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二、關鍵詞 
本文關鍵詞—安全閘道器，頻寬管理，防火牆，網路位置轉換，

虛擬私人網路，入侵偵測系統，評比，開放程式碼 
Keywords—security gateway, bandwidth management, 

firewall, NAT, VPN, IDS, benchmark, open source 
三、中英文摘要 
 網路安全和頻寬管理對企業來說是重要的議題。這個計

畫中展示如何整合開放程式碼，以建造安全閘道器。我們修改

核心程式以確保各套件能順利合作。白箱測試顯示FreeS/WAN
的 3DES 加密是封包處理過程中最吃重工作。而 TIS 則是

requrest/response 處理中最吃重的工作。除了安全功能外，這計

畫藉由實現數種TCP-aware的頻寬控制方法，來評估頻寬控制

方法的優劣。常見的 TCR 方法並不適用於封包容易遺失的

WAN以及數種作業系統。我們提出的PostACK除能保留TCR
的優點並減少buffer 的需求達96%,相對於TCR 在封包容易遺

失的WAN，可增加goodput達10%。 
Network security and bandwidth management have become 

a critical issue for enterprises. In this work, we first 
demonstrate how to build a security gateway capable of 
firewall, virtual private network (VPN), and intrusion detection 
system (IDS) functions by integrating open source packages. 
We patch the kernel to ensure interoperability of these 
packages. Our detailed internal benchmarking reveals that the 
3DES encryption in FreeS/WAN tops the ranking of packet 
processing within kernel for 1518-byte packets, and TIS tops 
the ranking of request/response processing at the daemon level.   

Besides security functions, this work evaluates possible 
TCP-aware bandwidth control through self-developed 
implementations in Linux, testbed emulation, and live WAN 
measurement. The widely deployed TCP rate control (TCR) is 
found to be more vulnerable to WAN packet losses and less 
compatible to several TCP sending operating systems. The 
proposed PostACK approach can preserve TCR’s advantages 
while avoiding TCR’s drawbacks. PostACK minimizes buffer 
requirement up to 96% and has 10% goodput improvement 
against TCR under lossy WAN. 
四、計畫目的 

The open source packages we select include Linux 
kernel [1], ipchains[2], Squid[3], Trust Information 
System (TIS)[4], FreeS/WAN[5], and Snort[6]. 
Although each package works well individually, they 
may not cooperate well to provide specific services. 
Thus, we trace the packet flows in a gateway to find 
out the problems, and eliminate those problems by 
patching kernel and proper setting. Besides security, 
we proposed and implemented the bandwidth control 
approach, PostACK, and compared it with the TCR. In 
addition, three essential packet flows will be discussed 

in this work. After integrating these packages, we 
perform a series of internal, i.e. white box, benchmarks. 
The questions we want to answer include: Who top the 
processing time of all kernel-space modules and 
user-space daemon processes, respectively? How much 
disk and memory does each package consume? How 
scalable are network address translation (NAT), 
ipchains, Squid, and TIS? What is the influence of 
increasing the key length in cryptographic algorithms? 
Does Snort really examine each packet for suspicious 
activities? Where are the bottlenecks of these modules? 

五、研究方法及結果 
I. Selected Packages 

Table 1 lists the chosen open source packages for 
integration. These packages are selected because of 
their functional completeness and great reputation. 
Note that a Linux system consists of kernel space and 
user space. Kernel space is responsible for abstracting 
and managing a machine’s resources, including process, 
memory, file system, device and networking. User 
space programs use the kernel-supported system calls. 
Programs that run permanently as background 
processes are called daemons. 

TABLE 1 
PACKAGE INFORMATION. 

