NSC91-2215-E-009-0709 -
91 08 01 92 07 31

9 2 10 27

N R B A

U
NSC9 1
91

2215
8

m
E 009
1

079
92

31

System-L evel Verification Interacting with Architecture Exploration
NSC91 2215 E 009 079

90 8

1 91 7 31

Email: lennon@cn.nctu.edu.tw

Abstract

The System-On-Chip (SOC) design
encompasses a large design space.
Typically, the designer explores the possible
architectures, selecting algorithms, choosing
architectura elements, and constructing
candidate architectures. Designing such a
complex system is hard; designing such a

system which will work correctly is even
harder. Design errors should be removed as
early as possible; otherwise, errors detected
a the later stages will result a costly,
time-consuming redesign cycles. Thus, the
designer should face two distinct tasks in
SOC design; carrying out design process
itself and establishing the correctness of a
design. Design correctness is the main
theme of this project. In the first year, the
tasks of this project are: proposing cost
models of architecture elements, developing
cost estimation engine, defining the data
structure of performance modeling,
developing the fundamental performance
models

K e y woperfdrisiance modeling,
system-level verification,
system-on-chip

The goa of this paper is to address the
challenges of increasingly complex
applications, highly integrated systems and
shorter design cycles of system-on-a-chip
(SOC) designs. The proposed design
methodology is based on efficient and
seamless Intellectual Property (1P) reuse. It is
divided into two phases: an exploration phase,

and a synthesis phase.

The exploration of architectures (based on a
large variety of IP cores) presents several
challenges to the designer, such as (1)
accuracy of simulation, (2) speed of
simulation, (3) hardware/software interfaces
[11], (4) efficiency of IP core selection, and
(5) lack of a unified environment that can
capture algorithm and architecture attributes.
We have developed a front-end design tool
that achieves efficient and rapid exploration
of architectures. Architecture exploration is
based on a reusable IP library composed of
both hardware and software components.
Both hardware and software components are
modeled at the same level of abstraction. The
front-end tool maps the designer’s solution
into a system-level simulation model and
generates performance results for the early
design phase.

Within our proposed exploration tool,
we use three axes, {algorithm, attribution,
structure}, to describe a target system.
Each of these axes can be tuned to compose
architecture. Based on the three-dimensional
representation, the proposed design tool
maps algorithms onto architectures, allowing
for hardware/software partitioning and
event-driven task scheduling. Using the
attributes of components (IP cores), the tool
then generates a time-faithful model of the
architecture. After simulation, the model
will estimate performance measures such as
processor utilization, memory size, bus
utilization, and interrupt overhead. Based
on these measures, designers can find
suitable specifications of IP components and
make a decision for the selection of
architectures, before committing to any IP
core or investing in long and costly
implementation details.

Intellectual Property (IP) reuse is
becoming essential in system-on-a-chip
design. It helps designers meet the challenges
of increasingly complex applications, highly
integrated systems and shorter design cycles.
However, effective IP reuse poses several
problems, notably in the integration and
validation of the foreign IP within the target
system. State-of-the-art design
methodologies do not address these issues,

but rather rely on IP vendors to assist
designers with the custom integration of their
IP cores. Recently, several EDA companies
teamed up with IP vendors to provide some
solutions to these problems [1]. The results
are interesting, but still rather IP-specific.
Our approach is meant to put IP integration
technology at the fingertips of the designers
themselves, thus reducing the gap between IP
vendors and system designers.

Once the architecture and the
appropriate 1P cores are identified, we use
our HW/SW cosimulation engine to generate
a system cosimulation test-bed by producing
al the required interfaces and wrappings
between the different | P cores.

Our cosimulation interfacing approach
extends the work described in [2]. It allows
for integration and validation of IP cores of
different forms (i.e., not limited to C), and
involves an optimized synchronization
scheme that can run in both event-driven and
lock-step modes (based on the different
phases of interactions between the IP core
and the rest of the system). The APl layer
adds to the generality and flexibility of the
proposed wrapping scheme, and protects the
IP core.

The cosimulation engine is based on a
high-level model describing the interactions
of an IP with the rest of the system, and a
multi-layered wrapping scheme of an IP
core. Using the interaction models and the
wrapping scheme, it allows plug-and-play IP
integration and validation, and heterogeneous
cosimulation.

Several issues must be considered when
integrating an IP core. One paramount issue
is the intended interaction of the foreign IP
with the rest of the system. We describe such
knowledge in a high-level model that forms
the basis for the synthesis of the IP-specific
interfaces to the rest of the system. Consider
for example the high-level model of a
master/slave interaction depicted in Figure
8.a. Here, both the master and the dave are
Intellectual Property cores. In the context of
Figure 1, the master is the DSP processor,
and the slave is one of the ASICs.

