
行政院國家科學委員會專題研究計畫 成果報告

以Linux為基礎的網路安全與頻寬管理閘道器之實作與研究

(I)

計畫類別：個別型計畫

計畫編號：NSC91-2213-E-009-123-

執行期間：91年08月01日至92年07月31日

執行單位：國立交通大學資訊科學學系

計畫主持人：林盈達

報告類型：精簡報告

報告附件：出席國際會議研究心得報告及發表論文

處理方式：本計畫可公開查詢

中 華 民 國 93年2月25日

 1

一，計畫
計畫名稱 以Linux為基礎的網路安全與頻寬管理閘道器之實做與研究
計畫編號 NSC 91-2213-E-009-123
主持人 林盈達 教授 交通大學資訊科學系
執行機關 交通大學資訊科學系
執行期限 91/08/01--92/07/31

二、關鍵詞
本文關鍵詞—安全閘道器，頻寬管理，防火牆，網路位置轉換，

虛擬私人網路，入侵偵測系統，評比，開放程式碼
Keywords—security gateway, bandwidth management,

firewall, NAT, VPN, IDS, benchmark, open source
三、中英文摘要
 網路安全和頻寬管理對企業來說是重要的議題。這個計

畫中展示如何整合開放程式碼，以建造安全閘道器。我們修改

核心程式以確保各套件能順利合作。白箱測試顯示FreeS/WAN
的 3DES 加密是封包處理過程中最吃重工作。而 TIS 則是

requrest/response 處理中最吃重的工作。除了安全功能外，這計

畫藉由實現數種TCP-aware的頻寬控制方法，來評估頻寬控制

方法的優劣。常見的 TCR 方法並不適用於封包容易遺失的

WAN以及數種作業系統。我們提出的PostACK除能保留TCR
的優點並減少buffer 的需求達96%,相對於TCR 在封包容易遺

失的WAN，可增加goodput達10%。
Network security and bandwidth management have become

a critical issue for enterprises. In this work, we first
demonstrate how to build a security gateway capable of
firewall, virtual private network (VPN), and intrusion detection
system (IDS) functions by integrating open source packages.
We patch the kernel to ensure interoperability of these
packages. Our detailed internal benchmarking reveals that the
3DES encryption in FreeS/WAN tops the ranking of packet
processing within kernel for 1518-byte packets, and TIS tops
the ranking of request/response processing at the daemon level.

Besides security functions, this work evaluates possible
TCP-aware bandwidth control through self-developed
implementations in Linux, testbed emulation, and live WAN
measurement. The widely deployed TCP rate control (TCR) is
found to be more vulnerable to WAN packet losses and less
compatible to several TCP sending operating systems. The
proposed PostACK approach can preserve TCR’s advantages
while avoiding TCR’s drawbacks. PostACK minimizes buffer
requirement up to 96% and has 10% goodput improvement
against TCR under lossy WAN.
四、計畫目的

The open source packages we select include Linux
kernel [1], ipchains[2], Squid[3], Trust Information
System (TIS)[4], FreeS/WAN[5], and Snort[6].
Although each package works well individually, they
may not cooperate well to provide specific services.
Thus, we trace the packet flows in a gateway to find
out the problems, and eliminate those problems by
patching kernel and proper setting. Besides security,
we proposed and implemented the bandwidth control
approach, PostACK, and compared it with the TCR. In
addition, three essential packet flows will be discussed

in this work. After integrating these packages, we
perform a series of internal, i.e. white box, benchmarks.
The questions we want to answer include: Who top the
processing time of all kernel-space modules and
user-space daemon processes, respectively? How much
disk and memory does each package consume? How
scalable are network address translation (NAT),
ipchains, Squid, and TIS? What is the influence of
increasing the key length in cryptographic algorithms?
Does Snort really examine each packet for suspicious
activities? Where are the bottlenecks of these modules?

五、研究方法及結果
I. Selected Packages

Table 1 lists the chosen open source packages for
integration. These packages are selected because of
their functional completeness and great reputation.
Note that a Linux system consists of kernel space and
user space. Kernel space is responsible for abstracting
and managing a machine’s resources, including process,
memory, file system, device and networking. User
space programs use the kernel-supported system calls.
Programs that run permanently as background
processes are called daemons.

TABLE 1
PACKAGE INFORMATION.

