutions of (1.1)
satisfy

][ |H6P€ - (H5P€)0,r|2dx<cr2“]£

B(0.r)
forr > €/ep. (4.20)

2
€2|pe — (MePe)oy| dx < cr® J?

B(0,r)Ny,

Case 1. To show (4.18), we define

Je=Je+ e IQellcon e + € lldellconag)-

Ke (x) = K (€x)

Peo=]c e " (Pete) = (TMePeoeser) (O 2 ) n2tje
Qe =] e Qe(en) e
Fe)=J'e* MF(ex)

ke (0) = ke (€x)

Pe(®) = J e M (pe(ex) — (ITePe)o 2e e ) " B(
Ge()= ] e 7P qe(ex)

fey =] fe(ex)

2 €
0, — )N, /€.
€0
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Then they satisfy

PSRN A A 2
—V-KcVPe +Q¢)=Fe in B<0, G—)HQ;/G,
0
A~ n ) 2 .
—€V - (€KeVDPe +Ge) = fe inB 0’6_ N $2,, /€,
3 (421)
(ReVPe+ Q) i =€(€ke Ve +de) -1 on B(O, 6—) NaK2s /e,
0
A 2 .
Pe = Pe onB(0,— ) Nas,/¢,
€0
where 1 is the unit vector normal to 9£2f,/€. Taking r = i—g in (4.20), we see
”PGX.Q;/E + EﬁGXan/e ”[_2(3(0,%)) + 11Qe ”COJ‘(B(O,%)OSZ;/E)
+ ||€E]e||co,u(3(o,%)mgﬁl/5) + ”FEXQ;/G + feX.an/e ”L3+5(B(0,%)) <.
By Lemma 3.4,
. PR
| Pe ”CLIL(B(O’%)QQ;/e) +€°Ipe ||CLIL(B(O7%)QQ;/€) <c (4.22)
Eq. (4.22) then implies
][ | Pe — (176136)0,r|2 dx <cr*J? forr < e€/eo. (4.23)

B(0,r)
Eq. (4.18) follows from (4.20), (4.22), (4.23), and Theorem 1.2 on p. 70 [10].

Case 2. To show (4.19), we follow the idea of Case 1. Define
Je=Je+e M Qellconag) + €' M aellconag,)
and define ﬁe, Pe, O, Fe. lA(E, De» e, fe exactly same as those in Case 1. Then they satisfy (4.21) and
”PGXQ;/G + eﬁGXQ,%/s ”LZ(B(O,%)) +11Qe ||C0.M(B(O,%)QQ;/E)
~ ~ -1
+ ||Qe||co,u(3(o,%)mgr;/6) + ”FGX.Q;/G +€ feX.an/s ||L3+a(3(0’%)) <c.

By Lemma 3.5,

||Pe||c1,u(3(o,%)m9;/e) +€llpe ”CLM(B(O’%)QQT;/G) <c. (4.24)
Eq. (4.24) implies (4.23) holds for Case 2. Eq. (4.19) follows from (4.20), (4.24), and [10]. O

Assume A1-A4 hold. Because of the periodicity assumption A4 and the periodic boundary condi-
tion, one can extend the equations in (1.1) to a larger domain §2 so that the original boundary 92 is
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in the interior region of the new domain £2. Then arguing as above, we see that Lemma 4.3 also holds
around the boundary 92. Then by Lemma 3.2 and the interior estimate of Lemma 4.3, we obtain the
estimates (2.1), (2.2). So we prove Theorem 2.1.

5. Uniform Lipschitz estimate

In this section we prove Theorem 2.2. By A4 and periodic boundary conditions, the solution of (1.1)
with [, ITe Pe dx = 0 satisfies, for i =1,2, 3,
~V- (KeVPI + KEVP (x+5¢é) + Q) =FI'  in@f,
—€V - (ke Vpl + ekl Vpe (x+5¢6) + 1) = I in 28,
(K VPl +KEVP (x+5¢€) + Q1) - €
=€(ekeVpe + €k Vpe(x + 5€€)) + q¢') - B on 3825, (5.1)
Pg = pl” on 9825,

fHEPZi dx=0,
2

with periodic boundary conditions on 9£2. See Section 2 for the definition of functions I(Zi, PI". i",
Fli, ki, pli, b, fYi. Lemma 3.2 and (2.2) of Theorem 2.1 imply

