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Abstract

We present a hybrid rendering scheme that explores the lo-
cality of visibility at the cost of extra storage and prefetch-
ing, and makes a tradeoff between image quality and ren-
dering efficiency by using textured level-of-detail (LOD)
meshes. The space is first subdivided into cells. For each
cell, inside objects are rendered as normal while outside ob-
jects are rendered as textured LOD meshes using projec-
tive texture mapping. The textured LOD meshes are object-
based and derived from the original meshes based on the
captured depth images viewed at the centers of the cell and
its adjacent cells. With such a textured LOD mesh, prob-
lems commonly found in image-based rendering, such as
the hole problem due to occlusion among objects and the
gap problems due to resolution mismatch, can be avoided.
The size of holes due to self occlusion is constrained to be
within a user-specified tolerance. Several scenes with mil-
lions of polygons have been tested and higher than200 FPS
has been achieved with a little loss of image quality.

Keywords: Interactive walkthrough, hybrid rendering,
level-of-detail, textured LOD mesh, image-based rendering

1 Introduction

In order to achieve an immersive visual effect during the VR
navigation, rendering with photo-realistic scene images in
high frame rate has been an ultimate goal of real-time ren-
dering. In the traditional geometry-based rendering, very
complex scenes often consist of numerous polygons that
cannot be rendered at an acceptable frame rate even using a
state-of-the-art hardware. Many techniques have been pro-
posed in last decades on reducing the polygon count while
preserving the visual realism of the complex scenes, includ-
ing visibility culling, level-of-detail (LOD) modeling, and
image-based rendering (IBR). Although image-based ren-
dering is capable of rendering complex scenes with photo-
realistic images in the time that is independent of the scene
complexity, it has been suffered from the static lighting, the
limited viewing degree of freedom, and some losses of im-
age quality due to gaps and holes. As a consequence, hybrid
rendering that combines geometry- and image-based tech-
nique has become a viable alternative.

As a representation for an object or a region of the scene,
several image-based or hybrid representations have been

proposed. Shade et al. [22] described a paradigm in which
regions or objects could be represented by environment
map, planar sprite, sprite with depth, layered depth image
(LDI), and polygonal mesh, depending on their distances to
the viewer. Although the scheme integrates several exist-
ing representations, each individual form has its own prob-
lems. For example, sprites in general have gap problem due
to resolution mismatch, and have to be re-computed once
the viewer is outside the safe-region. LDI can only be drawn
using software rendering with splatting. Finally, transition
between different representations may produce noticeable
popping effects.

To reduce gap problems due to resolution mismatch and
to improve the efficiency of pixel-based rendering, depth
meshes are extracted from the sprite with depth based on
depth variation. However, rubber artifacts between disjoint
surfaces are often encountered, and re-projecting pixel co-
ordinates back to3D coordinates may result in precision
problems. The depth mesh approach can be incorporated by
space subdivision, in which, when navigating inside a cell,
distant objects are rendered using depth meshes with tex-
tures while near objects are rendered by selected LOD mod-
els. With such approaches, the polygon count of a complex
scene can be still high and, most importantly, the transition
between LOD and depth mesh with texture will generally
results in visually noticeable popping effects.

Another more uniform representation is level-of-detail
modeling, which can be incorporated with texture map-
ping for recovering surface details. View-independent LOD
modeling has no control over silhouette during navigation.
View-dependent LOD modeling, however, has to deal with
silhouette problems at run-time by maintaining a mesh of
fine resolution along silhouettes. Silhouette clipping that in-
corporates LOD modeling and normal/texture map needs to
extract fine silhouettes at run-time, which is in general time
consuming.

2 Related work

There have been extensive research in the field of real-time
rendering, ranging from geometry-based rendering, image-
based rendering, and hybrid rendering. Although culling,
including back-face culling, view-frustum culling, and oc-
cluding culling, is a classical technique to clip out invisi-
ble polygons, many new approaches have been proposed.
In [13], a sub-linear algorithm has been proposed for hi-
erarchical back-facing culling. Zhang et al. improved this
by introducingnormal maskwhich reduces the per polygon
back-face test to only one logical AND operation [25].

