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摘要 

 
近年來由於消費性電子產品市場的崛起，帶動國內外對嵌入式系統

（Embedded System）及其相關環境的研究。然而，目前嵌入式系統仍
存在著二個嚴重的缺失：缺乏延展性及缺乏一套完整的資源排程機制。 

90年代被提出的的可延展式核心架構（extensible kernel architecture）
試圖提升系統的可延展性。然而，它主要的議題皆在探討如何讓應用程

式調整系統服務之餘，系統仍能保持正常的運作與效能。有關嵌入式系

統資源有限(resource-limited)的問題並不在其探討的範圍內。 
本計畫預計以三年時間探討新一代的具可延展性的嵌入式系統架

構。我們將專注的議題在於：如何在資源有限的環境下提供彈性化及可

下載的系統服務機制。藉由本計畫，我們希望能擷取嵌入式系統，可延

展式核心架構，以及元件化作業系統的優點，開發新一代更適合於嵌入

式設備的作業系統架構。 
此計畫之成果已發表於國際期刊：The Journal of Systems and 

Software第 67期卷一(2003)。茲以其內容為成果報告內容。 
 

關鍵詞：作業系統、嵌入式系統、可延展性系統、軟體元件 
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Abstract 

 
In recent years, raise of market for comsumption-electronic 

products has pushed the researches on embedded systems and their 
associated environments. However, there are two drawbacks for current 
embedded systems. They are lack of extensibility and lack of an 
integrated resource scheduling mechanism. 

Extensible kernel architectures, which are proposed in Nineties, aimed at 
improving the extensibility of their systems. However, the major issue is to 
allow applications extend the services provided by the kernels while the system 
integrity and performance are still maintained. The resource-limited problem in 
embedded systems are out of their research scope. 

In this project, we will spend 3 years researching on next generation, 
extensible embedded system architecture. We will focus on providing a 
mechanism for flexible system-service downloading in resource-limited 
environment. We plan to catch the strength of embedded systems, extensible 
kernels and component-based systems, and to develop a system architecture 
that is suitable for next generation embedded devices. 

The result of this project was published on the Journal of Systems and 
Software, Vol. 67, No. 1, 2003. And, we use it as the main part of the project 
report. 

 
Keywords：Operating System, Embedded System, Extensible System, Software 
Component 
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1. Introduction 
In recent years, Internet technologies together with the rapid development of 

embedded system techniques have made many network-enabled embedded devices 
prominent. One critical design trend of these devices is that consumers are driving the 
shift of embedded devices from static and fixed-function systems to more dynamic 
and extensible ones (Sun, 2001). At the hardware level, extensible devices such as 
Visor handhelds (Handspring, 2002) contain expansion slots so that they can become 
wireless Internet devices, mobile phones, MP3 players, and etc. However, many kinds 
of functionality require not only hardware components but also software system 
modules. For example, a Bluetooth-enabled device requires a hardware Bluetooth 
module as well as the Bluetooth protocol stack. For another example, to access data 
on a disk, not only the disk drive is required but also the driver and the file system are 
needed. At the software level, users may wish to download various kinds of 
applications from remote sites and execute them on their devices. Many of the 
downloaded applications require extra support from the operating system. For 
instance, a multimedia application may specify a different scheduling policy to satisfy 
its own need. For another instance, a high priority network application may ask the 
system to use a priority based packet scheduling policy instead of the default one (e.g., 
FCFS) to increase its throughput. Therefore, the kernels of these devices must be 
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extensible so as to support the diversity of these runtime-added functionality and 
downloaded applications. However, supporting extensible kernels requires more 
resources and therefore is not affordable for many resource-constrained embedded 
devices. Owing to the low cost requirement, these devices are usually equipped with 
only small-sized ROMs or RAMs, and they often have no local disks. 