Package 
Name User-space Program Kernel-space 

Program 
Package 

Size Version

ipchains  Management tool Kernel build-in 
packet filtering 
firewall and IP 
masquerade 
(MASQ) 

63KB 1.3.9 

Squid Daemon (Cache 
server, transparent 
proxy, and URL 
filter) 

No 1104KB 2.3 

TIS Daemon (Application 
proxies, and  web 
content filter) 

No 476KB 2.1 

FreeS/WAN Pluto Daemon 
(Internet key 
exchange, IKE) 

KLIPS kernel 
patch (Encryption 
and 
authentication) 

1252KB 1.5 

Snort Daemon (Intrusion 
detection) 

No 644KB 1.7 

II. PostACK Bandwidth Control 
Each flow should obtain a bandwidth share of BWi= 
BWc/n. Recall that in Fig. 1 the RTT consists of Dwi, 
the queuing delays at PCDQc and PFAQi, and the 
neligible round-trip LAN delay. Generally the delay at 
PFAQi approaches zero while the forward-data-packet 
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queuing delay for TCP is large. Imagine that a 
Per-Flow Queuing (PFQ) is placed within the class c to 
enforce that each BWi = BWc/n. Thus, the number of 
data packets of flow i queued before the packet 
scheduler in Fig.1, PCDQi

qlen, is min(Wci,Wri)- (BDPi/ 
MSSi), namely all unacknowledged packets excluding 
the packets in the WAN pipe. To achieve BWi, each 
queued data packet should wait for a period of 
(PCDQi

qlen*MSSi)/BWi. Imagine that the packet 
scheduler in the forward direction were absent. By 
delaying each ACK for the same interval ((PCDQi

qlen 

*MSSi )/BWi), the bandwidth of flow I will also 
approach its target bandwidth BWi. The effects of 
delaying the data packets in the forward direction by 
the packet scheduler is identical to delaying the ACKs 
in the reverse direction since a TCP sender only 
measures RTT, which consists of bidirectional delays. 
Gradually increasing the delay of ACKs would not 
cause Retransmission TimeOuts (RTO) because a TCP 
sender can adapt the RTO to the newly measured RTTs. 
In summary, the target bandwidth, BWi, which keeps 

only BDPi/MSSi packets in the WAN pipe, can be 
achieved through queuing excessive packets. Either 
queuing the data packets or the ACKs have the same 
effects on rate shaping. 

 
Fig. 1: Efficient PostACK Implementation For Managing 
Outgoing TCP traffic. 
III. Integration 

This section discusses three special access types 
that require extra integration works. Table 2 lists the 
three access types and their demands of protection. 
Connections of type 1 access are established from 
masqueraded private hosts to public Internet servers 
(except web servers); 
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Fig. 2. Packet Flows of Three Access Types. 
 

connections of type 2 are tunneled between 
masqueraded private subnets and do not need 
URL/content filtering since both sides are trusted 
regions; connections of type 3 access issue HTTP 
requests from masqueraded private hosts to web 
servers to retrieve web pages back to masqueraded 
private hosts. These accesses should be protected by 
various firewall actions shown in Table 2. Fig. 2 
illustrates the packet flows of the three access types. 
The upper part is a global view of them, and the lower 

part details the processing within the two security 
gateways.  

 
TABLE 2: Access Types 

No. Access Types Demands of Protection 
1 Normal Internet services NAT, and packet filtering 
2 Trusted branch offices 

communication 
VPN, and packet filtering 

3 Web services NAT, packet / URL / content 
filtering 
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IV. EXPERIMENTAL RESULTS 
We have implemented PostACK and TCR into 

Linux kernel 2.2.17, together with a practical 
emulation testbed. The per-flow queuing is achieved 
by assigning a token bucket policer to each TCP flows. 
We hereby describe the experimental results. The 
section investigates the effectiveness of ACK control 
modules in resolving the unfairness among TCP flows 
with heterogeneous WAN delays. Test configurations 
are described in Fig.3. Figure 3(a) demonstrates the 
classical problem: throughput of a TCP flow is 
inversely proportional to its RTT. However, when the 
three flows share a 200KB/s class in a FIFO PCDQ 
(Fig. 3(b)), the unfairness among the 10ms/ 50ms/ 100 
ms flows is alleviated. This is because the RTT 
measured by flow i (RTTi) equals to Dwi+ SUM 
(PCDQi