Lemma 5.1. Under A1-A4, the solution of (5.1) satisfies, fori =1, 2, 3,

Ti - Ti - Ti
|Pé ||c0~u(9;) +e' H||vPe |||c0-u(.<2;) +e*H|vpd |||C0<l’-(S2§1)
g C(” Qgiv ina I(Z'VPG HL3+3(Q;) + ”qZ'? :i’ ekzine HL3+3(Q§1)

+ 617M|||Q;“’ Kzivpf|”c0~u(9;) + |||el’“q1", 2 MKlIVp, |||c0<u(9,fn))’

where§ >0, u=1-— 33? and the constant c is independent of €.
Let I3, i=1,2, 3, denote one of the faces of the cube 5Y, that is,

I = {x=(x1,x2,x3) € 3(5Y): x; =0}.

1 1
Lemma5.2.If ¢; € W2~ 55378 (1), i € W= 35378 (1) satisfy, fori = 1,2, 3,

¢1(0,0,x3) — £2(0,0,x3) — ¢1(0, 5, x3) + £2(5,0,x3) =0,
$2(x1,0,5) +¢3(x1,0,0) — $2(x1,0,0) — ¢3(x1,5,0) =0,
£1(0, %2, 5) + ¢3(0, x2, 0) — £1(0, X2, 0) — §3(5, %2, 0) =0,
£3(0,0,0) +¢1(0,5,5) +£2(0,0,5) — ¢1(0,5,0) — ¢3(5,5,0) — £2(0,0,0) =0,
11(0,0,x3) — 9x,£2(0, 0, x3) — n1(0, 5, X3) + 9%, £2(5, 0, x3) =0,
0%, £2(0,0,5) + dx,¢3(0,0,0) — 3%, £2(0, 0, 0) — 9x,£3(0,5,0) =0,
11(0, X2, 5) + 0x,¢3(0, X2, 0) — 11(0, X2, 0) — 0x, £3(5,%2,0) =0, (5.3)
0x,¢3(0,0,0) +n1(0, 5, 5) + 9x,£2(0,0,5) — 11(0, 5,0)
— 0%, 43(5,5,0) — 9%, £2(0,0,0) =0,

(5.2)
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0x,¢1(0,0, x3) — 12(0, 0, x3) — 3x,¢1(0, 5,x3) +12(5,0,x3) =0,
n2(X1,0,5) + 0x,¢3(x1,0,0) — n2(x1,0,0) — 0x,¢3(%1,5,0) =0,
0x,¢1(0, 0, 5) + 9y, ¢3(0,0,0) — 9x,41(0, 0, 0) — 9x,¢3(5,0,0) =0, (5.4)
0x,¢3(0,0,0) + 3, £1(0, 5,5) +12(0, 0, 5) — 9x,41(0, 5, 0)
— 0x,¢3(5,5,0) —12(0,0,0) =0,

9x3£1(0,0,0) — 9x;£2(0,0,0) — 9x;¢1(0, 5, 0) + 0x;£2(5,0,0) =0,
9%3¢1(0,0,5) — 8x;£2(0, 0,5) — 9x;81(0, 5,5) + 9x;£2(5,0,5) =0,
0x382(x1,0,5) +13(x1, 0,0) — 9x;82(1,0,0) — 93(x1,5,0) =0,

55
Oy £1(0, X2, 5) + 13(0. X2, 0) — 3y 1(0. X2, 0) — 73(5., %2, 0) =, ()

13(0,0,0) 4 9x;¢1(0, 5, 5) + 8x;£2(0, 0, 5) — 3x;3£1(0, 5, 0)

—13(5,5,0) — 9x£2(0,0,0) =0,
where x; € [0, 5] and § > 0, then there is a continuous function ¥ defined on 5Y such that
X+58) — Y (x) =K
[1//( l)_. Y (x) =gi(x) on T (5.6)
0% ¥ (X + 5€i) — 0x ¥ (X) = ni (X)
3

1 llw2ssspy <€ QG o tsass )+ 101t ). (5.7)

i=1
where c is a constant.