Due to the reason mentioned above, many embedded kernels are still not 
dynamically extensible. For example, the VRTX (Mentor, 2000) kernel is not 
extensible; the Nucleus (Accelerated, 2001) and eCOS (Red, 2001) kernels are only 
statically extensible, which means that they are allowed to be configured at compile 
time only. Such extensibility is not enough. Imagine that a user plugs a disk to his 
embedded device via a USB link and downloads a Java applet to read information 
from the disk. To allow the applet to access the disk, a file system should be presented 
in the embedded kernel. If the kernel is not configured to have a file system, the user 
will have to stop all the applications, reconfigure the kernel, install and reboot the 
kernel again. For another example, an application may have several threads and desire 
to specify a different scheduling policy to satisfy its own need. If the kernel is not 
configured to provide the policy, the above re-configuration process should be 
performed again. Obviously, these situations do result in inconvenience to the users. 
Therefore, embedded kernels should be extensible (i.e., dynamically extensible) even 
though the devices are resource-limited. 

Many desktop operating systems such as Linux are already extensible. By using 
the technique of loadable kernel modules (LKM) (Pomerantz, 1999), these kernels 
can be extended at run time. In addition to the LKM, many research efforts such as 
micro-kernels, extensible kernels, and Java operating systems also focus on the 
extensibility of kernels. However, none of them address the resource-limited problem 
of embedded devices. Therefore, our goal is to make an embedded kernel extensible 
while keeping the added overheads minimal. 

We propose a framework, named Operating System Portal (OSP) framework, to 
achieve this goal. In this framework, we assume that embedded devices are 
continuously connected to a resource-rich server (i.e., the OS Portal). The OS Portal, 
as the name indicates, acts as a portal site of kernel modules. It provides all the 
possible kernel modules that an embedded device may need. An embedded kernel is 
just equipped with a base set of modules on its initialization. During the execution of 
the applications, the embedded kernel may download other modules and perform 
module replacement on demand (e.g., replacing the current thread-scheduling module, 
say FIFO, with a new one, say Round-Robin).  

Our work is unique in that we move the job of module-linking, which is 
traditionally performed on the embedded kernel, to the OS Portal. This makes an 
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embedded kernel extensible while keeping the increase on the memory footprint 
minimal. According to the performance measurement, the overhead of our technique 
is only about 1%, compared to those of the traditional approaches. As a consequence, 
our technique can be applied to a much wider range of embedded systems. In addition, 
we use a mechanism named cooperation-based module replacement to perform 
on-line replacement of kernel modules. On-line module replacement is necessary 
since it is not feasible to exit all the running programs before replacing kernel 
modules. However, on-line replacement is more complex than the off-line one. This is 
because kernel modules always encapsulate some run-time information, and replacing 
a kernel module with a new one usually involves the transfer of this information. In 
this mechanism, such an information-transfer is accomplished through the cooperation 
between the involved modules. The benefit of this mechanism is that it hides the 
details of the module replacement from the irrelevant part of the kernel, making the 
kernel easier to maintain and upgrade. 

The rest of the paper is organized as follows. Section 2 presents the alternative 
approaches that can be used to make embedded kernels extensible. We describe the 
design and implementation of the OSP framework in Section 3. The performance 
results are given in Section 4. Section 5 shows the research efforts that are related to 
ours. We describe the limitations of the OSP framework in Section 6. Finally, 
conclusions and future works are given in Section 7. 

 

2. Alternative Approaches 
In this section we describe two alternative approaches that can be used to make 

an embedded kernel extensible: network file system (NFS) based approach and socket 
based approach. Both are based on the LKM model. 
  
2.1 Network File System (NFS) Based Approach 

Many desktop operating systems (e.g., Linux) are already extensible since they 
provide a mechanism to load kernel modules at run time. In these systems, modules 
are usually accessed via the local file systems. To address the problem that embedded 
devices usually have no local storages, we may adapt the system by performing the 
following tasks. First, we place the kernel modules on a remote site to save the 
storage need of the embedded devices. Second, we replace the local file system with a 
network one so that the embedded kernel can load modules from the remote site. 
Figure 1 shows the architecture of the NFS based approach. From the figure we can 
see that, a kernel-level dynamic loader is responsible for loading modules via the 
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network file system. Note that the module loaded to the client host (i.e., embedded 
device) is still left un-linked. The dynamic linker has to link it with the client-side 
kernel via the kernel symbol table. 

