
行政院國家科學委員會專題研究計畫 成果報告

子計劃一：與組織探索階段互動之系統階層驗證技術

計畫類別：整合型計畫

計畫編號：NSC91-2215-E-009-079-

執行期間：91年08月01日至92年07月31日

執行單位：國立交通大學電機與控制工程學系

計畫主持人：董蘭榮

計畫參與人員：鄭顯文, 江宗錫, 張智凱, 黃柏涵, 林盟淳

報告類型：精簡報告

處理方式：本計畫可公開查詢

中 華 民 國 92年10月27日

行政院國家科學委員會補助專題研究計畫 ■ 成 果 報 告
□期中進度報告

對以智財單元為基系統晶片設計之驗證與測試技術開發研究

子計畫一:與組織探索階段互動之系統階層驗證技術

計畫類別：□ 個別型計畫 ■ 整合型計畫

計畫編號：NSC 91－2215－E－009－079－
執行期間： 91年 8月 1日至 92年 7月 31日

計畫主持人：董蘭榮

共同主持人：

計畫參與人員： 鄭顯文

 江宗錫

 黃柏涵

 張智凱

 林盟淳

成果報告類型(依經費核定清單規定繳交)：■精簡報告 □完整報告

本成果報告包括以下應繳交之附件：

□赴國外出差或研習心得報告一份

□赴大陸地區出差或研習心得報告一份

□出席國際學術會議心得報告及發表之論文各一份

□國際合作研究計畫國外研究報告書一份

處理方式：除產學合作研究計畫、提升產業技術及人才培育研究計畫、

列管計畫及下列情形者外，得立即公開查詢

 □涉及專利或其他智慧財產權，□一年□二年後可公開查詢

執行單位：國立交通大學電機與控制工程學系

中 華 民 國 九十二年 十月 二十六日

 1

行政院國家科學委員會專題研究計畫成果報告
對以智財單元為基系統晶片設計之驗證與測試技術開發研究

子計畫一:與組織探索階段互動之系統階層驗證技術
System-Level Verification Interacting with Architecture Exploration

計畫編號：NSC 91－2215－E－009－079－
執行期限：90年8月1日至91年7月31日

主持人：董蘭榮 國立交通大學電機與控制工程學系

計畫參與人員：

鄭顯文 國立交通大學電機與控制工程學系

江宗錫 國立交通大學電機與控制工程學系

張智凱 國立交通大學電機與控制工程學系

林盟淳 國立交通大學電機與控制工程學系

黃柏涵 國立交通大學電機與控制工程學系

Email: lennon@cn.nctu.edu.tw

一、中文摘要

系統晶片設計涵蓋很廣的設計空間。

設計者通常需要考量許多可能的系統組織

包括選擇演算法則、挑選組織元件、建構

候選組織。設計如此的複雜系統誠屬不

易，而要設計出能完全符合要求、正確無

誤的系統更為困難。設計上的失誤必須要

儘早排除，否則在後續階段才發現的失誤

將造成耗費耗時的再設計周期。因此，設

計者必須面對兩項課題，其一是實現設計

程序本身、另一是建立正確的設計結果。

其中，設計的正確性將為本計劃的主軸。

此子計劃第一年之工作為提出組織元素的

成本模型、發展成本評估核心公式、定義

效能模型資料結構、發展基礎效能模型。

關鍵詞：效能模型、系統階層驗證、系統

晶片

Abstract

The System-On-Chip (SOC) design

encompasses a large design space.
Typically, the designer explores the possible
architectures, selecting algorithms, choosing
architectural elements, and constructing
candidate architectures. Designing such a
complex system is hard; designing such a

system which will work correctly is even
harder. Design errors should be removed as
early as possible; otherwise, errors detected
at the later stages will result a costly,
time-consuming redesign cycles. Thus, the
designer should face two distinct tasks in
SOC design; carrying out design process
itself and establishing the correctness of a
design. Design correctness is the main
theme of this project. In the first year, the
tasks of this project are: proposing cost
models of architecture elements, developing
cost estimation engine, defining the data
structure of performance modeling,
developing the fundamental performance
models

Keywords: performance modeling,

system-level verification,
system-on-chip

二、緣由與目的

The goal of this paper is to address the
challenges of increasingly complex
applications, highly integrated systems and
shorter design cycles of system-on-a-chip
(SOC) designs. The proposed design
methodology is based on efficient and
seamless Intellectual Property (IP) reuse. It is
divided into two phases: an exploration phase,

 2

and a synthesis phase.

