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中文摘要 

 

在分析一連串影像時，影像切割是非

常重要的影像處理方法。分水嶺切割法在

數學形態學中是相當有效的影像切割法。

它觀念簡單、實作容易，但卻易造成過度

切割。對過度切割問題，很多學者提出各

種解決之道，其中以連結運算之含意最

廣，幾乎涵蓋所有解決過度切割問題的方

法。本計劃探討連結運算之定義、性質與

應用，並將之用於實際的影像切割上。我

們獲致相當滿意的實驗結果。 
 

關鍵詞：影像切割；分水嶺切割法；連結

運算 

 

Abstract 
 

Image segmentation is essential in 
sequential image analysis. In mathematical 
morphology, segmentation by watersheds is a 
well-known morphological segmentation. 
However, segmentation by watersheds will 
yield the so-called over-segmentation 
problem. Many operations have been 
proposed to solve the over-segmentation 
problem. Among them, the connected 
operators have become more and more 
popular. In this report, we investigate the 
theoretical background of connected 
operators and study their properties. When 
applying to motion segmentation, satisfactory 
results are obtained. 

 
Keywords: Image Segmentation, 

Segmentation by Watersheds, 
Connected Operators 

 

1. INTRODUCTION 
 

In mathematical morphology, watershed 
algorithm is a well-known approach to image 
segmentation. An image is segmented by 
applying the watershed algorithm to its 
gradient image. Due to the presence of noise, 
the gradient image may contain many small 
regional minima. Which will result in the 
problem of watershed oversegmentation. 

Flooding from markers is a very 
effective way to reduce oversegmentation. 
However, it needs experience to choose 
suitable markers. Connected operators have a 
great potential to extract markers 
automatically. They form a large class of 
operators including opening by 
reconstruction, area opening, etc. 

In this report, we will investigate the 
properties and possible applications of 
connected operators. Experimental results by 
employing connected operators are exhibited 
and discussed. Then, some conclusions are 
made and future works are suggested. 

 
2. Connected Operators 
 

Let E denote the 2D Euclidean space. A 
partition P on E is a collection of sets in E 
which are exhaustive and disjoint. For each 
element x in E, denote Px][  the set in P 
such that Pxx ][∈ , called the class of x in P. 
Then partition P′  is said to be finer than 
partition P if each class in P′  is a subset of 
some class in P, and P is said to be coarser 
than P′ . A partition is called connected if 
all classes in it are connected. 

Given a binary image A. Then A induces 
a unique partition, denoted AP , consisting of 
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the connected components of A and its 
complement. An operation Ψ  on binary 
images is called a connected operator [18] 
if the induced partition )( APΨ  is coarser than 

AP  for every binary image A. 
 
Example. (Area opening [20]) 
Let A be a binary image with connected 
components kCCC ,...,, 21 . For each 0≥r , 
the area opening rα  of A is the union of 
those iC  that has area greater than or equal 
to r. 
 
Example. (Reconstruction by markers [21]) 
Let A be a binary image. For any two points x 
and y, the geodesic distance between them in 
A, denoted ),( yxd A , is the length of the 
shortest path (if any) included in A linking x 
and y. Then, geodesic discs are of the form 
 
      }),(:{)(, λλ ≤∈= yxdEyxB AA  
 
Given a marker M, a subimage of A, we can 
find the union of all connected components 
of A that containing M by 
 

)(MRA  
∞<∈= ),(:{ yxdAx A  for some }My ∈  

= Υ
0,

, )(
≥∈ λ

λ
My

A yB  

 
The resulted image )(MRA  is called the 
reconstruction of A by M. 
 

The following is an interest property of 
connected operators. 
 
Proposition 1. [18] 
An operator Ψ  on binary images is a 
connected operator if and only if the 
symmetric difference of a binary image A and 

)( AΨ  consists of connected components of 
A and the complement of A. 
 

The notion of connected operators can 
be easily extended to grayscale images by 
using the concept of flat zones. Given a 
grayscale image f. We consider the level set 

of f at level t: 
 
        })(:{)( txfExfLt =∈=  
 
Then a flat zone [16] of f is a maximal 
connected component of a level set. Note that 
flat zones of f constitute a partition of E, 
which will be written as fP . Then an 
operation Ψ  on grayscale images is called a 
connected operator [16] if partition )( fPΨ  
is coarser than fP  for every grayscale image 
f. 

Area openings and reconstruction by 
markers can also be extended to grayscale 
images. We denote )( fX t  the set of all 

points x with txf ≥)(  and )( fX t

∧
 the set 

of all points x with txf ≤)(  . 
 
Example. (Area opening) 
Let f be a grayscale image. For each 0≥r , 
the area opening rα  of f is given by 
 
     ( )})(:sup{)( fXxtf trr αα ∈=  
 
Example. (Reconstruction of f by g) 
Let f and g be two grayscale images. If 

gf ≥ , the reconstruction of f by g is given 
by 
 
    ( )})(:sup{)( )( gXRxtgR tfXf t

∈=  
 

If gf ≤ , the dual reconstruction of f by g 
is given by 
 

    })(:sup{)(
)(







∈=

∧
∗

∧ gXRxtgR t
fX

f
t

 

 
Proposition 2. [7] 
An operator Ψ  on grayscale images is a 
connected operator if for any grayscale image 
f and for any two neighbors x and y, 
 

))(())(( yfxf Ψ≠Ψ  implies )()( yfxf ≠ . 
 

 
3. APPLICATIONS 
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Connected operators can be used to 
reduce the oversegmentation problem when 
images are segmented by watershed 
algorithm [1, 19, 20]. For instance, the area 
opening rα  can be used to eliminate those 
regions with areas less than r. The 
reconstruction of f by hf −  will remove 
any local maximum with relative height less 
than h, while the dual reconstruction of f by 

hf +  will remove any local minimum with 
relative depth less than h. 

In our experiment, we apply 
reconstruction operators to motion 
segmentation. Consider extracting a frame 
from the sequence Hall-Monitor using the 
method proposed by Chang [3] with two 
different threshold values. The followings are 
the extracted results after smoothing. 
 

  
Figure 1           Figure 2 

 
Figure 1 is the extracted image with smaller 
threshold value. Now, we let f to be the 
image in Figure 1 and g the image in Figure 2. 
Then the dual reconstruction of f by g will 
produce the image shown in Figure 3. 
 

         
             Figure 3 
 
Observe that the image in Figure 3 preserves 
more object information than that in Figure 2. 
 

 
4. CONCLUSIONS 
 

In this study we investigate the 
theoretical background and properties of 
connected operators. These operators do not 
process images by pixels, instead, they 

process images by zones. This property 
enables them to become a very powerful 
approach to reduce oversegmentation. 

The property listed in proposition 2 is 
very useful to derive the notion of levelings 
[7, 8]. They are the fundamental operations 
to build segmentation pyramids. We will 
work on this subject in the future. 
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