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Abstract | The in°uence of temperature variation on the performance of AWG based on ARROW
structures is discussed. Design of temperature-insensitive ARROW-based AWG devices is reported. The
passband shift can be reduced to 0.002 nm/K.

Index terms: integrated optics, antiresonant re°ecting optical waveguide, arrayed-waveguide grating,
wavelength-division multiplexing, temperature variation.

1. Introduction
Wavelength multi/demultiplexers are key components in wavelength-division-multiplexing (WDM)

systems. Among various con¯gurations, arrayed-waveguide grating (AWG) multi/demultiplexers are
attractive owing to easy fabrication, mass production, small size, and the ability of integration [1]. In
contrast to conventional waveguide structures, antiresonant re°ecting optical waveguides (ARROW's)
utilizing antiresonant re°ection as guiding mechanism instead of total internal re°ection can perform
low-loss single mode propagation with relatively large core size [2]. ARROW-based AWG demultiplexers
have been proposed, but the temperature e®ect on their performance has not yet been discussed.

In this presentation, the in°uence of temperature variation on the performance of AWG based on
ARROW structures is investigated. In order to reduce the temperature dependence, an overlay with a
negative temperature coe± cient is introduced, since the temperature coe± cient for the original structure
is positive. The improved design of temperature-insensitive ARROW-based AWG devices is reported.

2. Temperature Dependence of the ARROW-based AWG Performance

The 3-D Si-based ARROW structure used for AWG devices is shown in Fig. 1. It is a multi-layered
structure with an ARROW con¯guration in the vertical direction (x) and a conventional waveguide
structure along the lateral direction (y). The material of the core and the second cladding layer is SiO2
(nc = nl = 1:45) and the high-index ¯rst cladding layer is poly-Si (nh = 3:50). The free-space operating
wavelength ¸0 is 1.55 ¹m. To attain a low insertion loss for the ARROW-based AWG devices, whose
optical path length is usually several centimeters, the thickness of the core layer is chosen to be 7:00 ¹m
to keep the propagation loss of the vertical ARROW structure acceptably low. The thickness of the ¯rst
and second cladding layers are found to be 0.12 and 3:50 ¹m respectively, by satisfying the transverse
antiresonant condition [2]
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where i = h; l, and dc;core is the thickness of the core layer. For single-mode operation in the lateral
y-direction, the thickness of the core layer in the lateral cladding regions dc;clad is chosen to be 4:80 ¹m.
The e®ective index method (EIM) is used to analyze the 3-D waveguide structure.

To investigate the temperature dependence of the ARROW-based AWG performance, the temper-
ature coe± cient of the refractive index of SiO2 ¯lm (dn=dT = 7:93 £ 10¡ 6=K [3]) and Si (dn=dT =
160 £ 10¡ 6=K [4]) are introduced into the analysis. Fig. 2 shows the e®ective index of the fundamental
mode of the vertical 2-D ARROW structure in the core region versus temperature. The slope of the curve
dNeff=dT can be found to be 7:96 £ 10¡ 6=K, which is relatively close to the temperature coe± cient of
the refractive index of the core layer. As for the 3-D structure, the width of the core region W = 7 ¹m,
which will be the width of array waveguides, is considered. The analyzed results show that the e®ective
index Neff is 1.4445, propagation loss is 0.077 dB/cm, and the temperature dependence dNeff=dT is
7:966 £ 10¡ 6=K.

The temperature dependence of the ARROW-based AWG performance, which can be described by
the dependence of the pass wavelength on the temperature, could be expressed as
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where ¸c is the central wavelength in free space, Nc is the e®ective index of the array waveguides, ¢ L
is the optical path length di®erence between adjacent array waveguides, and ® is the thermal expansion
coe± cient of ¢ L de¯ned as
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Since the thickness of the substrate is usually much greater than that of waveguide layers, the thermal
expansion coe± cient ® is mainly determined by that of the Si substrate (®Si = 2:63 £ 10¡ 6=K [3]).
Introducing the previous found values and the central wavelength ¸c = 1:55 ¹m into Eq. (2), the
temperature dependence of the pass wavelength of the proposed ARROW-based AWG is obtained as

d¸
dT

= 1:26 £ 10¡ 5 ¹m=K = 1:26 £ 10¡ 2 nm=K: (4)

This value is quite near the temperature dependence of a conventional AWG (1:2 £ 10¡ 2 nm/K [1]).

3. Design of Temperature-Insensitive ARROW-based AWG

The temperature dependence of the ARROW-based AWG must be reduced or eliminated to pre-
vent the use of power-consuming temperature controllers. From Eq. (2), the athermal (temperature-
insensitive) condition can be obtained if
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where ® sub is the thermal expansion coe± cient of the substrate. Since Si substrate has a positive thermal
expansion coe± cient, it's required to ¯nd a negative value of dNeff=dT to satisfy the above equation. For
this purpose, an additional overlay with a negative value of dNeff=dT is added on the original structure,
as shown in Fig. 3. Here, silicone polymer is chosen and its refractive index and temperature coe± cient
are 1.50 and ¡ 370 £ 10¡ 6=K [1], respectively. To have a negative value of dNeff=dT and maintain low
propagation loss, it can be found that the thickness of the silicone overlay dadd = 0:60 ¹m is suitable
and then dNeff=dT of the vertical 2-D ARROW structure in the core region becomes ¡ 5:09 £ 10¡ 6=K.
Since the vertical 2-D structure in the core region has been changed, the thickness of the core layer in
the lateral cladding regions is adjusted to be 5:50 ¹m to maintain single-mode operation in the lateral
direction and low propagation loss.

Fig. 4 shows the fundamental-mode e®ective index of the proposed ARROW structure with a silicon
overlay versus temperature. In comparison with Fig. 2, it can be seen that the variation of the e®ective
index is signi¯cantly reduced. The temperature dependence of the wavelength shift of the ARROW-based
AWG with and without a silicone overlay are displayed in Fig. 5. The overall wavelength shift of the
proposed temperature-insensitive ARROW-based AWG within the temperature range of 0{50±C is below
0.08 nm, and the temperature dependence of the channel pass wavelengths is reduced to 0.002 nm=±C,
i.e., 0.002 nm/K.

4. Conclusion
The temperature dependence of the performance of AWG based on ARROW structures is analyzed.

For the positive temperature dependence of the structure, a silicone overlay with a negative temperature
coe± cient is used on top of the channel of the 3-D ARROW structure to reduce the temperature depen-
dence. Based on the structure, a feasible design of temperature-insensitive ARROW-based AWG devices
is reported. The pass wavelength shift can be signi¯cantly reduced from 0.0126 nm/K to 0.002 nm/K.
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Figure 1: The schematic view of 3-D ARROW 
structure for AWG devices. 
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Figure 2: The effective index of the vertical 2-D 
ARROW structure in the core region versus 
temperature. 

 
Figure 3: 3-D ARROW structure with a silicone 
overlay on top of the core layer in the core region. 
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Figure 4: The temperature dependence of the 
effective index of the ARROW with a silicone 
overlay. 
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Figure 5: The wavelength shift versus temperature 
of ARROW-based AWG devices. 

 
 