LOD modeling has been very useful in further reduc-
ing the number of polygon that are visible and inside the
view frustum. Distant objects get projected to small areas
on the screen and hence can be represented with coarse
meshes. On the other hand, nearby objects share larger
screen areas and should be modeled by meshes of higher
resolution. Many LOD techniques have been proposed;
for example,vertex clustering[16] vertex decimation[19],
edge collapsing, progressive mesh[11] andview dependent
LOD [12][24]. View-independent LOD can be incorporated
with texture map to recover surface details as proposed in
[4]; however, the silhouette cannot be recovered since it is
view dependent. View-dependent LOD preserves silhou-
ettes; but at the cost of fine mesh resolution along the sil-
houettes as well as complicated texture mapping. Silhou-
ette clipping took different approach that clips an enlarged
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coarse mesh by the exact exterior silhouettes derived at run-
time [17].

Geometry-based rendering based on visibility culling and
LOD modeling alone usually still cannot meet interactive
requirement for very complex scenes. IBR has been a
well-known alternative. IBR takes parallax into account,
and renders a scene by interpolating neighboring reference
views [3][15]. IBR has efficiency that is independent of the
scene complexity, and can model natural scenes using pho-
tographs. It is, however, often constrained by the limited
viewing degree of freedom, and may result in problems like
folding, gap, and hole. LDI [22] is a good try to eliminate
hole problems due to the visibility changes. LDI structure is
more compact in the sense that redundant information has
been reduced when several neighboring reference images
are composed into a single LDI. However, a splatting is nec-
essary for overcoming the gap problem. Lumigraph [10]
and light field rendering [14] have been proposed to reduce
the7D plenoptic functionto a4D function for static scenes.
However, both require storage for the extremely large num-
ber of images.

Hierarchical image caching proposed in [18][21] is the
first approach that combines geometry-based rendering and
IBR, aiming to achieve an interactive frame rate for complex
static scenes. The cached texture possesses no depth and, in
turns, limits its life cycle. The image simplification schemes
proposed in [5][23] represent background or distant scene
using depth meshes derived from the captured depth images.
Such depth meshes are rendered by re-projection and texture
mapping. In such approaches, folding problems and gaps
resulting from the resolution changes can be eliminated;
however, the hole problems due to occlusion among ob-
jects and self-occluding still remain. Moreover, disjointed
surfaces might be rendered as connected, and depth meshes
derived from the depth images are in pixel resolution, which
might lead to geometric inaccuracy when re-projected into
3D space. In [7], Decoret et al. proposed multi-layered im-
postors to constrain visibility artifacts between objects to a
given size, and a dynamic update scheme to improve the
gap due to resolution mismatch. However, it still encoun-
tered hole problems due to self occlusion, and for an ef-
ficient dynamic update, a special hardware architecture is
needed. In [1], an interactive massive model rendering sys-
tem using geometric and image-based acceleration is pro-
posed, in which distant objects are represented by textured
depth meshes and near objects by LOD models.

3 Proposed hybrid rendering scheme

The proposed hybrid scheme consists of a preprocessing
phase and a run-time phase. In the preprocessing phase,
thex-y plane of the given3D scene is first partitioned into
equal-sized hexagonal cells. Then for each cell, we derive
object-based textured LOD meshes, called SVMesh (single-
view LOD mesh) or MVMesh (multi-view LOD mesh),
for each object outside the cell. Note that with object-
based LOD meshes, the holes due to occlusion among ob-
jects can be avoided. Furthermore, substituting original
meshes with textured SVMeshes or MVMeshes allows us
to make a tradeoff between image quality and rendering ef-
ficiency. The SVMesh is a LOD mesh associated with the
object whose potential self-occluding error is within a user-
specified tolerance. Such a constraint ensures that the po-
tential holes found in the image of an SVMesh viewed from
any point inside the cell will have size less than the user-
specified tolerance. The MVMesh will be associated with

objects who fail to pass the self-occluding-error test. Be-
fore deriving SVMesh, those objects legitimate to SVMesh
are tested for a possible clustering operation. Such an oper-
ation clusters those objects whose union is still legitimate
to SVMesh and possesses a reduced texture size. After
SVMesh or MVMesh is derived for each object outside the
cell, an optional cell-based occlusion culling can be per-
formed to further reduce the polygon count.

Both the SVMesh and MVMesh are derived from object’s
original meshes, with emphasis on preserving interior and
exterior silhouettes. SVMesh is derived from polygons in
original mesh that are front-facing to the cell’s center while
MVMesh comes from polygons that are front-facing to the
whole cell.