The advantage of this approach is that it doesn’t require any kernel 
modifications, and hence is easy to implement. However, the resource consumption of 
this approach might prevent it from being applied to resource-limited embedded 
devices. To make an embedded kernel extensible by using this approach, the 
following overheads are indispensable. First, the kernel must be equipped with a 
dynamic linker/loader. Second, the code and data of the VFS and NFS client should 
be included. Third, a kernel symbol table is necessary for the dynamic linking of 
modules. And finally, to support multiple object file formats, an object file reader has 
to be included in the client for each object file format. According to our experiments, 
the total size of these overheads is about hundreds of Kbytes, which is unaffordable 
for resource-constrained embedded devices. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The NFS Based Architecture 
 
 
2.2 Socket Based Approach 

From Figure 1 we can see that, the VFS layer and the NFS client are not a must 
for dynamic loading of modules. They only provide a file system interface for the 
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dynamic loader. Therefore, they can be excluded from the client kernel by replacing 
the interface with a socket-like one. Figure 2 shows the architecture of this socket 
based approach. A client-side dynamic loader issues requests to the server host. On 
the server side, a user-level server process is responsible for processing these requests 
and sending the requested modules to the client. Similar to the NFS based approach, 
the modules sent to the client are left un-linked. They are linked together with the 
client kernel by the client-side dynamic linker. 

This approach differs from the NFS based one in the following two aspects. 
First, it requires some kernel modifications. A traditional dynamic loader loads 
modules via a file system interface. Instead, this approach requires the dynamic loader 
to use a socket interface. Second, this approach eliminates the overheads of the VFS 
and the NFS client, making itself more feasible for resource-limited devices. However, 
the other overheads (i.e., the dynamic loader/linker, the symbol table, and the possible 
object file readers) are still a heavy pressure for such devices. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

Figure 2. The Socket Based Architecture 
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In this section, we shall describe the design and implementation of the OSP 
framework. Section 3.1 gives an overview of the OSP architecture. We describe two 
main techniques used in the OSP: server side module linking and cooperation based 
module replacement in Sections 3.2 and 3.3, respectively. Finally, the overall control 
flow of extending an embedded kernel is presented in Section 3.4.  
 
3.1 Architecture Overview 

Figure 3 shows the architecture of the OSP framework. It follows the 
client-server model. All the dynamically loadable modules are located on the server 
host. A user-level process (i.e., the OS Portal process) is responsible for loading, 
linking and transmitting these modules to the clients. A kernel-level module manager 
is installed on the client to make the client kernel extensible. During the client startup, 
the module manager registers the client to the OS Portal. After the registration, the 
module manager is allowed sending requests to load modules from the OS Portal. 
Generally speaking, generation of requests is related to the execution of client-side 
applications. For example, if a client application wants to use another CPU scheduling 
policy which is not supported by the current kernel, the module manager will send a 
request to the OS Portal, download that scheduling policy, and replace the current 
policy with the new one. 
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Figure 3. The OS Portal Architecture 
 
3.2 Server Side Module Linking 

The goal of the server side module linking is to make a resource-limited 
embedded kernel extensible, while keeping the imposed overheads minimal. As 
mentioned above, the OS Portal process on the server machine receives requests from 
client kernels and performs tasks according to those requests. There are two types of 
requests: REGISTRATION and LOAD_MODULE. The former is used for a client to 
register itself to the OS Portal, while the latter is used to load a specific module from 
the OS Portal. 

The OS Portal performs the following tasks when it receives a REGISTRATION 
request. First, it authenticates the client (for security or billing purpose). In our current 
implementation, the authentication is performed by using the user name and password 
provided by the client. After the client is authenticated, the OS Portal creates an 
in-memory symbol table for the client. The symbol table is created based on the 
symbol file, which is uploaded to the OS Portal prior to the execution of the client. 
The symbol file is obtained by nm, a GNU binary utility (Free, 1998) that prints the 
symbols and addresses of an object file, while building the client kernel. Note that, 
although clients can be dynamically extended, they share a common base kernel 
configuration. Therefore, they can use the same copy of the symbol file. After the 
symbol table is created, it will be updated as modules are dynamically loaded to the 
client. 