Package
Name User-space Program Kernel-space

Program
Package

Size Version

ipchains Management tool Kernel build-in
packet filtering
firewall and IP
masquerade
(MASQ)

63KB 1.3.9

Squid Daemon (Cache
server, transparent
proxy, and URL
filter)

No 1104KB 2.3

TIS Daemon (Application
proxies, and web
content filter)

No 476KB 2.1

FreeS/WAN Pluto Daemon
(Internet key
exchange, IKE)

KLIPS kernel
patch (Encryption
and
authentication)

1252KB 1.5

Snort Daemon (Intrusion
detection)

No 644KB 1.7

II. PostACK Bandwidth Control
Each flow should obtain a bandwidth share of BWi=
BWc/n. Recall that in Fig. 1 the RTT consists of Dwi,
the queuing delays at PCDQc and PFAQi, and the
neligible round-trip LAN delay. Generally the delay at
PFAQi approaches zero while the forward-data-packet

 2

queuing delay for TCP is large. Imagine that a
Per-Flow Queuing (PFQ) is placed within the class c to
enforce that each BWi = BWc/n. Thus, the number of
data packets of flow i queued before the packet
scheduler in Fig.1, PCDQi

qlen, is min(Wci,Wri)- (BDPi/
MSSi), namely all unacknowledged packets excluding
the packets in the WAN pipe. To achieve BWi, each
queued data packet should wait for a period of
(PCDQi

qlen*MSSi)/BWi. Imagine that the packet
scheduler in the forward direction were absent. By
delaying each ACK for the same interval ((PCDQi

qlen

*MSSi)/BWi), the bandwidth of flow I will also
approach its target bandwidth BWi. The effects of
delaying the data packets in the forward direction by
the packet scheduler is identical to delaying the ACKs
in the reverse direction since a TCP sender only
measures RTT, which consists of bidirectional delays.
Gradually increasing the delay of ACKs would not
cause Retransmission TimeOuts (RTO) because a TCP
sender can adapt the RTO to the newly measured RTTs.
In summary, the target bandwidth, BWi, which keeps

only BDPi/MSSi packets in the WAN pipe, can be
achieved through queuing excessive packets. Either
queuing the data packets or the ACKs have the same
effects on rate shaping.

Fig. 1: Efficient PostACK Implementation For Managing
Outgoing TCP traffic.
III. Integration

This section discusses three special access types
that require extra integration works. Table 2 lists the
three access types and their demands of protection.
Connections of type 1 access are established from
masqueraded private hosts to public Internet servers
(except web servers);

V P N 2 : p 2
V P N 1 : p 1

p r i v a t e h o s t :
m 2 p r i v a t e h o s t :

m 1

p 1 , p 2 m 1 , m 2 (V P N + f i r e w a l l)

p 1 , F d a t a
(N A T + f i r e w a l l)

F T P S e r v e r : F

W e b S e r v e r : W

p 1 , W d a t a
(N A T + U R L / C o n t e n t f i l t e r i n g + f i r e w a l l)

a c c e s s t y p e s

1
2
3

m 1 , m 2 p a s s
m 2 , * : 8 0 r e d i r e c t

n u l l n u l l

.

.
n u l l n u l l

o u t p u t c h a i n

d e - V P N

p 1 , p 2 m 1 , m 2

m 1 , m 2 d a t a

2

m 1 , m 2 d a t a

m 1 , m 2 d a t a

V P N

f i r e w a l l

m 1 , m 2 p a s s

m 2 * m a s q

.

n u l l n u l l

.
m a s q

P a c k e t
f l o w
 i n

V P N 2

i n p u t c h a i n
c o n d i t i o n a c t i o n

f o r w a r d c h a i n
c o n d i t i o n a c t i o n

m 1 , m 2 d a t af o r w a r d c h a i n
c o n d i t i o n a c t i o n

S q u i d

T I S

m 1 , m 2 p a s s
m 1 , * : 8 0 r e d i r e c t

n u l l

i n p u t c h a i n

.

.
n u l l n u l l

o u t p u t c h a i n

p 1 , W

p 1 , F d a t a

d a t a

1

2
3

2

1

3

m 1 , W d a t a

m 1 , m 2 d a t a
m 1 , m 2 p a s s

m 1 , * m a s q

.

n u l l n u l l

m 1 , F d a t a

p 1 , F d a t a

m 1 , m 2 d a t a

p 1 , W d a t a

.

V P N

Y e s
N o

p 1 , p 2 m 1 , m 2

2

1 , 3

V P N

m a s q

f i r e w a l l

U R L f i l t e r

c o n t e n t f i l t e r

P a c k e t
f l o w

i n
V P N 1

i n t e r [- d a e m o n (s e c o n d c o n n e c t i o n)

r e c e i v e (f i r s t c o n n e c t t i o n)

s e n d (t h i r d c o n n e c t i o n)

c o n d i t i o n a c t i o n

n u l l

f o r w a r d c h a i n
c o n d i t i o n a c t i o n

o u t p u t c h a i n
c o n d i t i o n a c t i o n

i f (m 1 , m 2)

i f e n c r y p t

Fig. 2. Packet Flows of Three Access Types.

connections of type 2 are tunneled between
masqueraded private subnets and do not need
URL/content filtering since both sides are trusted
regions; connections of type 3 access issue HTTP
requests from masqueraded private hosts to web
servers to retrieve web pages back to masqueraded
private hosts. These accesses should be protected by
various firewall actions shown in Table 2. Fig. 2
illustrates the packet flows of the three access types.
The upper part is a global view of them, and the lower

part details the processing within the two security
gateways.