Tight-coupl ed

Fig.1 Master/Slave Interaction

L oose-coupled

An example scenario of a master/save
interaction, as shown in Fig.1, is as follows.
Initially, the dave is in an “IDLE" dtate,
waiting for orders from its master. It then
movesto an “Initialization” state triggered by
the master. During that state, the master isin
charge of initializing its slave. Typicaly, the
master will reset the IP core, and write into
the register file of the dave to set the
necessary information for the execution and
completion of the allocated task. For instance,
the master can set the pointers to the program
and data memories of the dave. It also sets
other core-specific information such as the
mode of operation. During the following
state, the master will initialize the DMA to
write the block of data (to be processed) to
the local memory of the dave. Finally, when
the data is transferred, the master supplies a
“go” signal to its dlave, triggering it to move
to a “Process’ state. During that state, the
interaction between the master and the slave
becomes loose (that is no lock-step
simulation is needed). Upon completion of
the execution of the allocated task, the slave
gets into a “Write Back” state, during which
the results are written back to the global
memory. The slave then interrupts its master,
informing it of the completion of the task. It
then moves back to the original “IDLE” state
where it waits for new orders from its master.

Synehrenization
(Comimiication

Fig.2 Integration layers of an |P core

Consider the IP model shown in Fig.2.
The IP core is wrapped with three layers: the
API layer, the communication layer, and the
synchronization layer. Such a multi-layered
model allows a seamless integration of IP
cores of different origins and in different
forms. Typically, each 1P can be accompanied
by its own different set of verification and
modeling tools. Such tools include HDL
models, Instruction Set Simulators (ISS), C
models, and emulator boards. These vary in
speed, accuracy, and level of abstraction, and
they are often used interchangeably during
the design cycle. The goa of our
multi-layered wrapping scheme is to allow
| P-based system integrators to use IP coresin
a plug-and-play fashion, and integrate and
reuse different |P models interchangeably.

The IP reuse technology described in
this paper is being used successfully in real
industrial environments. It is proving to be an
efficient and fast way to run heterogeneous
cosimulation, and quickly incorporate foreign
IP cores into embedded systems. Substantial
productivity gains and design-time
reductions have resulted from its use. In a
high-density central site modem (HDCSM)
application, we have been able to wrap
severa in-house IP cores and set up a
heterogeneous cosimulation system platform
in less than two weeks. This includes the
development of the API functions for the IP
cores, and the interaction models with the
system. We have developed and tested the
heterogeneous cosimulation IP models with
little knowledge about the cores themselves.
Applying different speedup techniques, we
have been able to accelerate the
heterogeneous system cosimulation
substantially (often by three orders of
magnitude). For example, we have been able
to speed up the system simulation of the
HDCSM application from three instructions
per second (RTL) to 1600 instructions per
second. Thus far, the IP-based synthesis
technology is only partially automated. The
communication layer and the client/server
interfaces are (generated automatically.
However, the designer’s assistance is needed
to define the interaction model, and the API
functions. Figure 3 illustrates analysis
environment using the proposed cosimulation

engine.

Fig. 3 HW/SW co-simulation environment

SOC

1. Hsien-Wen Cheng and Lan-Rong Dung,
2002, “EFBLA: A Two-phase matching
agorithm for FAST motion estimation,”
PCM 2002 .

2. Hsien-Wen Cheng and Lan-Rong Dung,
2003, “A Novel Vario-Power Architecture
of Motion Estimation Using a
Content-based Subsample Algorithm,”
SiPS 2003.

3. Hsien-Wen Cheng and Lan-Rong Dung,
2003, “A Power-Aware Architecture for
Motion Estimation,” the 14™ VLSI/CAD
2003.

| EEE

[1] Steven Vercauteren, Bill Lin, and Hugo De
man, “Constructing Application-Specific
Heterogeneous Embedded Architectures
from Custom HW/SW Applications,” 33“
Design Automation Conference, June, 1996.

[2 C. A. Vaderrama, FranJois Ndlabal, Pierre
Paulin, Ahmed Amine Jerraya, “Automatic
Generation of Interfaces for Distributed

C-VHDL cosimulation of Embedded Systems:
an Industrial Experience” 7" IEEE
International Workshop on Rapid Prototyping,
pp. 73-77, Thessalonki, Greece, June 1996.

[31Lan-Rong Dung, Mohamed Ben-Romdhane and
Marius Vassiliou, “IP-Based Architecture
Exploration,” DesignCon99, February, 1999

[4 1 Mohamed Ben-Romdhane, Marius Vassiliou and
Lan-Rong Dung, “Rapid Prototyping of
Multimedia Chip Sets’, ICASSP-99, March,1999

[51 Richard Goering, “New Tools will Force
Embedded Designers to Link Hardware/Software
Efforts — Codesign turns workplace on its head,”
EETimes, |ssue:988, January 12, 1998

[61JK. Adams and D.E. Thomas, “The Design of
Mixed Hardware/Software Systems,” Proc. Of
33" DAC, 1996, pp.515-520

[71Lan-Rong Dung and Vijay K. Madisetti,
1996, Fall, “Conceptual Prototyping of
Scalable Embedded DSP Systems,” |EEE
Design and Test of Computers, pp. 54-65

[81 C. A. Valderrama, Fran'lois Nalabal, Pierre
Paulin, Ahmed Amine Jerraya, “Automatic
Generation of Interfaces for Distributed
C-VHDL cosimulation of Embedded
Systems: an Industrial Experience,” 7" |IEEE
International Workshop on Rapid
Prototyping, June 1996.