At run-time phase, window culling and view-frustum
culling are performed for the whole scene, followed by a
back-facing culling for all objects inside the current navi-
gation cell and a run-time occlusion culling for all meshes.
SVMeshes and MVMeshes with associated textures are then
texture mapped by hardware-accelerated projective texture
mapping and meshes inside the cell are rendered as normal.
To reduce the overhead of loading data from secondary stor-
age when navigating across the cell boundary, a prefetching
mechanism is applied to amortize the loading to previous
frames.

3.1 Preprocessing phase

The steps of the preprocessing phase are shown in Fig. 1.
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Figure 1: Preprocessing.

Hexagonal spatial subdivision
In order to utilize the spatial locality of visibility, we sub-
divide thex-y plane of the scene intoN × M hexagonal
cells. With the spatial subdivision, the viewpoint can be lo-
calized to cells, and, therefore, cell-based visibility culling,
back-facing and occlusion culling can be performed in the
preprocessing phase.

Self-occluding-error test
Since the SVMesh of an object represents only those poly-
gons that are front-facing to the cell’s center, the images
derived from SVMesh for views other than the cell’s cen-
ter may have holes due to the self-occlusion. The self-
occluding error of an objectO, can be approximated by
a values, derived based on those polygons that are front-
facing w.r.t. the cell. The self-occluding-error test is to
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check if s is smaller than a predefined toleranceTs speci-
fied in image resolution. If it is, the object is represented by
an SVMesh; otherwise by an MVMesh.

SVMesh derivation
SVMesh intends to provide a textured LOD model for the

portions of an object that is front-facing to the cell’s cen-
ter. The SVMesh is derived by simplifying the object using
edge collapsing. The vertices are associated with weights
derived from the depth variation found on the object’s depth
image captured at the cell’s center. The cost of collapsing
an edge is defined as a function of vertex’s weights as well
as the local geometry. The weight assignment is designed
to distinguish important geometric features such as exterior
silhouettes, interior silhouettes, and sharp edges such that
those features can be preserved according to their impor-
tance during the simplification.

Fig. 2(a) presents the flowchart for the derivation of
SVMesh. Fig. 3 depicts the SVMeshes of a bunny model.
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Figure 2: The derivations of SVMesh (a) and MVMesh (b).

Edge collapsing
To perform edge collapsing [11], the cost of collapsing an
edge(vi, vj) is defined as

cost(vi, vj) = (1.5− ni·nj)2l(wi + wj),

whereni andnj are normals ofvi andvj , respectively,l is
the edge’s projected length with respect to the cell’s center,
andwi andwj are the weights ofvi andvj , respectively.

MVMesh derivation
The derivation of the MVMesh is an extension of that for
SVMesh; as shown in Fig. 2(b) [2]. For MVMesh, we con-
sider those polygons that are front-facing with respect to the
cell, rather than cell’s center. Furthermore, the derivation of
the vertex’s weight takes into account the captured depth im-
ages viewed at the centers of the cell and its adjacent cells.
For each vertex, a weight is obtained from each depth image
as we do for the SVMesh and the vertex is assigned with the
maximum of all those weights.

For the cost function of an edge, we should replacel, the
projected length of an edge with respect to the cell’s center,

by l′, which is the projected length of the edge with respect
to the cell. When the object is far from the cell, we have
l ≈ l′. The edge’s projected length for a near object, how-
ever, varies when we navigate in the cell. Fig. 4 depicts the
MVMeshes of the bunny model.

Regional conservative back-face culling
We claim that if a polygon is back-facing to all six vertices
of the cell, the polygon is back-facing with respect to any
point inside the cell. That is, a polygonP is back-facing
with respect to the cellC if

dot product(P.normal, vector(Ci, P.center)) < 0, for i = 0, . . . , 5,

whereCi’s are the corners ofC.

