Li nuxX

NSC91-2213-E-009-123-
91 08 01 92 07 31

93 2 25

- P

PR A [Lnux G AR 2P E IR B2 R R
34 B NSC 91-2213-E-009-123
ER HFE fgr LA FTAPE
LT VLA TS
T 91/08/01-92/07/31
=~ MgsE in this work. After integrating these packages, we

A2 BGER—% 2 BT ol R

B A e >~ RR B S B AS
Keywords—security gateway, bandwidth management,

firewall, NAT, VPN, IDS, benchmark, open source
IV EYRE

P DO EE IR ¢ E AR E B RRAT 0 B3

H7 B E B AAEAG Bigk 2R o AP
ProARs URE L 2 RIS TF o 6 AREEATT FreeSWAN
1 3DES 4v % A e rdTiAE? BriE 1 (Fem TIS RIE_
requrestiresponse jed®® v &L (¥ o AR E=A AL
$Fd % A TCP-anare sHIFEF1 i+ =Rt
SRy o FRAHTCR > 272§ *304¢e Fhi4en
WAN 12 Bcfd T3 % io 2Lipde 11 ehPostACK “$ it %4 TCR
gt buffer o7 fut O ApEbs TOR adte 5 248
2 eWAN » # 3 4e goodput i 109%

Network security and bandwidth management have become
a critical issue for enterprises. In this work, we first
demonstrate how to build a security gateway capable of
firewall, virtual private network (VPN), and intrusion detection
system (IDS) functions by integrating open source packages.
We patch the kernel to ensure interoperability of these
packages. Our detailed internal benchmarking reveals that the
3DES encryption in FreeS/WAN tops the ranking of packet
processing within kernel for 1518-byte packets, and TIS tops
the ranking of request/response processing at the daemon level.

Besides security functions, this work evaluates possible
TCP-aware bandwidth control through self-developed
implementations in Linux, testbed emulation, and live WAN
measurement. The widely deployed TCP rate control (TCR) is
found to be more vulnerable to WAN packet losses and less
compatible to several TCP sending operating systems. The
proposed PostACK approach can preserve TCR’s advantages
while avoiding TCR’s drawbacks. PostACK minimizes buffer

requirement up to 96% and has 10% goodput improvement
against TCR under lossy WAN.

T ~3PFpen

The open source packages we select include Linux
kernel [1], ipchains[2], Squid[3], Trust Information
System (TIS)[4], FreeS/WANJ5], and Snort[6].
Although each package works well individually, they
may not cooperate well to provide specific services.
Thus, we trace the packet flows in a gateway to find
out the problems, and eliminate those problems by
patching kernel and proper setting. Besides security,
we proposed and implemented the bandwidth control
approach, PostACK, and compared it with the TCR. In
addition, three essential packet flows will be discussed

perform a series of internal, i.e. white box, benchmarks.
The questions we want to answer include: Who top the
processing time of all kernel-space modules and
user-space daemon processes, respectively? How much
disk and memory does each package consume? How
scalable are network address translation (NAT),
ipchains, Squid, and TIS? What is the influence of
increasing the key length in cryptographic algorithms?
Does Snort really examine each packet for suspicious
activities? Where are the bottlenecks of these modules?
I Py E2 RS
I. Selected Packages

Table 1 lists the chosen open source packages for
integration. These packages are selected because of
their functional completeness and great reputation.
Note that a Linux system consists of kernel space and
user space. Kernel space is responsible for abstracting
and managing a machine’s resources, including process,
memory, file system, device and networking. User
space programs use the kernel-supported system calls.
Programs that run permanently as background

processes are called daemons.
TABLE 1
PACKAGE INFORMATION.

Package User-space Program Kernel-space Pac_k age Version
Name Program Size
ipchains Management tool Kernel build-in 63KB [1.3.9
packet filtering
firewall and 1P
masquerade
(MASQ)
Squid Daemon (Cache No 1104KB|2.3
server, transparent
proxy, and URL
filter)
TIS Daemon (Application [No 476KB |2.1
proxies, and web
content filter)
FreeS/WAN [Pluto Daemon KLIPS kernel 1252KB|1.5
(Internet key patch (Encryption
exchange, IKE) and
authentication)
Snort Daemon (Intrusion |No 644KB (1.7
detection)