When the OS Portal receives a LOAD_MODULE request, it locates the 
requested module first. If the module is not found, it returns back a “module not 
found” error and let the client kernel process that error. The client kernel can simply 
discard this error message or request another module. If the module is found, the OS 
Portal will try to load and link it according to the symbol table of the client. In order 
to perform the module linking, the OS Portal has to know where the module will 
reside in the client-side memory (i.e., the starting address of the module). This address 
is client-specific and therefore should be provided by the client. It seems 
straightforward that a LOAD_MODULE request can carry a module_address 
parameter to specify the starting address of the module. However, sometimes it is 
impossible for a kernel to determine the module address without knowing the 
information (e.g., size) of the module. This is because that the kernel memory 
allocator may choose different memory allocation mechanisms for different size 
requirements. For example, in LyraOS (Cheng et al., 2000; Yang et al., 1999), the 
embedded kernel that is used in our work, memory blocks that are smaller than half of 
a page size are allocated via the power-of-two allocator. Other memory blocks are 
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allocated via the multiple-of-page allocator. Therefore, if the size is unknown, the 
client kernel will not be able to determine which memory allocator to invoke. As a 
consequence, it cannot determine the starting address of the module. 

We solve this problem by allowing the OS Portal to send the module size to the 
client when the client requests the module. After the client determines the starting 
address, it sends this address back to the OS Portal for module linking. Obviously, this 
requires another round trip of messages and therefore may degrade the performance of 
module loading. However, since module loading does not happen frequently, the extra 
round trip of messages will not have large impacts on the overall performance. In 
addition, client kernels can cache the sizes of frequently used modules and hence 
avoid the extra round trip of messages. 

After the module address is determined, the OS Portal is able to link the module 
with the client kernel. This is achieved by resolving symbols in the module via the 
symbol table of the client kernel. We modify the code of the Linux kernel module 
utilities 2.2.2 (Ekwall, 2001) to perform the symbol resolution1.  

After the module is linked, the OS Portal marshals the image and other 
information to a message buffer, and then sends the buffer to the client. Figure 4 
shows the format of the message buffer. Note that each module has two pre-defined 
management routines. The init() routine is used to initialize the module, and replace 
the current module with this one. The cleanup() routine is invoked when the module 
is to be replaced. The addresses of these two routines are contained in the message 
buffer to allow the client kernel to setup the module information quickly. 
 
 
 
 

Figure 4. The Message Buffer 
 

When the client kernel receives the message buffer, it can simply setup the 
module information according to its need, and then invoke the init() routine to replace 
the current running module with the new one (i.e., this module). 

At the end of this section, we describe the space overheads that are eliminated 
by the server side module linking. First, the dynamic linker can be removed from the 
client kernel. This includes not only the code and data segments of the dynamic linker 
                                                 
1 In the OSP framework, the OS Portal is able to support clients running on different processors. The 

client processor information can be sent during client registration and the requested module for the 

target processor can be linked and sent to the client. In current implementation stage, we only support 

x86 clients. Clients running on other processors will be supported in the future. 
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but also the dynamic memory that it allocates. Second, the embedded kernel does not 
have to keep the symbol table in the memory. This can save large memory space if 
there are lots of symbols in the table. And third, it is not necessary to provide an 
object file reader for each object file format. It is the responsibility of the OS Portal to 
support multiple object file formats. All module images transmitted to the client are 
already linked (i.e., resolved). Therefore, the client has no idea about the format of the 
linked images. This enables us to add new object file readers without modifying the 
client kernels, making the whole system easier to upgrade. 
 
3.3 Cooperation Based Module Replacement 

In this section, we show how modules are replaced at run time. One important 
requirement of the module replacement is that the details of the replacement should be 
hidden from the rest of the kernel. Only the modules involved have the idea of how 
the replacement performs. This makes the separation between the client kernel and the 
modules more clear, and therefore allows the development and management of the 
kernel easier. To achieve this, we use a technique, namely cooperation based module 
replacement, to replace modules at run time. Figure 5(a) shows the module 
replacement interface (MRI). This interface contains only one routine: init(), which is 
used to trigger the module replacement. Figures 5(b) and 5(c) show two example 
module interfaces based on the MRI, one is a scheduler interface and the other is a 
memory allocator interface. Both the module interfaces contain a mri field for module 
replacement. In addition, each interface contains a cleanup() routine, which is used 
for the handoff of run-time module information. For example, the scheduler.cleanup() 
routine returns a list of runnable threads that are managed by the scheduler module, 
and the memory_allocator.cleanup() routine returns a list of memory blocks managed 
by the memory allocator module. Note that the cleanup() routine of the old module 
should be invoked in the init() routine (specifically, the mri.init() routine) of the new 
one during the module replacement. In other words, when the client kernel downloads 
a new module from the OS Portal, it triggers the module replacement by invoking the 
init() routine of the new module. The init() routine will in turn invoke the cleanup() 
routine of the old (i.e., current) module. As a result, the run-time module information 
is handed over to the new module.  