Object clustering
In order to reduce the texture size associated with LOD
meshes and to reduce polygon count, objects that pass the
self-occluding-error test and are close to each other can be
clustered together, provided that certain conditions are satis-
fied. The clustering operation amounts to the coloring prob-
lem, and itself is an NP-complete problem. We propose a
greedy approach that proceeds as follows. Firstly, objects
that pass self-occluding-error test are sorted according to the
size of their projected areas. Initially no cluster is formed.
Secondly, for each objectM removed from the sorted list,
M itself forms a new cluster if there is no cluster or no clus-
ter found to be cluster-able withM . Otherwise,M is re-
peatedly clustered with all the clusters thatM is cluster-able
with, in the order of decreasing overlapping size. As shown
in Fig. 5(a),M is cluster-able withC1, C2 andC3 in the or-
der of decreasing overlapping size.M is clustered withC1

first. The resultM ∪ C1 is, however, is no longer cluster-
able withC2; but still cluster-able withC3; see Fig. 5(b).
Finally, M is clustered withC1 andC3; see Fig. 5(c).
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Figure 5: Repeat clustering.

The clustering is performed after the self-occluding-error
test is applied for all objects, and before the derivation of
SVMesh. The objects in the same cluster are considered
as a single object that possesses an SVMesh. The SVMesh
derivation can be slightly modified to construct an SVMesh
for the clustered objects. In consequence, surfaces that are
occluded by others in the cluster will be culled out in the
simplification process. Such an SVMesh derivation for clus-
tered objects implicitly performs occlusion culling among
objects.

Regional conservative occlusion culling
Since SVMesh or MVMesh is object based and our scheme
does space subdivision for utilizing view locality, it will
be advantageous to do the regional conservative occlusion
culling in the preprocessing phase. Such operations will
enhance the rendering efficiency, especially for densely oc-
cluded scenes. Methods proposed recently can be used. For
example, the extended projection [8] can be easily modified
to fit into our system. This extended projection can also
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(a) (b) (c) (d)

Figure 3: (a) is the original mesh (65, 491 polygons) of a bunny viewed at one cell away (cell size50), and (b-d) are
SVMeshes for the bunny at7 (259 polygons),8 (254), and9 (239) cells away. The upper-right bunnies are the projected
images.

(a) (b) (c) (d) (e)

Figure 4: (a) is the original mesh (65, 491 polygons) of a bunny viewed at one cell away (cell size50), (b-g) are MVMeshes
of the bunny at 1 (1, 605 polygons), 2 (945), 4 (392), 6 (306) cells away. The upper-right indicates actual projected images.

handle the case of multiple occluders by using occluder fu-
sion. The selection of occluders is based on the meshes’
projected sizes. Only those meshes whose projected sizes
are larger than a user-specified threshold are selected to be
occluders.

3.2 Run-time phase

At the run-time phase, within the current navigation cell we
first set up a lower priority thread for prefetching the geom-
etry and image data belonging to neighboring cells, and then
do the steps shown in the Fig. 6 when navigating inside the
cell.
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Figure 6: Run-time phase.

A view with an FOV sees through a fixed number of
windows, which are faces of the navigating cell. Window
culling can be considered as an effective pre-calculation of
the view-frustum culling. As optional operations, the run-
time back-face culling and occlusion culling can be applied
to further reduce the polygon count. Back-facing culling is
performed only for objects inside the navigation cell, while
occlusion culling is applied to all meshes in the scene.

SVMeshes are simply rendered by projective texture
mapping [20] while the rendering of MVMeshes involves
texture blending as part of view-dependent projective tex-
ture mapping [6].

One of the major problems arises in our cell-based nav-
igation is how to achieve smooth cell transition. When the
view point moves across from one cell to its neighbors, the
geometry and textures will be switched. The prefetching
is a mechanism to preload the geometry and texture data
of neighboring cells when CPU load is relative low during
navigating inside the cell. It will amortize the loading time
to several inside-cell frames and hence reduce the FPS gap
between inside-cell frames and a cross-boundary frame.

4 Experiments

Setup
The test platform is a PC with an AMD AthlonXP 1800+
CPU,512MB main memory, and annVIDIA GeForce4 Ti
4400 with128MB DDR RAM graphics accelerator. The OS
is Windows XP Pro. The output image is in a resolution of
1024 × 1024 × 32. S3’s S3TC DXT3 is used to compress
textures (in a ratio of1/4).

Scene statistics
The three scenes tested are statuary parks consisting of eight
kinds of object that are randomly distributed in the same
area of1650× 2035. The three scenes are called2M-scene,
4M-scene, and8M-scene, and have2017700, 4188885 and
8004863 polygons, respectively. The scenes are generated
such that2M-scene is a subset of the4M-scene, which in
turn is a subset of8M-scene. Table 1 lists data statistics
for the objects that compose the scenes, including polygon
number, dimension, and distribution of polygon numbers for
the scenes.