Proof of Lemma 5.2 will be given in Section 6. One may note that if ¥ is a smooth function in 5Y,
then ¢, n; (for i = 1,2, 3) defined as (5.6) satisfy conditions (5.2)-(5.5). In a cube 5Y + j C £2/€ for
some j € Z3, we define, in (5Y + j) N 25/,

Kc() =Ke(€x), Pe(x)=Pc(ex), Qc(0)=€Qe(ex),  Fe(x) =€?Fe(ex),
and, in (5Y + j) N £25 /€,

ke) =Kke(€x), D) =pe(€x),  Ge(x)=€qe(€x),  fe(x) =€ f(ex).

By (1.1), if we let £;(x) = P\ (ex) for i = 1,2, 3, then

—V- (K VPe+ Qo) =Fe in (5Y + j) N 2§/e,

—€V - (€ke Ve +Ge) = fe in (5Y + j) N 2¢ /e,

(K VPe + Qc) - iy = (ke Ve +Gc) -1y on (5Y + j) NS /e, (55)
Pe=pe on (5Y + ) N 9825 /e,

Pe(x+5¢) — Pe(x) = 5€£i(x) onlj+jfori=1,2,3,

3iPe(x + 58)) — 3;Pe (x) = 5€9;(x) onlj+jfori=1,2,3.

Lemma 5.3. There exists a function U € W23%3(5Y + j) for j € Z3 satisfying

u 56:) — U ={;
{ €(X+ el) G(X) l(x) Onn+]f0r1:172731

dille (X + 5€;) — dilhe (x) = 3;£;(x)
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3

llUe ||W2v3+‘S (5Y+)) < C(Z lI€i ||L°°((7Y+j—{)ﬁf?;/€) +€||[Fe |||L3+8 (E(7Y+j—i)ﬂ.9;)
i=1

3
T.

+ ) llQe. 6KGIVPG|||W1<3+6(e(7y+]>i)m.o; )
i=1

Here £;(x) = PZ" (€x), 1= (1,1, 1) is a vector with all components 1, § > 0, and c is a constant independent

of €.

Proof. By (5.1); and regularity result [11],

4 1 + 119;¢; 1
[ '||W2*m-3+“(1}+j) 19 l|IW17m’3+5(Fi+]'))

3
i=1
< ce |||F€ |”L3+8(6(7Y+]‘—i’)ﬁ97)
& 1,
+ CZ(”ei||L°°((7Y+jff)ﬂ9;/e) +[]Qe. €K VPe |||w1-3+5(e(7y+j—i)m(z;))’
i=1

where c is a constant independent of €. If we define ¢;j(x) = ¢;(x+ j) and n; = 9;¢;(x+j) fori=1,2, 3,
then ¢; and n; satisfy (5.2)-(5.5) of Lemma 5.2. So we obtain v (x) by Lemma 5.2. This lemma follows
if we take U (x+ j) =v(x). O

If f’eX(syH)m;/e + PeX(5y4j)n0s /e = IBGX(SY-H')HQ;/G + DPe X(sy+j)nes /e — 5€Ue, then, by (5.8),

—V - (K VPe + 5K VU + Q) =Fe  in (5Y + j) N 2§/e,
—€V - (ke Ve + 5€* ke Ve +Ge) = fe in (5Y + j) N 25/,
(K VPe 4 56K Viie + Qe) - 1y,

= €(eke Ve +5€°ke VU +c) -y on (5Y + j) N5 /€, (5.9)
Pe = pe on (5Y + j) N 92, /€,
Pe(x+58) — Pe(x) =0 onl;+jfori=1,2,3,
3iPe(x+56;) — diPc(x) =0 onl;+jfori=1,2,3.