In addition to these routines, each module interface contains a set of 
module-specific routines. For example, the scheduler module interface shown in 
Figure 5(b) contains the checkin() and checkout() routines that are used to add/remove 
a thread to/from the run queue of the scheduler. Similarly, the memory allocator 
interface in Figure 5(c) contains the malloc() and free() routines to allocate/free 
memory blocks. 
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In the following, we shall describe how cooperation based module replacement 
works by presenting the design of a CPU scheduling system that supports on-line 
replacement of scheduling policies. Other kernel systems can also be designed in the 
same way.  

We take the interface shown in Figure 5(b) as the scheduler interface. The 
scheduling policy is encapsulated in the checkin() and checkout() routines. Other part 
of the kernel does not have to know the implementation details of the policy. To 
replace the current scheduler S1 with a new one S2, the client kernel performs the 
following tasks. First, it contacts the OS Portal and downloads S2. Second, it invokes 
the init() routine of S2. In this routine, S2 in turn calls the cleanup() routine of S1 so 
as to make S1 check out all its runnable threads, and inserts these threads into a thread 
list, which is returned to S2. And then, S2 checks in all the threads in the list 
according to its policy. Finally, it frees the memory used by S1 and sets the pointer to 
the current scheduler (i.e., cur_scheduler) to itself. 
 
 
 
 
 

Figure 5(a). Module Replacement Interface 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5(b). An Example Scheduler Interface 
 

typedef struct { 
void (*init)(void);     // Trigger the module replacement and 

// initialize the module 
} MRI_t ; 

typedef struct  
{ 

MRI_t mri;       // Module replacement interface 
int (*checkout)( struct thread ** );  // Remove a thread from the run queue 

 int (*checkin)( struct thread * );   // Insert the thread into the run queue 
 ThreadList_t (*cleanup)(void);    // Clean up the module 
} scheduler_t; 
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Figure 5(c). An Example Memory Allocator Interface 
 
3.4 Overall Control Flow 

The control flow of the client registration and module loading is shown in 
Figure 6. The steps are as follows. 

1. After initialization, the client kernel sends a REGISTRATION message 
(together with its user name and password) to the OS Portal. 

2. The OS Portal authenticates the client, and then constructs the symbol table 
for the client. 

3. The OS Portal sends a message back to the client to tell whether the client is 
authenticated. 

4. If a client needs a module, it sends a LOAD_MODULE message to the OS 
Portal. The parameters include the module name, the starting address of the 
module, and a v bit that indicates whether the starting address is valid. If the 
starting address is not valid, messages 6 and 7 are needed to assist the client 
kernel to determine the starting address. Otherwise, these two messages are 
not necessary. 

5. The OS Portal loads the requested module and the related information to its 
memory. 

6. To help the client kernel determine the module address, the OS Portal sends 
the size of the module to the client. 

7. After receiving the size information, the client kernel determines the module 
address and sends it to the OS Portal. 

8. The OS Portal uses the starting address provided in message 4 or 7 to link the 
module. Symbols are resolved via the symbol table constructed in step 2. 

9. The linked image and the related information are marshalled in a message 
buffer, which is sent to the client. 

10. The client kernel invokes the init() routine of the module to trigger the 
module replacement. 

 

typedef struct  
{ 

MRI_t mri;          // Module replacement interface 
void (*malloc)(unsigned int size) ;  // Allocate memory  
void  (*free)(void *ptr) ;    // Free memory 
MemList_t (*cleanup)(void);   // Clean up the module 

} memory_allocator_t; 
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Figure 6. The Control Flow of Registration and Module Loading 

 

4. Performance Measurement 
In this section, we compare the performance of the OSP framework with the 

other two approaches: the NFS based and the socket based approaches. In the 
comparison, we provide detailed breakdowns of their overheads. In addition, we also 
show the performance of the OSP framework by presenting the request processing 
time and the server throughput. 
 