delay). The shared PCDQ’s queuing delay, SUM 
(PCDQi

delay), dominates the RTTi so that the flows are 
almost fair. Both TCR (Fig. 3(c)) and PostACK (Fig. 
3(d)) can further eliminate the little unfairness. Note 
that these figures are measured at TCP sender side so 
each peak corresponds to the phase of pumping traffic 
to the edge gateway. The peaks in PostACK are 
relatively lower than those in CBQ since whenever a 
PostACK-applied flow get queued at PCDQ, the QR in 
PostACK skip the flow’s ACK-pacing. So the peak 
diminishes immediately. 

 
Fig. 3: Fairness among flows in 200KB/s class 

V. INTERNAL BENCHMARK 
A. Benchmark Tools and Methodology 

To further identify the bottlenecks of the open 
source solutions, we conduct a series of internal 
benchmark experiments as depicted in Table 3.  

TABLE 3 
BENCHMAR METHOLOGY. 

Category Benchmark Tools Benchmark Items 

Packet Filter SmartFlow/SmartBits 2000 Scalability 

URL Filiter self-written HTTP Traffic 
Generator 

Scalability 

Content Filter HTTP Traffic Generator Scalability 

Authentication Algorithms SmartFlow/SmartBits 2000 Cost of MD5 and SHA1 

B. Resources Consumption 
1) CPU Consumption: The CPU cost of each kernel 
module is quantified in Fig. 4 using 64-byte packets. 
The 0Mbps traffic load is the scenario without 
background traffic, and 13Mbps is the NLMT of the 
gateway when enabling all the functions. For a 64-byte 
packet, the 3DES encryption takes 24.242µs, which is 
4 times that of the MD5 authentication, and 12 times 
that of MASQ. From other experiment results, we 
observe that the processing time of encryption, 
authentication, and MASQ depends on the packet size 
because these modules process the entire packet. Note 
that the MASQ process re-calculates transport layer 
checksum. For a 1518-byte packet, the 3DES 
encryption takes 287.983µs, which is 9 times that of 
the MD5 authentication, and 31 times that of MASQ. 

Encrypting 24, i.e. ⎥⎥
⎤

⎢⎢
⎡

64
1518

, 64-byte packets requires 
581.808µs which is twice as much as the time to 
encrypt a 1518-byte packet. This is because a 
1518-byte packet requires only one encryption 
operation while twenty four 64-byte packets require 24 
encryption operations. 
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Fig. 4. CPU Cost of Kernel Modules. 
Fig. 5 shows the CPU cost of each daemon 

process. Again, the content filter TIS has some design 
problems which will be identified later. 
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Fig. 5. CPU Cost of Daemon Processes. 
2) Memory and Disk Consumption:  

Table 4 summarizes the memory and disk 
consumption of each module. The swap and resident 
memory shows the run-time requirements of disk space 
and physical memory, respectively. Squid consumes 
totally 17.3MB disk space and 12.9MB memory 
mainly due to web caching. 

TABLE 4 
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MEMORY AND DISK CONSUMPTION. 
Module Program Size Swap Memory Resident Memory 

Kernel 640KB  2056KB 
Squid Parent 468KB 3348KB 880KB 
Squid Child  13544KB 12092KB 
TIS http-gw parent 1788KB 576KB 200KB 
TIS http-gw child  1708KB 668KB 
Pluto Daemon 646KB 1516KB 716KB 
Snortd 444KB 3236KB 2268KB 