The exploration of architectures (based on a
large variety of IP cores) presents several
challenges to the designer, such as (1)
accuracy of simulation, (2) speed of
simulation, (3) hardware/software interfaces
[11], (4) efficiency of IP core selection, and
(5) lack of a unified environment that can
capture algorithm and architecture attributes.
We have developed a front-end design tool
that achieves efficient and rapid exploration
of architectures. Architecture exploration is
based on a reusable IP library composed of
both hardware and software components.
Both hardware and software components are
modeled at the same level of abstraction. The
front-end tool maps the designer’s solution
into a system-level simulation model and
generates performance results for the early
design phase.

Within our proposed exploration tool,
we use three axes, {algorithm, attribution,
structure}, to describe a target system.
Each of these axes can be tuned to compose
architecture. Based on the three-dimensional
representation, the proposed design tool
maps algorithms onto architectures, allowing
for hardware/software partitioning and
event-driven task scheduling. Using the
attributes of components (IP cores), the tool
then generates a time-faithful model of the
architecture. After simulation, the model
will estimate performance measures such as
processor utilization, memory size, bus
utilization, and interrupt overhead. Based
on these measures, designers can find
suitable specifications of IP components and
make a decision for the selection of
architectures, before committing to any IP
core or investing in long and costly
implementation details.

Intellectual Property (IP) reuse is
becoming essential in system-on-a-chip
design. It helps designers meet the challenges
of increasingly complex applications, highly
integrated systems and shorter design cycles.
However, effective IP reuse poses several
problems, notably in the integration and
validation of the foreign IP within the target
system. State-of-the-art design
methodologies do not address these issues,

but rather rely on IP vendors to assist
designers with the custom integration of their
IP cores. Recently, several EDA companies
teamed up with IP vendors to provide some
solutions to these problems [1]. The results
are interesting, but still rather IP-specific.
Our approach is meant to put IP integration
technology at the fingertips of the designers
themselves, thus reducing the gap between IP
vendors and system designers.

Once the architecture and the
appropriate IP cores are identified, we use
our HW/SW cosimulation engine to generate
a system cosimulation test-bed by producing
all the required interfaces and wrappings
between the different IP cores.

Our cosimulation interfacing approach
extends the work described in [2]. It allows
for integration and validation of IP cores of
different forms (i.e., not limited to C), and
involves an optimized synchronization
scheme that can run in both event-driven and
lock-step modes (based on the different
phases of interactions between the IP core
and the rest of the system). The API layer
adds to the generality and flexibility of the
proposed wrapping scheme, and protects the
IP core.

三、結果與討論

The cosimulation engine is based on a
high-level model describing the interactions
of an IP with the rest of the system, and a
multi-layered wrapping scheme of an IP
core. Using the interaction models and the
wrapping scheme, it allows plug-and-play IP
integration and validation, and heterogeneous
cosimulation.

Several issues must be considered when
integrating an IP core. One paramount issue
is the intended interaction of the foreign IP
with the rest of the system. We describe such
knowledge in a high-level model that forms
the basis for the synthesis of the IP-specific
interfaces to the rest of the system. Consider
for example the high-level model of a
master/slave interaction depicted in Figure
8.a. Here, both the master and the slave are
Intellectual Property cores. In the context of
Figure 1, the master is the DSP processor,
and the slave is one of the ASICs.

 3

Idle

Initialize

Load
Data

Process

Interrupt
Master

Write
Back

Tight-coupled

Loose-coupled
Fig.1 Master/Slave Interaction

An example scenario of a master/slave

interaction, as shown in Fig.1, is as follows.
Initially, the slave is in an “IDLE” state,
waiting for orders from its master. It then
moves to an “Initialization” state triggered by
the master. During that state, the master is in
charge of initializing its slave. Typically, the
master will reset the IP core, and write into
the register file of the slave to set the
necessary information for the execution and
completion of the allocated task. For instance,
the master can set the pointers to the program
and data memories of the slave. It also sets
other core-specific information such as the
mode of operation. During the following
state, the master will initialize the DMA to
write the block of data (to be processed) to
the local memory of the slave. Finally, when
the data is transferred, the master supplies a
“go” signal to its slave, triggering it to move
to a “Process” state. During that state, the
interaction between the master and the slave
becomes loose (that is no lock-step
simulation is needed). Upon completion of
the execution of the allocated task, the slave
gets into a “Write Back” state, during which
the results are written back to the global
memory. The slave then interrupts its master,
informing it of the completion of the task. It
then moves back to the original “IDLE” state
where it waits for new orders from its master.