Settings
Performance on frame rate and image quality may vary for
different settings of parameters. We setTs = 3, 5, or 7 pix-
els for self-occluding-error tolerance,Tl = 3.0, 4.5, or 6.0
for edge’s project length tolerance, and50 or 100 for cell
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Table 1: Object and scene statistics.
Object name Polygon no. Dimension (w×d×h) 2M 4M 8M
dragon 202, 520 57.3× 25.6× 40.4 4 10 18
bunny 69, 451 43.6× 33.8× 43.2 7 12 26
statue 35, 280 11.8× 13.4× 23.4 13 21 40
cattle 12, 398 40.0× 40.8× 30.7 9 19 42
horse 7, 257 38.3× 57.2× 82.6 13 29 51
easter 4, 976 12.4× 10.7× 30.8 6 14 22
camel 3, 969 49.4× 16.8× 46.6 4 14 26
venus 1, 396 10.2× 8.4× 21.9 8 13 28

Total object number 64 132 253

size. The parametersTC0 andTC1 for pixel categorizing
are fixed in this experiment as3.4× 10−4 and1.28× 10−4,
respectively. For simplicity, we denote thekM-scene with
cell sizec, parametersTs andTl askM-c-Ts-Tl; for exam-
ple, the4M-scene with cell size50, Ts = 5, andTl = 4.5 is
denoted as4M-50-5-4.5.

All experimental results are collected by following the
same navigation path with a maximum speed of30/s., a
maximum rotation of45o/s., and an FOV of60o.

Image quality measurement
To identify how much is the quality-loss, we use the peak

signal-to-noise ratio PSNR(dB) defined as

PSNR = 10 log10

2552

1
HW

∑W−1
x=0

∑H−1
y=0

[
f̂(x, y)− f(x, y)

]2 ,

wheref(x, y) andf̂(x, y) are the pixel colors of the original
image and approximated image at position(x, y), respec-
tively, W andH are the dimensions of the image. Before
applying PSNR, the RGB color is mapped to a single lumi-
nance valueY since human eyes are more sensitive to the
changes in luminance. Such a mapping [9] is

Y = 0.299 ∗R + 0.587 ∗G + 0.114 ∗B.

4.1 Mesh simplification

Self-occluding-error tolerance
The value of self-occluding-error toleranceTs determines
the distribution of SVMesh and MVMesh. Our experimen-
tal results show that largerTs implies higher percentage of
SVMesh, more objects are clustered, higher simplification
rate, less texture size, and finally higher frame rate (271.5,
279.0, and281.9 frames/s. forTs = 3, 5, and7 respectively
for the4M scene).

Projected edge-length tolerance
Through projected edge-length toleranceTl, the edge col-
lapsing can be tested for termination. Fig. 7 shows the
MVMeshes of bunny derived by settingTl = 3.0, 4.5, 6.0.
LargerTl implies higher simplification rate, larger texture
size, and finally higher frame rate (265.4, 278.0, and289.2
frames/s. forTl = 3.0, 4.5, and6.0 respectively for the4M
scene).

Cell size consideration
Setting an optimal cell size is in general difficult. The results
show that larger cell size in general results in smaller sim-
plification ratio and, in turns, lower frame rate (278.0 and
255.5 frames/s. for cell size50 and100 respectively) since
the number of polygons inside a cell may increase dramati-
cally.

(a) Tl = 3.0 (2, 353
polygons)

(b) Tl = 4.5 (1, 605) (c) Tl = 6.0 (1, 227)

Figure 7: MVMeshes of bunny for differentTl.

4.2 Run-time performance

The three rendering configurations used to test the perfor-
mance comparison are:

• A: (Pure geometry) render the original scene geome-
try using the traditional graphics pipeline.

• B: (Pure geometry with view frustum culling) same
asA, but with software view frustum culling.

• C: (Proposed hybrid scheme)render the scene using
proposed hybrid scheme, without regional occlusion
culling, run-time back-face culling, and run-time oc-
clusion culling.

The parameter setting for the following performance tests
is Ts = 5, Tl = 4.5, and cell size50.