By Lemmas 3.6, 5.1, 5.3, periodic assumption A4, and [11], the solution of (5.9) with

/ Iv’edx=0

(BY+j)N5/e
exists uniquely and satisfies
| Pe ”W2v3+‘3((3Y+j+T)ﬁQ€/€) + sup €llpe ||W2¢3+5(ym+k)
! kez3 .
Ym+kCBY+j+1)N2, /€

< CE(”VUE lw1.3+s5y4j) +€llFe |||L3+5(5(5Y+j)m_(2;) + fe|||L3+6(e(5y+j)mQ;1)

+ Qe |||W1-3+5(e(5y+j)n97) + ISUZP3 llge |||W1-3+5(e(ym+k)))
KE
€(Ym+k)C$25,
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3
< Z(H Q:I7 FT‘ KT!VPE HL3+5(QJ§) + ”qéii Jiv eriVPe HL3+5(.Q,%)
i=1

+ WQG’GKG VP, 30 (e (7Y +j-1NKS) +e'” M‘”QTI KTIVPGH‘CM(QE

+ sup (g€l 1345 e vty + € gL, MR VPe | o ey i)
e(ymkka)c.Qg1

+€ ||| FG |”]_3+8(6(7y+]'_f)m9;) + |||.f€ |||L3+5(e(5y+j)ﬂ951)) ) (510)

where c is a constant independent of €.

Same reasoning as that at the end of Section 4, by the periodic boundary condition, we extend the
equations in (1.1) to a larger domain 2 so that the boundary 942 is inside the new domain Q. Then
by the interior estimate (5.10), we obtain the estimate (2.3) in the whole domain £2. So we prove
Theorem 2.2.

6. Proof of Lemma 5.2

Let D = [0,5] x [0, 5], I} = {0} x [0,5], I3 =[0,5] x {0}. & (i =1,2) is the unit vector in coordi-
nate direction x; in R2. By trace theorem in [19], approximation method, and a modification of the
reasoning in [6], we have the following result:

Lemma 6.1. If y is continuous on 9D, ¥ € w235 SH(FUT +58), and ¥ € Wl’ﬁ'”a(ﬁ- U T} +56;)
fori=1,2, and if Y and ¥; satisfy compatibility condition on 9D (that is, %wt + 2?21 XFUR 458, e isa
continuous vector function on 9D), then v can be extended to domain D such that 0x, V|55 155, = Wi and

2

Il 5o <c Y (Wl o2 I 171 I, §
2 3+63+5(D)\ i_]( 2- 355 3+5(17Uﬂ+5§i) 1W1 3*‘5'3+§(1‘iU1“i+5§i)

Here § > 0, tis the tangential unit vector on aD, and Xﬁuﬁﬁa is the characteristic function on F, U F, + 5¢;.

Definition 6.1. For given functions ¢ on d(5Y) and ¥; on I} U I} 4 5¢; for i =1,2,3, we say that
¥ and ¥; satisfy compatibility condition on 9(5Y) if V¢ + Zle Xﬂuﬂ+5;il1/,-éi is a continuous
vector function on d(5Y). Here V. is the tangential derivative vector (that is, V; ¥ = Z#i g—zéj on
T UT; +58; for i=1,2,3) and Xy qss is the characteristic function on I3 U I + 56;.

Now we prove Lemma 5.2. This includes four steps. The first three steps are to find ¢ defined
on 3(5Y) and ¥; defined on I'; U I} + 5¢; for i = 1,2, 3 such that they satisfy compatibility condition
on 9(5Y). The function ¥; can be regarded as dy,y fori=1,2,3.

Step 1. Find v, ¥, ¥, ¥3 on the vertices of 5Y. It is not difficult to see that if

81— 85— 8 +8 =0

83— 8 —81+8g7=0,

g5+ 89— g — 810=0, (6.1)
g1+8 — g —81=0

g9+ 82+8 —8a—812— 8 =0
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is satisfied, then the following system

-1 0 01 0 0 0 O
0 .11 0 0 0 0 O

0 00 0 -1 0 0 1 fi
0 000 0 -1 1 0 fa
-11 0 0 0 0O 0 O f3
0 0 00 -1 1 0 O fa
0 000 0 0 1 —1]]|7fs
0 01 -1 0 0 0 O fe
1 00 0 -1 0 0 O f7
0 1 0 0 0 -1 0 O fo
0 0 01 0 0 0 -1

0 01 0 0 0 -1 0

is solvable. In order to obtain (5.6)1, ¥ on the vertices of 5Y has to satisfy (6.2) with

(fi, f2, .-+, f8) = (¥(0,0,5),¥(0,5,5),¥(5,5,5), ¥(5,0,5),
¥(0,0,0),¥(0,5,0), ¥(5,5,0), ¥(5,0,0)),
(81,82, ---,812) = (61(0,0,5),£1(0,5,5), £1(0,0,0), ¢1(0, 5, 0),
2(0,0,5),£2(0,0,0), £2(5,0,0), £2(5, 0, 5),
£3(0,0,0),¢3(0,5,0),£3(5,0,0), £3(5, 5, 0)).