Fig.2 Integration layers of an IP core

Consider the IP model shown in Fig.2.
The IP core is wrapped with three layers: the
API layer, the communication layer, and the
synchronization layer. Such a multi-layered
model allows a seamless integration of IP
cores of different origins and in different
forms. Typically, each IP can be accompanied
by its own different set of verification and
modeling tools. Such tools include HDL
models, Instruction Set Simulators (ISS), C
models, and emulator boards. These vary in
speed, accuracy, and level of abstraction, and
they are often used interchangeably during
the design cycle. The goal of our
multi-layered wrapping scheme is to allow
IP-based system integrators to use IP cores in
a plug-and-play fashion, and integrate and
reuse different IP models interchangeably.

The IP reuse technology described in
this paper is being used successfully in real
industrial environments. It is proving to be an
efficient and fast way to run heterogeneous
cosimulation, and quickly incorporate foreign
IP cores into embedded systems. Substantial
productivity gains and design-time
reductions have resulted from its use. In a
high-density central site modem (HDCSM)
application, we have been able to wrap
several in-house IP cores and set up a
heterogeneous cosimulation system platform
in less than two weeks. This includes the
development of the API functions for the IP
cores, and the interaction models with the
system. We have developed and tested the
heterogeneous cosimulation IP models with
little knowledge about the cores themselves.
Applying different speedup techniques, we
have been able to accelerate the
heterogeneous system cosimulation
substantially (often by three orders of
magnitude). For example, we have been able
to speed up the system simulation of the
HDCSM application from three instructions
per second (RTL) to 1600 instructions per
second. Thus far, the IP-based synthesis
technology is only partially automated. The
communication layer and the client/server
interfaces are generated automatically.
However, the designer’s assistance is needed
to define the interaction model, and the API
functions. Figure 3 illustrates analysis
environment using the proposed cosimulation

 4

engine.

VHDL SimulatorVHDL Simulator

Simulation
Waveform
Simulation
Waveform

ISA ModelISA Model

C modelC model

Fig. 3 HW/SW co-simulation environment

四、成果自評

本計畫第三年成功建立軟硬體共模擬

環境，可有助於組織探索階段完成軟硬體

互動之驗證工作。此技術已應用於各種有

線通信及多媒體 SOC 設計上。本計畫之研

究成果已發表下列兩篇國際會議論文與一

篇國內會議論文：
1. Hsien-Wen Cheng and Lan-Rong Dung,

2002, “EFBLA: A Two-phase matching
algorithm for FAST motion estimation,”
PCM 2002 .

2. Hsien-Wen Cheng and Lan-Rong Dung,
2003, “A Novel Vario-Power Architecture
of Motion Estimation Using a
Content-based Subsample Algorithm,”
SiPS 2003.

3. Hsien-Wen Cheng and Lan-Rong Dung,
2003, “A Power-Aware Architecture for
Motion Estimation,” the 14th VLSI/CAD
2003.

另外，部分研究成果正投稿于IEEE 期刊。

經由本計畫之執行已培養四名碩士畢

業生。該四名碩士畢業生目前服務於系統

晶片相關之高科技企業。

五、參考文獻

[1] Steven Vercauteren, Bill Lin, and Hugo De
man, “Constructing Application-Specific
Heterogeneous Embedded Architectures
from Custom HW/SW Applications,” 33rd
Design Automation Conference, June, 1996.

[2] C. A. Valderrama, Fran ois Na abal, Pierre
Paulin, Ahmed Amine Jerraya, “Automatic
Generation of Interfaces for Distributed

C-VHDL cosimulation of Embedded Systems:
an Industrial Experience,” 7th IEEE
International Workshop on Rapid Prototyping,
pp. 73-77, Thessalonki, Greece, June 1996.

[3] Lan-Rong Dung, Mohamed Ben-Romdhane and
Marius Vassiliou, “IP-Based Architecture
Exploration,” DesignCon99, February, 1999

[4] Mohamed Ben-Romdhane, Marius Vassiliou and
Lan-Rong Dung, “Rapid Prototyping of
Multimedia Chip Sets”, ICASSP-99, March,1999

[5] Richard Goering, “New Tools will Force
Embedded Designers to Link Hardware/Software
Efforts – Codesign turns workplace on its head,”
EETimes, Issue:988, January 12, 1998

[6] J.K. Adams and D.E. Thomas, “The Design of
Mixed Hardware/Software Systems,” Proc. Of
33rd DAC, 1996, pp.515-520

[7] Lan-Rong Dung and Vijay K. Madisetti,
1996, Fall, “Conceptual Prototyping of
Scalable Embedded DSP Systems,” IEEE
Design and Test of Computers, pp. 54-65

[8] C. A. Valderrama, Fran ois Na abal, Pierre
Paulin, Ahmed Amine Jerraya, “Automatic
Generation of Interfaces for Distributed
C-VHDL cosimulation of Embedded
Systems: an Industrial Experience,” 7th IEEE
International Workshop on Rapid
Prototyping, June 1996.

