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Abstract

Balanced realization method as a tool for RLC

interconnect circuit model reduction has many ad-

vantages over the moment-matching based meth-

ods. Computation complexity associated with the

solutions of Lyapunov equations seems to be the

main disadvantage of the method. Methods cur-

rently available for reducing computations are still

inadequate and further investigation is needed if

the method, as a tool for circuit model reduction,

is to be competitive.

1 Introduction

It has been asserted that interconnect de-
lay dominates gate delay in next generation
nanometer scale IC’s [1]. Rapid and accurate
analysis of interconnect delay is crucial for the
success of nano-scale IC design. Accurate anal-
ysis of interconnect delay taking into account

the transmission line effect is computationally
unrealistic. Lump approximations usually re-
sult in RLC circuits of sufficient high order that
are too computation intensive for simulation
tools such as SPICE. Circuit model order re-
duction is thus an important research topic and
many techniques have been proposed over the
last 10 years.

The techniques can be classified into two
groups: one based on moment matching and
the other based on balanced realization. Both
approaches have their origin in system and con-
trol theory. The idea of moment matching is
first applied to circuit model order reduction
in the name of asymptotic waveform evaluation
(AWE) [2]. The method of balanced realiza-
tion [3] appears more recently [9], [8]. It is
well-known that the moment matching method
may yield unstable reduced models. Our study
shows that for RLC trees, even a second-order
reduced model may be unstable [4]. For high-
order circuits, direct computation of moments
becomes very ill-conditioned. Much effort is
devoted to improving numerical robustness [7]
with some success, but the stability problem
remains. The method of balanced realization
on the other hand guarantees stability of re-
duced model at the expense of higher computa-
tion complexity. For high order circuits, com-
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putation of the balancing transformation may
also be ill-conditioned.

We study application of balanced realization
method and its variations to circuit model or-
der reduction. The report is organized as fol-
lows. Section 2 introduces balanced realization
method, properties of the reduced model, and
variations of the method. A method that re-
duces computation complexity based on low-
rank Lyapunov solutions is discussed in Section
3. Simulation results are shown in Section 4
and brief conclusions are given in Section 5.

2 Method of balanced realization

A linear time-invariant passive RLC circuit,
possibly obtained from lump approximation of
an interconnect, can be described by a standard
linear state equation

ẋ(t) = Ax(t) + bu(t)
y(t) = cx(t)

(1)

where u(t) is the source input, y(t) is the out-
put of interest, x(t) is the state, A ∈ Rn×n,
b ∈ Rn×1, and c ∈ R1×n. The transfer function
H(s) = c(sI−A)−1b is nth-order. By model or-
der reduction we mean finding a transfer func-
tion Hr(s), of order r < n, so that Hr(s) is close
to H(s) in some sense. In moment matching ap-
proach, the two transfer function are consider
close in that their first r moments are identical.
In balanced realization approach, the order re-
duction is obtained through a reduction in state
space dimension. The two transfer functions,
or equivalently the input-output relations, are
close in that only the most important (most
controllable and most observable) subspace is
kept in the reduction.

2.1 Model reduction procedure

A standard balanced realization procedure
to obtain reduced order model is as follows:

Step0: Given A ∈ Rn×n, b ∈ Rn×1, and
c ∈ R1×n.

Step1: Solve the Lyapunov equations

AWc + WcA
T + bbT = 0 (2)

AT Wo + WoA + cT c = 0 (3)

for the controllability gramian Wc and ob-
servability gramin Wo.

Step2: Compute the similarity transformation
T by

(1) Cholesky factorization of Wc

Wc = RRT

(2) forming W = RT W0R

(3) singular value decomposition

W = V Σ2V T

where Σ = diag(σ1, · · · , σn), σ1 ≥
σ2 ≥ · · · ≥ σn > 0

(4) setting T = RV Σ−1/2.

Step3: Obtain the balanced system

ẋ = Ax + bu

y = cx

where A = T−1AT , b = T−1b, and c =
cT .

Step4: To obtain a rth order reduced model,
partition compatibly A, b, and c as

A =

[

A11 A12

A21 A22

]

b =

[

b1
b2

]

c =
[

c1 c2
]

where A11 ∈ Rr×r, and the reduced order
model is

ẋ = A11x + b1u

y = c1x

with transfer function

Hr(s) = c1(sI − A11)
−1b1
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2.2 Properties of reduced models

Two most important properties of reduced
model are (i) stability and (ii) exact error
bound. More precisely, the first property means
that if the original model is stable, then the re-
duced model is also stable. We note that this
property is very desirable and the lack of it is
the main disadvantage of the moment matching
method.