Condition (6.1) holds because of (5.2). Egs. (6.1)-(6.2) imply v on the vertices of 5Y is solvable.

81
82
&3
84
85
86
87
&8
89
g10
&1
812

(6.2)

As mentioned above, ¥ is regarded as dx, . Function ¥; on the vertices of 5Y has to satisfy (6.2)

with

(f1, fa.-.., f8) = (¥1(0,0,5), ¥1(0,5,5), ¥1(5,5,5), ¥1(5,0,5),

¥1(0,0,0), ¥1(0,5,0), ¥1(5,5,0), ¥1(5,0,0)),

(81,82, ---,812) = (1m(0,0,5),11(0,5,5),71(0,0,0), 71 (0,5, 0),

aX] ;2(07 Os 5)» aX] ;2 (Oa 07 0)7 8)(1 §2(59 Oa O)s 8}(1 ;2(57 09 5)7
3%, £3(0, 0, 0), 35, £3(0, 5, 0), 3, £3(5, 0, 0), 3, £3(5, 5, 0)).

The first four equations in (6.2) are from (5.6); for i = 1. The next four equations in (6.2) are the
horizontal difference of dx,v. For example, the difference between dx, ¥ (0,5,5) and dx, (0,0, 5) is
9x,£2(0, 0, 5), the difference between 9y, (0,5,0) and dx,¥ (0,0, 0) is 3, ¢2(0,0,0), and so on. The
last four equations in (6.2) are the vertical difference of dx, 1. For example, the difference between
dx, ¥ (0,0,5) and dx, ¥ (0,0, 0) is 9, ¢3(0,0,0), the difference between dx, ¥ (0, 5,5) and dx, ¥ (0, 5, 0)
is 9x,¢3(0,5,0), and so on. Condition (5.3) implies that condition (6.1) holds. Egs. (6.1)-(6.2) imply

function ¥; on the vertices of 5Y is solvable.

Again we regard ¥, as dy,¥. Function ¥, on the vertices of 5Y needs to satisfy (6.2) with

(f1,--, f8) = (¥2(0,0,5), ¥2(0,5,5), ¥5(5,5,5), ¥2(5. 0, 5),
¥2(0,0,0), ¥2(0,5,0), ¥5(5.5,0), ¥(5,0,0)),

(81, -+, 812) = (0x,£1(0,0,5), 05, ¢1(0, 5, 5), x,£1(0, 0, 0), 95, £1(0, 5, 0),

12(0,0,5),72(0,0,0),72(5,0,0),n2(5, 0, 5),

3x,£3(0,0,0), 0x,£3(0, 5, 0), 0x,3(5, 0, 0), 8x,¢3(5, 5, 0)).
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The first four equations in (6.2) are the horizontal difference of dx,v. For example, the difference
between 9y, ¥ (5,0,5) and 9y, (0,0,5) is 9x,¢1(0,0,5), the difference between dx,¥(5,0,0) and
dx,(0,0,0) is dx,£1(0,0,0), and so on. The middle four equations in (6.2) are from (5.6); for i = 2.
The last four equations in (6.2) are the vertical difference of dx,1. For example, the difference between
9%, ¥(0,0,5) and dx,1(0,0,0) is dx,£3(0, 0, 0), and so on. Condition (5.4) implies (6.1). Egs. (6.1)-(6.2)
imply ¥, on the vertices of 5Y is solvable.