I1. PostACK Bandwidth Control

Each flow should obtain a bandwidth share of BW;=
BW./n. Recall that in Fig. 1 the RTT consists of Dw;,
the queuing delays at PCDQ, and PFAQ;, and the
neligible round-trip LAN delay. Generally the delay at
PFAQ; approaches zero while the forward-data-packet

queuing delay for TCP is large. Imagine that a only BDP/MSS; packets in the WAN pipe, can be
Per-Flow Queuing (PFQ) is placed within the class ¢ to achieved through queuing excessive packets. Either
enforce that each BW; = BW,/n. Thus, the number of queuing the data packets or the ACKs have the same
data packets of flow i queued before the packet effects on rate shaping.

scheduler in Fig.1, PCDQ*™" is min(Wc;,Wr;)- (BDPy/ s L s

MSS;), namely all unacknowledged packets excluding T TCP fow i € clusse

the packets in the WAN pipe. To achieve BW;, each T
gueued data packet should wait for a period of
(PCDQ™*MSS;)/BW;. Imagine that the packet
scheduler in the forward direction were absent. By
delaying each ACK for the same interval ((PCDQ"*"
*MSS;)/BW;), the bandwidth of flow | will also -)
approach its target bandwidth BW. The effects of Outdoing TCPtraffic.

delaying the data packets in the forward direction by ~ Ill- Integration _

the packet scheduler is identical to delaying the ACKs This section discusses three special access types
in the reverse direction since a TCP sender only that require extra integration works. Table 2 Ilsts_the
measures RTT, which consists of bidirectional delays. ~ three access types and their demands of protection.
Gradually increasing the delay of ACKs would not Connections of_type 1 access are established from
cause Retransmission TimeOuts (RTO) because a TCP masqueraded private hosts to public Internet servers
sender can adapt the RTO to the newly measured RTTs. (except web servers);

In summary, the target bandwidth, BW;, which keeps

E3)
FTP Server: F

(NAT + firewall)
access types

pl,p2 (VPN + firewall)
/
= pl, W data e
=] (NAT + URL/Content filtering + firewall)

Wieb Server: W

— _ — —wesend (third connection)

pl, W]da(a Tis] content filter
3 A ___ y-inter[-daemon (second connection)
URL filt
l Squid receive(first connecttion) tter
outputchain ‘\'ﬁm forward chain = inputchain firewall
Condition | action mi, m ata Condition | action Condition | action [wiF Joet |
[pt. F [data | . ~ 2 mim2 pass N _mimz pass [mim? [oeu] Pm:’“
mi, m
[p1.w [data | 1 . - [~ 3| _mi, *:80 | redirect in
-~ o it (m1, m2) null null pL. F data I . - T null null VPN1
TTves Ty mix masq |- masq
[nun null
VPN VPN
Pl p2
_—
mi m2 |data | Doz [mimz [Frev™"
orward chain W I Tnput chain NS Y
condition | action] gondition 1 action condition action) 2
. ~ mi, m2 pass Packet
mimz |data] . . m2, *:80 | redirect flow
null null null null in
Wasy] VEN2
[ninz To]
VPN
de-VPN ifencrypt

Fig. 2. Packet Flows of Three Access Types.

connections of type 2 are tunneled between part details the processing within the two security
masqueraded private subnets and do not need gateways.

URL/content filtering since both sides are trusted

regions; connections of type 3 access issue HTTP

requests from masqueraded private hosts to web TABLE 2: Access Types _

servers to retrieve web pages back to masqueraded No. Access Types Demands of Protection
. 1 Normal Internet services NAT, and packet filtering

p”_/ate hQStS- These_accesses ShO!.I|d be protecte_d by 2 |Trusted branch offices VPN, and packet filtering

various firewall actions shown in Table 2. Fig. 2 communication

illustrates the packet flows of the three access types. 8 |Web services][\i‘ltAeTr'irF])nge“ URL / content

The upper part is a global view of them, and the lower

IV. EXPERIMENTAL RESULTS

We have implemented PostACK and TCR into
Linux kernel 2.2.17, together with a practical
emulation testbed. The per-flow queuing is achieved
by assigning a token bucket policer to each TCP flows.
We hereby describe the experimental results. The
section investigates the effectiveness of ACK control
modules in resolving the unfairness among TCP flows
with heterogeneous WAN delays. Test configurations
are described in Fig.3. Figure 3(a) demonstrates the
classical problem: throughput of a TCP flow is
inversely proportional to its RTT. However, when the
three flows share a 200KB/s class in a FIFO PCDQ
(Fig. 3(b)), the unfairness among the 10ms/ 50ms/ 100
ms flows is alleviated. This is because the RTT
measured by flow i (RTT;) equals to Dw;+ SUM
(PCDQ™). The shared PCDQ’s queuing delay, SUM
(PCDQ™®), dominates the RTT; so that the flows are
almost fair. Both TCR (Fig. 3(c)) and PostACK (Fig.
3(d)) can further eliminate the little unfairness. Note
that these figures are measured at TCP sender side so
each peak corresponds to the phase of pumping traffic
to the edge gateway. The peaks in PostACK are
relatively lower than those in CBQ since whenever a
PostACK-applied flow get queued at PCDQ, the QR in
PostACK skip the flow’s ACK-pacing. So the peak
diminishes immediately.