The error bound is expressed in term of fre-
quency response and it is tight. More precisely,
for the original nth order circuit model and the
rth order reduced model, the error frequency
response E(jω) = H(jω) − Hr(jω) satisfies

max
0≤ω<∞

|E(jω)| ≤ 2

n
∑

k=r+1

σk

The main disadvantage of balanced realiza-
tion method is its computation complexity. To
find a reduced model, we need to find the bal-
ancing transformation T which requires the so-
lutions of two Lyapunov equations in addition
to the singular value decompositions that fol-
low. For high order circuits, the amount of
computation is huge. Furthermore, if the cir-
cuit contains modes that are either nearly un-
controllable or nearly unobservable, the com-
putation leading to a balanced system is ill-
conditioned and serious numerical difficulties
may occur.

The error frequency response spreads (in
general, quite evenly) over the entire frequency
range. In particular, the dc-gains of the models
do not match. This is undesirable, since many
interconnect (especially gate-to-gate intercon-
nect) do have unit dc-gain and it is important
to maintain this property in the reduced model.
(The moment matching method, in contrast, al-
ways maintain this property by matching the
0th moment.)

2.3 Modification of balanced realiza-
tion

To remove some of the disadvantages of the
method, a number of modifications have been

proposed. We mention three of them below.

(i) DC-gain matching
Consider the balanced system

[

ẋ1

ẋ2

]

=

[

A11 A12

A21 A22

] [

x1

x2

]

+

[

b1

b2

]

u

y =
[

c1 c2

]

[

x1

x2

]

Instead of removing the state component
x2 completely as is done in the original
balanced realization method, the modifi-
cation keep the steady-state value of x2 in
order to make the dc-gain of the reduced
model the same as that of the original
model. The idea is borrowed from the so
called singular perturbation method: the
state x1 contains the ‘slow’ dynamics and
the state x2 contains the ‘fast’ dynamics.
In considering the slow dynamics, the fast
dynamics can be assumed to be at steady
state. More precisely, for a given x1(t),
the steady-state value of x2(t) satisfies

0 = A21x1(t) + A22x2(t) + b2u(t)

that is

x2(t) = −A−1
22 (A21x1(t) + b2u(t))

Putting x2(t) into the first equation, we
get the reduced model as

ẋ1 = (A11 − A12A
−1

22
A21)x1 + (b1 − A12A

−1

22
b2)u

y = (c1 − c2A
−1

22
A21)x1 + (−c2A

−1

22
b2)u

The reduced model now has the same dc-
gain as the original model.

(ii) Frequency weighting
Many interconnect parameters, such

as delay time and rise time, depends
mainly on the low-frequency characteris-
tics of the transfer function. A good low-
order reduced model should have small
approximation error in the low-frequency
band, while larger error in the high-
frequency band can be tolerated. In

3



the balanced realization framework, fre-
quency weighting techniques are intro-
duced to achieve this desirable property
[5], [6]. The basic idea is to augment
the system with low-pass filter and then
compute balancing transformation for an
“equivalent ” system. This method is
shown to be effective [6].

(iii) The Schur method
The computation of balancing trans-

formation is usually ill-conditioned, this is
especially so for RLC circuits of high or-
der. Chiang and Safonov [10] proposes a
method to obtain the same reduced model
as the balanced realization method but
without explicitly computing a balanced
realization of the original system. Their
idea is to compute the Schur decomposi-
tion of the product gramian WcWo which
then provides an orthogonal basis for the
eigenspace associated with the selected
(large) Hankel singular values. Restrict
the dynamics to this subspace gives the
reduced model. The method is shown to
be numerically stable even the system is
nearly uncontrollable or unobservable.

All the three modifications mentioned above
still require solving the Lyapunov equations for
the controllability and observability gramians,
each of which amounts to solving a set of n(n+1)

2

linear equations for an nth order system. To
obtain an efficient method for model reduction,
it is very desirable to avoid solving large Lya-
punov equations.