Function ¥3 on the vertices of 5Y has to satisfy (6.2) with

(f1...., fo) = (¥3(0,0,5),¥3(0,5,5), ¥3(5,5,5), ¥3(5,0,5),
¥3(0,0,0), ¥3(0,5,0), ¥3(5,5,0), ¥3(5,0,0)),
(81, .-, 812) = (0x;£1(0,0,5), 05, ¢1(0, 5, 5), 9x;£1(0, 0, 0), 95, ¢1(0, 5, 0),
0x342(0,0,5), 0x;£2(0, 0, 0), 0x,£2(5, 0, 0), 0, £2(5, 0, 5),
13(0,0,0), 73(0,5,0), n3(5,0,0), n3(5,5,0)).
The first eight equations in (6.2) are the horizontal difference of 9y, v . The last four equations in (6.2)

are from (5.6); for i = 3. Condition (5.5) implies (6.1). Eqs. (6.1)-(6.2) imply ¥3 on the vertices of 5Y
is solvable.

Step 2. Find v, Y1, ¥, W3 on the edges of 5Y. We note the system

-11 0 O fi g1
0 0 -1 1 fl_|e
1.0 -1 0 3] & (63)
0 1 0 -1 fa 84

is solvable if g — g2 + g3 — g4 = 0. In a horizontal square D with vertices a = (5,0,x3),b =
(5,5,x3),c=1(0,0,x3), and d = (0,5, x3) for x3 € (0,5), we find v, ¥;, ¥, on the vertices a, b, c,d
of D by solving

-11 0 © Y@ Y@ ¥a(a) (@) x&@  m(a)
0 0 -1 1 Yb) ) dab) | _ [ 20 i) n2c) (6.4)
1.0 -1 0 v(c) i) (o) a1 m@©  da© |- '
0 1.0 -1 Y(d) ¥id) ¥(d) s m@d) x4

Eq. (6.4) is solvable because of (5.2)1, (5.3)1, (5.4);, and (6.3). The constant 4 x 4 matrix in
the left-hand side of (6.4) has rank 3. From Step 1, we see that y,¥;,¥; on the vertices
a,b,c,d of aD when x3 € {0, 5} also satisfy (5.2)1, (5.3)1, (5.4)1. So we can find smooth functions
¥, W1, ¥ defined on the four line segments {(5,0, x3), x3 € [0, 51}, {(5, 5, x3), x3 €[0,5]},{(0,0, x3),
x3 €[0,5]}, {(0,5, x3), x3 €[0,5]} such that (6.4) holds. Moreover, at the end points of the four line
segments, dx, ¥ (X1, X2, X3) = W3(x1, X2, x3) for x; € {0,5} fori=1,2,3.

In a vertical square D with vertices a = (x1,0,5), b = (x1,5,5), c=(x1,0,0), and d = (x1, 5, 0) for
x1 € (0,5), we find v, Y7, ¥3 on the vertices a, b, ¢,d of 3D by solving

11 0 0 Y@ Wa) ¥3(@) L@ Mm@ i@
0 0 -1 1 yb) Wb wsb) | _ [ 2@ m©) k) (6.5)
1.0 -1 0 v(c) (o) ¥3(0) 23(0) Ix,e3(c)  m3(0) '
0 1 0 -1/ \y@d v w3 ) I3 n3(d)

Eq. (6.5) is solvable by (5.2)2, (5.4)2, (5.5)3, and (6.3). The constant 4 x 4 matrix in (6.5) has rank 3.
From Step 1, we see that the values of ¢, ¥,, ¥3 on the vertices a, b, c,d of dD when x; € {0, 5} satisfy
(5.2)2, (5.4)2, (5.5)3. So we can find smooth functions v, ¥,, ¥3 defined on the four line segments
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{(x1,0,5), x1 €(0,5)}, {(x1,5,5), x1 €(0,5)}, {(x1,0,0), x1 € (0,5)}, {(x1,5,0), x1 € (0,5)} such that
(6.5) holds. Moreover, at the end points of the four line segments, dx, ¥ (x1, X2, X3) = ¥1(X1, X2, X3) for
xi€{0,5} fori=1,2,3.