TABLE 2: Access Types

No. Access Types Demands of Protection
1 Normal Internet services NAT, and packet filtering
2 Trusted branch offices

communication
VPN, and packet filtering

3 Web services NAT, packet / URL / content
filtering

 3

IV. EXPERIMENTAL RESULTS
We have implemented PostACK and TCR into

Linux kernel 2.2.17, together with a practical
emulation testbed. The per-flow queuing is achieved
by assigning a token bucket policer to each TCP flows.
We hereby describe the experimental results. The
section investigates the effectiveness of ACK control
modules in resolving the unfairness among TCP flows
with heterogeneous WAN delays. Test configurations
are described in Fig.3. Figure 3(a) demonstrates the
classical problem: throughput of a TCP flow is
inversely proportional to its RTT. However, when the
three flows share a 200KB/s class in a FIFO PCDQ
(Fig. 3(b)), the unfairness among the 10ms/ 50ms/ 100
ms flows is alleviated. This is because the RTT
measured by flow i (RTTi) equals to Dwi+ SUM
(PCDQi

delay). The shared PCDQ’s queuing delay, SUM
(PCDQi

delay), dominates the RTTi so that the flows are
almost fair. Both TCR (Fig. 3(c)) and PostACK (Fig.
3(d)) can further eliminate the little unfairness. Note
that these figures are measured at TCP sender side so
each peak corresponds to the phase of pumping traffic
to the edge gateway. The peaks in PostACK are
relatively lower than those in CBQ since whenever a
PostACK-applied flow get queued at PCDQ, the QR in
PostACK skip the flow’s ACK-pacing. So the peak
diminishes immediately.

Fig. 3: Fairness among flows in 200KB/s class

V. INTERNAL BENCHMARK
A. Benchmark Tools and Methodology

To further identify the bottlenecks of the open
source solutions, we conduct a series of internal
benchmark experiments as depicted in Table 3.

TABLE 3
BENCHMAR METHOLOGY.

Category Benchmark Tools Benchmark Items

Packet Filter SmartFlow/SmartBits 2000 Scalability

URL Filiter self-written HTTP Traffic
Generator

Scalability

Content Filter HTTP Traffic Generator Scalability

Authentication Algorithms SmartFlow/SmartBits 2000 Cost of MD5 and SHA1

B. Resources Consumption
1) CPU Consumption: The CPU cost of each kernel
module is quantified in Fig. 4 using 64-byte packets.
The 0Mbps traffic load is the scenario without
background traffic, and 13Mbps is the NLMT of the
gateway when enabling all the functions. For a 64-byte
packet, the 3DES encryption takes 24.242µs, which is
4 times that of the MD5 authentication, and 12 times
that of MASQ. From other experiment results, we
observe that the processing time of encryption,
authentication, and MASQ depends on the packet size
because these modules process the entire packet. Note
that the MASQ process re-calculates transport layer
checksum. For a 1518-byte packet, the 3DES
encryption takes 287.983µs, which is 9 times that of
the MD5 authentication, and 31 times that of MASQ.

Encrypting 24, i.e. ⎥⎥
⎤

⎢⎢
⎡

64
1518

, 64-byte packets requires
581.808µs which is twice as much as the time to
encrypt a 1518-byte packet. This is because a
1518-byte packet requires only one encryption
operation while twenty four 64-byte packets require 24
encryption operations.

0

5

10

15

20

25

30

3des md5 masq input-chain routing cache routing table

module

de
la

y
(µ

s)

0Mbps Load

13Mbps Load

Fig. 4. CPU Cost of Kernel Modules.
Fig. 5 shows the CPU cost of each daemon

process. Again, the content filter TIS has some design
problems which will be identified later.

1

10

100

1000

10000

100000

1000000

content filter url filter IDS

process

de
la

y
(µ

s)

0Mbps Load

13Mbps Load

Fig. 5. CPU Cost of Daemon Processes.
2) Memory and Disk Consumption:

Table 4 summarizes the memory and disk
consumption of each module. The swap and resident
memory shows the run-time requirements of disk space
and physical memory, respectively. Squid consumes
totally 17.3MB disk space and 12.9MB memory
mainly due to web caching.