(a) Sent at will {100Miv's link) (b) CBQ (200KB/s class)

300 T

3000
= 5500 Lp | 10M0s flow = 10ms flow —
% ?ggg Ta0msflow — 4 =
£ 1000 Z
& 500 f ——— —- il
G | LA i A el D
0 2 4 6 8 10 12 0 5 10 15 20 25 30
Time (sec) Time (sec)
(c) CBQ+TCR (200KB/s class) (d) CBQ+PostAck (200KB/s class)
250 250
2 200" Smstiow ——— | 2 200 50ms flow ——— |
< 150 FJ4 150msflow — H{ = 150 QLT[T — 1
@ 100 fotal = 100 fotal
& 50 & 50
0 0 Il 1

0 5 10 15 20 25 30
Time (sec)

0' é 1IIZI 1I5 2IO 2I5 30
Time (s2c)
Fig. 3: Fairness among flows in 200KB/s class
V. INTERNAL BENCHMARK
A. Benchmark Tools and Methodology
To further identify the bottlenecks of the open
source solutions, we conduct a series of internal

benchmark experiments as depicted in Table 3.
TABLE 3
BENCHMAR METHOLOGY.

Category

Benchmark Tools

Benchmark ltems

Packet Filter SmartFlow/SmartBits 2000 Scalability

URL Filiter self-written HTTP Traffic Scalability
Generator

Content Filter HTTP Traffic Generator Scalability

Authentication Algorithms

SmartFlow/SmartBits 2000

Cost of MD5 and SHA1

B. Resources Consumption

1) CPU Consumption: The CPU cost of each kernel
module is quantified in Fig. 4 using 64-byte packets.
The OMbps traffic load is the scenario without
background traffic, and 13Mbps is the NLMT of the
gateway when enabling all the functions. For a 64-byte
packet, the 3DES encryption takes 24.242us, which is
4 times that of the MD5 authentication, and 12 times
that of MASQ. From other experiment results, we
observe that the processing time of encryption,
authentication, and MASQ depends on the packet size
because these modules process the entire packet. Note
that the MASQ process re-calculates transport layer
checksum. For a 1518-byte packet, the 3DES
encryption takes 287.983us, which is 9 times that of
the MD5 authentication, and 31 times that of MASQ.

1518
Encrypting 24, i.e. (WW 64-byte packets requires
581.808us which is twice as much as the time to
encrypt a 1518-byte packet. This is because a
1518-byte packet requires only one encryption
operation while twenty four 64-byte packets require 24
encryption operations.

I3 0Mbps Load
e B 13Mbps Load

delay (ps)

fouting table

module

Fig. 4. CPU Cost of Kernel Modules.
Fig. 5 shows the CPU cost of each daemon
process. Again, the content filter TIS has some design
problems which will be identified later.

1000000

1 0Mbps Load
I 13Mbps Load

100000 ———

10000

1000

delay (ps)

100 ———

) ,_. 1
url filter DS

1

content filter

process

Fig. 5. CPU Cost of Daemon Processes.
2) Memory and Disk Consumption:

Table 4 summarizes the memory and disk
consumption of each module. The swap and resident
memory shows the run-time requirements of disk space
and physical memory, respectively. Squid consumes
totally 17.3MB disk space and 12.9MB memory

mainly due to web caching.
TABLE 4

MEMORY AND DISK CONSUMPTION.