In a vertical square D with vertices a = (0, x2,5), b =(5,%2,5), c= (0, x2,0), and d = (5, x2, 0) for
x2 € (0,5), we find v, W1, ¥3 on the vertices a, b, c,d of 3D by solving

-11 0 O Y@ Y@ ¥s(a) @  m@ 9@
0 0 -1 1 Y(b) wi(b) ¥3(b) | _ | &1 m(©)  dxli(0) (6.6)
1.0 -1 0 Y() (o) ¥3(0) £3(0) 9y g3(0) n3(0) '
0 1.0 -1 Y(d) ¥id) ¥s3(d) g3(d) 0y ¢3(d)  n3(d)

Eq. (6.6) is solvable by (5.2)3, (5.3)3, (5.5)4, and (6.3). The constant matrix in (6.6) has rank 3 and the
values of v, ¥, W3 at x, € {0, 5} satisfy (5.2)3, (5.3)3, (5.5)4 by Step 1. One can find smooth func-
tions v, ¥1, ¥3 on the four line segments {(0, x2,5), x € (0,5)}, {(5,%2,5), x2 € (0,5)}, {(0, x2,0),
x2 € (0,5)}, {(5,%2,0), x € (0,5)} such that (6.6) holds. Moreover, at the end points of the four line
segments, dx, ¥ (X1, X2, X3) = ¥a(x1, X2, x3) for x; € {0,5} fori=1,2,3.

Step 3. Find v, Y1, ¥, ¥3 on the surface of d(5Y). In the square I3 with vertices a = (0,0,0), b =
(0,5,0),c=(5,0,0), and d = (5, 5, 0), we see that, by Step 2, (1) ¥ is continuous on 973, (2) ¥1|z =
Y2 zzupa and ¥ on each line segment ab, cd, ac, bd are smooth, and (3) ¥, ¥, ¥, satisfy compatibility
conditions on boundary 973. By Lemma 6.1, one can extend ¢ to the square /3 (same notation for
the extended function) such that 9y, V|55 = Y1lgua % ¥ lausd = Y2lzuss and

w

1oty s gy S €D UG o stses o F It s ) (6.7)

345 I;
i (O8]

By Step 2, we also see that ¥5 is continuous on 83 and smooth on each line segment ab, cd, ac, bd.
By trace theorem [12] and approximation method, we can extend ¥3 to the whole square I3 (same
notation for the extended function) and

3
1%s]] Wik 3 )<CZ(|ICiII ae 1 iy +||771|| - )- (6.8)
I35 i=1

3+6 3+8 (I; 3+5 (ry

Let Iz + 5é3 be a square with vertices a; = (0,0, 5),b; = (0,5,5),c1 = (5,0,5),d; = (5,5,5) and
define ¥ (x + 5€3) = ¥ (x) + {3(x) for x € I's. By Step 2, we see that v, ¥, ¥, satisfy oy, wcﬁuCTil =
Wl'cﬁumT]- 3X21j/|mum = WZ'MUH' and compatibility conditions on the boundary 813 + 5és.
Define ¥3(x + 563) = W3 (x) + n3(x) for x € I's and obtain ¥3 on the square I + 5€3. We also see
W, ¥3 on I3+ 5¢3 satisfy (6.7) and (6.8). By a similar reasoning as above, we can construct functions
¥, W1, ¥ on the other faces of 5Y in such a way that functions v, ¥q, >, W3 have the following

properties:

1y e W s34 (MU 458), W e W 5534 (LU +58;) for i = 1, 2,3, and y is a continuous
function on 9(5Y).

2. ¥, ¥, W, ¥ satisfy compatibility condition on 9(5Y).

3. ¥, ¥, &, n; satisfy

{ YxHSe) =y =4 ok ori=1.2.3,

Wi (x + 5€;) — i(x) = ni(x)
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4. There is a constant c¢ such that

3
+ 1%
;(W”wz‘fﬂ'““mumsa) | '”Wl‘fﬂ’“‘s(ﬂumsa)
3
< i i . .
< c2(||;,||wz,31?,m(m Fl e a0s ) (6.9)
i=

Step 4. By [6] and (6.9), we can extend v to 5Y such that (1) dx ¥ |run4s5s = Wi for i=1,2,3 and
(2) Egs. (5.6)-(5.7) hold. So Lemma 5.2 holds.
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