Table 2 lists the run-time performance of three configura-
tions on the scene8M-50-5-4.5. Without regional occlusion
culling, back-face culling, and run-time occlusion culling,
configurationC achieves274.8 gain factor over configura-
tion A, and76.9 gain factor over configurationB, with little
quality-loss at PSNR37.34dB.

Table 2: Performance of the three configurations on a8M-
scene.

A B C
Avg. polygon count 8, 004, 863 2, 443, 969 23, 580
Avg. frame time (ms) 1, 247 349.1 4.54
Avg. frame rate (FPS) 0.802 2.864 220.4
Speedup 1.0 3.57 274.8

Fig. 8 represents the images rendered at views that are far
from the cell center by configurationB andC. In Figs. 8(c)
and 8(f), the MVMeshes are flat shaded with gray wire-
frames, SVMeshes from single objects are in purple, and
SVMeshes from clustered objects in other colors.

Table 3 depicts the performance of configurationC for
different scene complexities2M-50-5-4.5, 4M-50-5-4.5,
and8M-50-5-4.5. It reveals that as the scene complexity
goes up from2M, 4M, to 8M, the FPS goes down from353,
278, to 220. This is due to the fact that all objects outside
a navigation cell are in the form of SVMesh or MVMesh,
which have much less varied polygon counts.

In Fig. 9, FPS plots are shown for different prefetching
schemes. From the plot for prefetching under a cold cache,
we can see that the frame rate changes rapidly after a cell
transition (illustrated by yellow vertical line) and becomes
more stable frame rate after a while. The frame rate for the
prefetching under a warm cache is quite stable except some
sudden decreases appear. The suddenly decreased FPS in
the plots indicates the presence of objects inside the naviga-
tion cell. Note that most frames have PSNR above37dB.
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(a) ConfigurationB: 5, 207, 350 polygons in
view frustum.

(b) ConfigurationC: 35, 216 polygons, PSNR
35.33dB, 178.8 FPS.

(c) ConfigurationC: flat shaded with wire-
frames.

(d) ConfigurationB: 4, 693, 355 polygons in
view frustum.

(e) ConfigurationC: 29, 641 polygons, PSNR
36.39dB, and199.3 FPS.

(f) Configuration C: flat shaded with wire-
frames.

Figure 8: Rendered images by configurationB andC.

Table 3: Performance of configurationC under different scene complexities.
Scene complexity 2M 4M 8M

Statistics for polygon counts
Avg. polygon no. inside a viewcell 4, 145 9, 308 18, 302
Avg. polygon no. for SVMesh & MVMesh 18, 829 39, 981 75, 891
Avg. polygon no. for a viewcell 22, 974 49, 290 94, 193
Simplified : original 1 : 87.8 1 : 85.0 1 : 85.0

Performance statistics
Avg. FPS 353.3 278.0 220.4
Avg. PSNR (dB) 44.92 39.54 37.34
Avg. texture size (KB) inside view frustum 112.4 544.1 992.4
Avg. polygon count inside view frustum 4,548 (3,991) 13,102 (11,418) 23,580 (21,735)
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Figure 9: The frame rates with prefetching under a cold cache and a warm cache, and without prefetching of configuration
C on scene8M-50-5-4.5.

5 Concluding remarks

We have presented a hybrid rendering scheme for real-time
display of complex scenes. The scheme partitions the model
space into cells, thus explores the locality of visibility based
on which the objects outside a cell are rendered as textured
LOD meshes and inside objects are rendered as normal.

Such a hybrid representation allows us to avoid problems
that are commonly found in image-based rendering; such as
the gap problem due to resolution mismatch and the hole
problem due to occlusion among objects. The represen-
tation also constrains the hole due to self-occlusion to be
within a user-specified tolerance. A prefetching mechanism
has also been proposed to predict data of which neighbor-
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ing cells will be needed shortly and how the loading can
be amortized to frames before crossing the cell boundary.
In the proposed scheme, acceleration techniques such as re-
gional occlusion culling, back-facing culling, and run-time
occlusion culling can be easily integrated. We have demon-
strated our system on several scenes consisting of millions
of polygons and observed very encouraging results. For a
scene of8 millions of polygons, we have achieved higher
than 200 frames per second with a little loss of image qual-
ity (average PSNR37.34dB). The polygons and textures
require about1260MB secondary storage space and about
294MB main memory on average.

Our results has been published on the Journal ofComput-
ers & Graphics27(2):189–204, 2003.
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