4.1 Experimental Environment 

The experimental environment consists of a client and a server host that are 
connected via a 10 Mbits/second Ethernet. The server host is a Pentium II 233 MHz 
machine with 128 MB RAM, running Linux 2.0.36. The OS Portal is a user-level 
process on the server host. The client host is a Pentium 133 MHz machine with 32 
MB RAM, running LyraOS 1.8. Table 1 shows the modules and total size of the 
LyraOS. 
 

Table 1. Modules and Total Size of LyraOS 
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Core Initialization, Memory, Thread, Scheduler 
Drivers Keyboard, Mouse, IDE HD, Ethernet 
Networking TCP, UDP, IP 

Total Size 200,400 bytes 
 

We implement three scheduler modules in LyraOS: Round-Robin (RR), 
first-in-first-out (FIFO), and fixed-priority (PRIO) scheduling. The sizes of these 
modules are 2,888, 2,824, and 3,328 bytes, respectively.  

In the next two sections, we compare the three approaches in terms of space 
overheads, which can be divided into the environment overheads and the module 
overheads. 
 
4.2 Environment Overhead 
4.2.1 NFS Based Approach 

Table 2 shows the environment overheads of the client kernel under the NFS 
based approach. Because most of the items are not currently available on LyraOS, we 
obtain these values by measuring the sizes of their versions on Linux 2.0.36. The 
dynamic loader/linker item shows the static size of the insmod program (Ekwall, 
2001), which allows privileged users to load modules into a running Linux kernel. 
The sizes of the following 3 items are obtained by building the Linux kernel and 
seeing their corresponding object file sizes. Note that the Sun RPC is included since 
the NFS client is based on it (Kohler et al., 2000)2. It should be noted that symbols in 
the object files are already stripped before we report the sizes. In addition to the above 
overheads, NFS based approach requires the kernel symbol table to be stored on the 
client. Since symbol tables are maintained in the OS Portal process in our system, we 
can measure this overhead by recording the high watermark of the memory that are 
used by the symbol table and the related data structures. The dynamic memory item in 
Table 2 shows the size of this overhead after a client has registered to the OS Portal. 
There are two points worth noting. First, the size of the symbol table is proportional to 
the number of symbols. The current configuration of LyraOS has 707 symbols, which 
result in an overhead of about 50Kbytes. Another kernel configuration that is 
equipped with a window management system has 1410 symbols, which lead to an 
overhead of about 110Kbytes (out of the 331Kbytes total kernel size). Second, this 

                                                 
2 Originally, the Sun RPC is based on UDP, whose static size is 5980 bytes after all the symbols for 

linking are stripped. If the original kernel does not contain UDP, this size should be included in the 

environment overheads. Otherwise, the Sun RPC implementation should be changed to use an 

alternative transport-layer mechanism that the kernel supports. 
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size will increase at run time as the kernel loads more modules during its execution. 
For example, the size will increase to 67Kbytes if all the three scheduler modules are 
loaded into the kernel. 

From the table we can see that an overhead of 210Kbytes is required to make an 
embedded kernel extensible. This overhead is larger than the size of the original 
kernel, 200Kbytes. Therefore, this approach may not become feasible unless the 
system vendors equip more memory in their devices. 
 

Table 2. Environment Overheads of the NFS based Approach 
 

Items Size (Bytes) 
Dynamic Loader/Linker 25,612 
VFS 62,636 
NFS Client 25,272 
SUN RPC 51,064 
Dynamic Memory 50,988 

Total 215,582 
 
4.2.2 Socket Based Approach 

Table 3 shows the environment overheads of the socket based approach. Since it 
does not rely on the file system interface, the overheads of VFS, NFS client, and Sun 
RPC can be eliminated. The other two overheads are the same as those in the NFS 
based approach. From the table we can see that the total overhead is about 76Kbytes, 
which still results in a notable increase in the kernel size. In addition, the same as the 
NFS based approach, the dynamic memory item will increase as module-loading 
events occur. 
 