TABLE 4

 4

MEMORY AND DISK CONSUMPTION.
Module Program Size Swap Memory Resident Memory

Kernel 640KB 2056KB
Squid Parent 468KB 3348KB 880KB
Squid Child 13544KB 12092KB
TIS http-gw parent 1788KB 576KB 200KB
TIS http-gw child 1708KB 668KB
Pluto Daemon 646KB 1516KB 716KB
Snortd 444KB 3236KB 2268KB

C. Scalability Issues
1) Content Filter
As depicted in Fig. 6, the average filtering time for
500K-byte web pages is 68.235ms under 15 concurrent
connections, which is not scalable. Further source-code
tracing of TIS finds out two implementation problems.
First, TIS is found to fork a child process to deal with
every incomming HTTP request. Moreover, each child
process re-reads the configuration file, which involves
slow disk accesses. Secondly, TIS performs filtering
service with a Finite State Machine (FSM), and TIS
reads just one byte of the web page at a time from the
socket interface to drive its FSM. This is an inefficient
implementation. The worst-case time complexity of
TIS is O(n) where n stands for the size of the retrieved
web page. Instead of reading one byte of the web page
at a time, reading multiple bytes at a time can reduce n.

92

185

301
405 455

577

1038

1811

187

714

1223
1746

2056
2651

4921

8845

464

1401

3482
4659 5074

7119

14397

25977

4530

22981

68235

10

100

1000

10000

100000

10k 20k 33k 45k 50k 64k 115k 200k 500k

Web page size (Kbytes)

de
la

y
(µ

s)

1 client

5 clients

15 clients

Fig. 6. Scalability of Content Filter in TIS.

2) MD5 and SHA1 Authentication Algorithms

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35

Traffic Load (Mbps)

de
la

y
(µ

s)

MD5, 64B

MD5, 512B

MD5,

1518B
SHA1 64B

Fig. 7. Cost of MD5 and SHA1 Authentication Algorithms.
This internal benchmark does not include DES

and 3DES tests because FreeS/WAN does not support
the DES algorithm. Since the MD5 and SHA1
algorithms are derived from the MD4 algorithm, their
characteristics are quite similar. The major difference
is that the SHA1 digest is 32 bits longer than the MD5
digest. Thus, SHA1 executes slower than MD5 on the
same hardware as shown in Fig. 7. The processing time
of 1518-byte packets is 31.89µs and 79.84µs for MD5

and SHA1, respectively. The digest generation process
includes (1) append padding bits to the original
message; (2) append the length of the original message;
(3) initialize input key; (4) process the message in a
sequence of 512-bit blocks; (5) generate the output
digest. Therefore, as the packet size increases, the time
for digest generation gets longer. The worst-case time
complexity of these two authentication algorithms are
O(n*m) where m, and n stand for the key length, and
the packet size, respectively.
六、結論

This paper provides the experiences of
integrating many open source packages into a security
gateway. Besides, a PostACK TCP-aware bandwidth
control approach is proposed. PostACK minimizes
buffer requirement up to 96% and has 10% goodput
improvement against TCR under lossy WAN. In
internal benchmark, we examine the CPU/ memory/
disk consumption of the open source solution, and
investigate the scalability of each key module. Finally,
observations of benchmarking and suggestions for
performance improvements are presented here. Table 5
summarizes the observations of our benchmarking.
The results of our study reveal that ipchains and
FreeS/WAN are viable compared to commercial
products, but TIS and Snort have performance
problems.

TABLE 5
SUMMARY OF OBSERVATIONS.

Module Characteristics Bottleneck Reason Worst-case Time
Complexity

ipchains CPU-intensive Increasing the
number of filters

Linear matching
algorithm

O(l+m+n); l, m, n: number
of filters in input, forward,
and output chains,
respectively

Squid Memory&

CPU-intensive

Increasing the
number of URL
regular
expressions

Linear matching
algorithm

O(n(l+m)); l: URL length in
HTTP requests; m: average
regular expression length; n:
number of URL regular
expressions

TIS CPU-intensive Increasing the
number of HTTP
connections and
the size of the
retrieved web page

1. Parse
configuration file
for each request

2. Only read one
byte of the web
page from the
socket interface at
a time

O(n); n: size of the retrieved
web page

Masquerade CPU-intensive Increasing the
number of
private-to-public
connections

Data structure of
masquerade table

O(n); n: number of
private-to-public
connections

FreeS/WAN CPU-intensive Using the stronger
algorithms

Too many
computation for
encryption and
authentication

O(n*m); m: key length;
n: packet size

Snort CPU-intensive Packet loss
frequently

1. Copy each packet
from kernel space
to user space

2. Linear matching
algorithm

O(l+m*n); l: number of
TCP/UDP/ICMP rule tree
nodes; m: number of
TCP/UDP/ICMP rule
options; n: packet size

七、參考文獻
[1] Linux kernel, http://www.kernel.org .
[2] ipchains, http://netfilter.filewatcher.org/ipchains/ .
[3] Squid, http://www.squid-cache.org .
[4] TIS, http://www.tis.com .
[5] FreeS/WAN, http://www.freeswan.org .
[6] Snort, http://www.snort.org .