Module Program Size Swap Memory Resident Memory

Kernel 640KB 2056KB

Squid Parent 468KB 3348KB 880KB

Squid Child 13544KB 12092KB

TIS http-gw parent 1788KB 576KB 200KB

TIS http-gw child 1708KB 668KB

Pluto Daemon 646KB 1516KB 716KB

Snortd 444KB 3236KB 2268KB

C. Scalability Issues

1) Content Filter

As depicted in Fig. 6, the average filtering time for
500K-byte web pages is 68.235ms under 15 concurrent
connections, which is not scalable. Further source-code
tracing of TIS finds out two implementation problems.
First, TIS is found to fork a child process to deal with
every incomming HTTP request. Moreover, each child
process re-reads the configuration file, which involves
slow disk accesses. Secondly, TIS performs filtering
service with a Finite State Machine (FSM), and TIS
reads just one byte of the web page at a time from the
socket interface to drive its FSM. This is an inefficient
implementation. The worst-case time complexity of
TIS is O(n) where n stands for the size of the retrieved
web page. Instead of reading one byte of the web page
at a time, reading multiple bytes at a time can reduce n.

0000
—8— dlient &

= = = = Sclients

A5 clients

delay (ps)

Web page size (Kbytes)

Fig. 6. Scalability of Content Filter in TIS.
2) MD5 and SHA1 Authentication Algorithms

@0

HCiadahdel O~ OO O g —B—MD5, 6B |

N -~ — = S

and SHAL, respectively. The digest generation process
includes (1) append padding bits to the original
message; (2) append the length of the original message;
(3) initialize input key; (4) process the message in a
sequence of 512-bit blocks; (5) generate the output
digest. Therefore, as the packet size increases, the time
for digest generation gets longer. The worst-case time
complexity of these two authentication algorithms are
O(n*m) where m, and n stand for the key length, and
the packet size, respectively.

This paper provides the experiences of
integrating many open source packages into a security
gateway. Besides, a PostACK TCP-aware bandwidth
control approach is proposed. PostACK minimizes
buffer requirement up to 96% and has 10% goodput
improvement against TCR wunder lossy WAN. In
internal benchmark, we examine the CPU/ memory/
disk consumption of the open source solution, and
investigate the scalability of each key module. Finally,
observations of benchmarking and suggestions for
performance improvements are presented here. Table 5
summarizes the observations of our benchmarking.
The results of our study reveal that ipchains and
FreeS/WAN are viable compared to commercial
products, but TIS and Snort have performance

problems.
TABLE 5
SUMMARY OF OBSERVATIONS.

Worst-case Time
Complexity

Module | Characteristics Bottleneck Reason

O(l+m+n); I, m, n: number
of filters in input, forward,
and output chains,
respectively

ipchains CPU-intensive |Increasing the Linear matching
number of filters |algorithm

Squid Memory& Increasing the Linear matching O(n(l+m)); I: URL length in
number of URL |algorithm HTTP requests; m: average
CPU-intensive |regular regular expression length; n:
expressions number of URL regular
expressions
TIS CPU-intensive |Increasing the 1. Parse O(n); n: size of the retrieved

number of HTTP
connections and
the size of the
retrieved web page |2. Only read one

configuration file |web page
for each request

Traf'fii: Load (I\}ibps)

Fig. 7. Cost of MD5 and SHA1 Authentication Algorithms.

This internal benchmark does not include DES
and 3DES tests because FreeS/WAN does not support
the DES algorithm. Since the MD5 and SHAL
algorithms are derived from the MD4 algorithm, their
characteristics are quite similar. The major difference
is that the SHAL digest is 32 bits longer than the MD5
digest. Thus, SHA1 executes slower than MD5 on the
same hardware as shown in Fig. 7. The processing time
of 1518-byte packets is 31.89us and 79.84us for MD5

g e — — — — — — — — — — — — — — — — — — = byte of the web
(S S LT E VS NI —A——MDs, L page from the
> N 15188 socket interface at
= S - QHAT AAR atime
A A A A A
S G 4 = = = = = 4 Masquerade |CPU-intensive | Increasing the Data structure of O(n); n: number of
LtV v A number of masquerade table | private-to-public
W Lo s S Xeomeos Kooeos X private-to-public connections
F—-8— F i
E connections

FreeS/WAN [CPU-intensive |Using the stronger | Too many O(n*m); m: key length;

algorithms computation for n: packet size
encryption and
authentication
Snort CPU-intensive |Packet loss 1. Copy each packet|O(l+m*n); I: number of
frequently from kernel space|TCP/UDP/ICMP rule tree

to user space nodes; m: number of
2. Linear matching [TCP/UDP/ICMP rule

algorithm options; n: packet size

N ;;{4,‘; > L

[1] Linux kernel, http://www.kernel.org .

[2] ipchains, http://netfilter.filewatcher.org/ipchains/ .
[3] Squid, http://www.squid-cache.org .

[4] TIS, http://www.tis.com .

[5] FreeS/WAN, http://www.freeswan.org .

[6] Snort, http://www.snort.org .