Table 3. Environment Overheads of the Socket-based Approach 
 

Items Size (Bytes) 
Dynamic Loader/Linker 25,612 
Dynamic Memory 50,988 

Total 76,600 
 
4.2.3 OS Portal Approach 

The only overhead of the OS Portal approach is the module manager, which is 
only 2600 bytes according to our measurement. Note that since we do not keep the 
symbol table on the client, the overhead will not increase during the loading of 
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modules. In addition, adding support to new object file formats requires no further 
overheads on the client. Obviously, our approach does achieve the goal of making an 
embedded kernel extensible while keeping the added overhead minimal. 

Figure 7 summaries up the environment overheads of these approaches. The 
numbers in percentages show the proportions of the sizes of overheads to the original 
kernel size (i.e., the Base size). Except for the OS Portal approach, the others result in 
noticeable increases in the kernel sizes. 
 
 
 
 
 
 
 
 
 
 

Figure 7. Kernel Sizes of Different Approaches 
 

 
4.3 Module Overhead 
 In addition to the environment overheads, the OS Portal approach also differs 
from the others in the transmission sizes of modules (i.e., module overheads). Table 4 
presents the module overheads of the three scheduler modules we implemented. In 
this table, the numbers in parentheses are the ratios of module overheads under the OS 
Portal approach to those under the other two approaches. From the table we can see 
that, the transmission sizes under the OS Portal approach are only about half of the 
sizes under the other approaches. This is because the former transmits modules in the 
form of linked images, while the latter transmits modules in the form of object files. 
Generally speaking, object files occupy more space than linked images since the 
former contain more overheads, such as symbols for dynamic linking and other data 
structures. One exception is the declaration of large static data areas in the module 
(e.g., a large static, un-initialized array). This will usually make the linked image 
larger than the object file since the data areas are not contained in the latter. However, 
we can avoid this problem by allocating large data areas dynamically. As a result, the 
transmission sizes of modules can usually be smaller under the OS Portal approach. 
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Table 4. Transmission Sizes of Modules 
 

Approaches Modules 
NFS Socket OS Portal 

FIFO 2,824 2,824 1,240 (44%) 
RR 2,888 2,888 1,244 (43%) 

PRIO 3,328 3,328 1,700 (51%) 
 
4.4 Request Processing Time 

Table 5 shows the required time for processing requests. The registration item 
presents the time for the OS Portal to perform a REGISTRATION request. A major 
part of the time is spent on constructing the symbol table for the client. As we 
described earlier, the symbol table has 707 entries. The module processing item shows 
the time for the OS Portal to process a LOAD_MODULE request to the FIFO 
scheduler module. It includes the time to locate and load the module to the memory, 
link it with the client kernel, marshall the response to a message buffer, and then send 
the buffer down to the TCP/IP stack. The last item (i.e., module downloading) 
presents the total elapsed time for the client to download the FIFO scheduler. Since 
the module-loading operation does not happen frequently, we expect this 20ms-delay 
as an acceptable value and will not cause noticeable performance degradation on the 
client. 
 

Table 5. Request Processing Times 
 

Task Time(ms) 
Registration 4.14 
Module Processing 3.47 
Module Downloading 20.60 

 
 
4.5 OS Portal Server Throughput 

In order to see the throughput of the OS Portal server, we wrote a micro 
benchmark to measure the number of requests the server can service in a second. In 
the benchmark, we fork several client processes. After registering to the OS Portal 
server, each client process makes as many module requests as possible in a 
pre-defined period of time (currently, 30 seconds). After the time period, each client 
process reports its number of completed module requests (i.e., requests that the 
corresponding modules are received by the client successfully). Therefore, we can get 
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the number of requests the server handles in a second by summing up the numbers 
and dividing the result by the time period.  