3 Reducing computation com-

plexity

Much of the computation in obtaining a re-
duced model using balanced realization method
is devoted to the solutions of two large Lya-
punov equations. To reduce computation, the
Lyapunov equations can be solved approxi-
mately. The basic approach is to restrict the
solutions, respectively, to the Krylov subspace

Km(A, b) and Km(AT , cT ), where

Km(A, b) = span{b, Ab, · · · , Am−1b}

and

Km(AT , cT ) = span{cT , AT cT , · · · , (AT )m−1cT}

A procedure to obtain a set of m orthonormal
basis of Km(A, b), known as the Arnoldi proce-
dure, is as follows.
Arnoldi Procedure

(1) Choose b and compute q1 = b/‖b‖2

(2) for j = 1, 2, · · · , m

(a) Compute w = Aqj

(b) for i = 1, 2, · · · , m,

{

hij = wT qi

w = w − hi,jqi

(c) hj+1,j = ‖w‖2 and qj+1 = w/hj+1,j.

The procedure gives the set {q1 · · · qm} as
orthonormal basis of Km(A, b). Let Qm =
[q1 · · · qm], we have

QT
mQm = Im

and

R(Qm) = Km(A, b)

The Arnoldi procedure produces a Hessenberg
matrix Hm satisfying

QT
mAQm = Hm

The matrix Hm is the representation of A, re-
stricted to Km(A, b), with respect to {q1 · · · qm}.

A method proposed by Saad [11] to approx-
imately solve the controllability gramian Wc is
as follows.

Step1: Using Arnoldi procedure to find Qm so
that

QT
mAQm = Hm

where Hm ∈ Rm×m is Hessenberg matrix.
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Step2: Solving the low rank Lyapunov equa-
tion

HmGm + GmHT
m + β2e1e

T
1 = 0

where β = ‖b‖2 and e1 = [1 0 · · ·0]T

Step3: The approximate controllability
gramian is

Ŵc = QmGmQT
m

Now the Ŵc ∈ Rn×n has rank at most m
is a low rank approximation of Wc.

Similar procedure is used to compute a low
rank approximation Ŵo ∈ Rn×n of Wo, the
observability gramian. With the gramian Ŵc

and Ŵo obtained, the Chiang-Safonov proce-
dure can then be used to obtain a rth order
reduced model.

In general, the stability and accuracy of
the reduced model is not guaranteed especially
when m, the Krylov space dimension, is chosen
small compared with n.

4 Simulation results

We consider a 19th order RLC circuit shown
in Figure 1, the input is a voltage source and
the output of interest is the voltage at node 9.
The original transfer function is 19th order with
unit dc-gain.

By direct balanced realization, the 2nd-
order, 4th-order and 6th-order reduced mod-
els are constructed. The dc-gains of the re-
duced models are respectively 0.8526, 0.9984,
and 1.0001. Step responses of the original
model and the reduced models, shown in Fig-
ure 3, show that 4th- and 6th-order models give
very good match, while the steady-state error
of the 2nd-order model is about 15%. Figure 3
show that both 4th-order and 6th-order mod-
els have very small frequency response error,
the error of the 2nd-order model concentrates
mostly in the low frequency range ≤ 0.3GHz
and spreads quite evenly beyond.

By dc-gain matching, the frequency re-
sponse error in low-frequency range is greatly
suppressed, for the 2nd-order model the error
spreads quite evenly up to 1GHz as shown in
Figure 5. Step responses show that with dc-
gain matching, in Figure 4, a 2nd-order reduced
model is quite accurate as far delay time and
rise time are concerned.

Figure 6 shows the step response of reduced
models computed through low rank Lyapunov
solution. The dimension of Krylov subspace is
chosen 16 and the reduced model is 7th-order.
The model exhibits good transient response,
while substantial steady state error is observed.
The dc-gain mismatch is then corrected by scal-
ing , the error in transient response, however,
is then increased.

5 Conclusions

We consider the balanced realization
method as a tool for model order reduction
of RLC interconnect circuits. The method has
many advantages over the moment-matching
based methods. The need to solving Lyapunov
equations of large size seems to be the main
disadvantage associated with the method. Our
study shows the method now available for low-
rank Lyapunov solution does not substantially
reduced computations and further investigation
is need if the balanced realization method is to
become an efficient tool for interconnect model
reduction.
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Figure 1: An RLC circuit
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Figure 2: Step responses of original and reduced mod-
els
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Figure 3: Frequency (magnitude) response of original
and error transfer functions
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Figure 4: Step responses of original and reduced mod-
els after dc-gain matching
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Figure 5: Frequency (magnitude) response of original
and error transfer functions after dc-gain matching
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Figure 6: With low rank Lyapunov solution step re-
sponses of the original system and a 7th-order reduced
model
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