C. Scalability Issues 
1) Content Filter 
As depicted in Fig. 6, the average filtering time for 
500K-byte web pages is 68.235ms under 15 concurrent 
connections, which is not scalable. Further source-code 
tracing of TIS finds out two implementation problems. 
First, TIS is found to fork a child process to deal with 
every incomming HTTP request. Moreover, each child 
process re-reads the configuration file, which involves 
slow disk accesses. Secondly, TIS performs filtering 
service with a Finite State Machine (FSM), and TIS 
reads just one byte of the web page at a time from the 
socket interface to drive its FSM. This is an inefficient 
implementation. The worst-case time complexity of 
TIS is O(n) where n stands for the size of the retrieved 
web page. Instead of reading one byte of the web page 
at a time, reading multiple bytes at a time can reduce n. 
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2) MD5 and SHA1 Authentication Algorithms 
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Fig. 7. Cost of MD5 and SHA1 Authentication Algorithms. 
This internal benchmark does not include DES 

and 3DES tests because FreeS/WAN does not support 
the DES algorithm. Since the MD5 and SHA1 
algorithms are derived from the MD4 algorithm, their 
characteristics are quite similar. The major difference 
is that the SHA1 digest is 32 bits longer than the MD5 
digest. Thus, SHA1 executes slower than MD5 on the 
same hardware as shown in Fig. 7. The processing time 
of 1518-byte packets is 31.89µs and 79.84µs for MD5 

and SHA1, respectively. The digest generation process 
includes (1) append padding bits to the original 
message; (2) append the length of the original message; 
(3) initialize input key; (4) process the message in a 
sequence of 512-bit blocks; (5) generate the output 
digest. Therefore, as the packet size increases, the time 
for digest generation gets longer. The worst-case time 
complexity of these two authentication algorithms are 
O(n*m) where m, and n stand for the key length, and 
the packet size, respectively.  
六、結論 

This paper provides the experiences of 
integrating many open source packages into a security 
gateway. Besides, a PostACK TCP-aware bandwidth 
control approach is proposed. PostACK minimizes 
buffer requirement up to 96% and has 10% goodput 
improvement against TCR under lossy WAN. In 
internal benchmark, we examine the CPU/ memory/ 
disk consumption of the open source solution, and 
investigate the scalability of each key module. Finally, 
observations of benchmarking and suggestions for 
performance improvements are presented here. Table 5 
summarizes the observations of our benchmarking. 
The results of our study reveal that ipchains and 
FreeS/WAN are viable compared to commercial 
products, but TIS and Snort have performance 
problems. 

TABLE 5 
SUMMARY OF OBSERVATIONS. 

Module Characteristics Bottleneck Reason Worst-case Time 
Complexity 

ipchains CPU-intensive Increasing the 
number of filters 

Linear matching 
algorithm 

O(l+m+n); l, m, n: number 
of filters in input, forward, 
and output chains, 
respectively 

Squid Memory& 

CPU-intensive

Increasing the 
number of URL 
regular 
expressions 

Linear matching 
algorithm 

O(n(l+m)); l: URL length in 
HTTP requests; m: average 
regular expression length; n: 
number of URL regular 
expressions 

TIS CPU-intensive Increasing the 
number of HTTP 
connections and 
the size of the 
retrieved web page 

1. Parse 
configuration file 
for each request 

2. Only read one 
byte of the web 
page from the 
socket interface at 
a time 

O(n); n: size of the retrieved 
web page 

Masquerade CPU-intensive Increasing the 
number of 
private-to-public 
connections 

Data structure of 
masquerade table 

O(n); n: number of 
private-to-public 
connections 

FreeS/WAN CPU-intensive Using the stronger 
algorithms 

Too many 
computation for 
encryption and 
authentication 

O(n*m); m: key length;     
n: packet size 

Snort CPU-intensive Packet loss 
frequently 

1. Copy each packet 
from kernel space 
to user space 

2. Linear matching 
algorithm 

O(l+m*n); l: number of 
TCP/UDP/ICMP rule tree 
nodes; m: number of 
TCP/UDP/ICMP rule 
options;  n: packet size 

 
七、參考文獻 
[1] Linux kernel, http://www.kernel.org . 
[2] ipchains, http://netfilter.filewatcher.org/ipchains/ . 
[3] Squid, http://www.squid-cache.org . 
[4] TIS, http://www.tis.com . 
[5] FreeS/WAN, http://www.freeswan.org . 
[6] Snort, http://www.snort.org . 

 