 
Table 6. Configurations for Testing the OS Portal Throughput 

 
Configuration 

Name 
OS Portal 

Host 
Client 
Host 

Connection  
Type 

 
PII_REMOTE 

 
Pentium II 233MHz

128MB RAM 

 
Pentium 300MHz 

128MB RAM 
 

 
TCP/IP over 
10Mbits/sec 

Ethernet 
 

PII_LOCAL 
 

Pentium II 233MHz
128MB RAM 

 
Pentium II 233MHz

128MB RAM 
 

 
UNIX Domain 

Socket 

 
K7_REMOTE 

 
K7 600MHz 

256MB RAM 

 
Pentium II 233MHz

128MB RAM 
 

 
TCP/IP over 
100Mbits/sec  
Fast Ethernet 

 
K7_LOCAL 

 
K7 600MHz 

256MB RAM 

 
K7 600MHz 

256MB RAM 
 

 
UNIX Domain 

Socket 

 
To get a clearer view of the OS Portal throughput, we run the benchmark under 

four configurations, which are shown in Table 6. In this table, the OS Portal Host 
column shows the configurations of the host on which the OS Portal process runs. 
Similarly, the Client Host column shows the configurations of the host on which the 
client processes run. In this experiment, we run all client processes on the same host. 
The Connection Type column presents the connection mechanisms between the OS 
Portal and the client processes. Under the remote configurations (i.e., PII_REMOTE 
and K7_REMOTE), clients communicate with the OS Portal via TCP/IP sockets over 
10 or 100 Mbits/sec Ethernet. Under the local configurations (i.e., PII_LOCAL and 
K7_LOCAL), they use UNIX domain sockets for communication.  

Figure 8 shows the server throughput under these four configurations. From the 
figure we can see that, the OS Portal performs better under the local configurations. 
This is straightforward since UNIX domain socket does not incur the complex TCP/IP 
stack and the network delay. In addition, if the client processes are relatively fewer 
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(i.e., fewer than 4), an increase in the client number will usually lead to an increase in 
the server throughput. This happens because the client processes have not saturated 
the server yet. However, once the server is saturated, further increase in the client 
number will just result in more overheads and resource contentions, and hence cause 
degradation in the server throughput.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Throughput of the OS Portal 
 

It should be noted that, the x-axis (i.e., number of client processes) of Figure 8 
does not reflect the actual client numbers that the OS Portal can support. As we 
mentioned above, each client in this experiment spends most of its CPU time 
performing module requests. This is not the normal case because an embedded kernel 
will request to the OS Portal only when it occasionally needs a kernel module that it 
does not have. This figure does reveal that the OS Portal server can support more than 
1000 requests per second under the K7 configurations, and about 400 requests per 
second under the PII configurations. This is fairly enough for a server located in a 
home or a small/medium scaled enterprise. 
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For the last two decades, many research efforts on extensible systems have been 
proposed in the literature. However, such systems usually require much more 
resources. None of them addressed the problem of achieving the extensibility on 
resource-constrained embedded devices. Moreover, some of them result in the 
degradation of the system performance. In the following, we describe these research 
efforts. To make the description more clear, we divide some of the research efforts 
into several categories: micro-kernel, extensible kernel, Java operating system, and 
loadable kernel module (LKM). Other efforts are described following the description 
of the efforts in the above categories. 
 
5.1 Micro-Kernel 

Research on micro-kernels (Rashid et al., 1989a; Rashid et al., 1989b; Zuberi 
and Shin, 1996) moves most of the traditional operating system functionality to 
user-level server processes. It simplifies the extension of the operating systems since 
the extension can be achieved by adding or replacing the server processes. However, 
it suffers from the performance problem. Since most operating system services are 
implemented in user level, a service request requires two more context switches and 
another pair of protection-domain crossings. Moreover, micro-kernels and traditional 
embedded kernels are totally different in the kernel structure. Therefore, extending 
embedded kernels with this approach involves kernel re-design.  

In contrast with the micro-kernel approach, we focus on making an existing 
embedded kernel become extensible without re-designing the kernel. In addition, we 
use kernel-level modules so that our system will not suffer from the performance 
problem. Finally, we make use of the server-side module linking to reduce the 
resource requirements (specifically, the memory footprints) of the client kernels. 

 
5.2 Extensible Kernel 

To address the performance problem of micro-kernels, extensible kernels allow 
user applications to inject codes into the kernels so as to extend them. Because the 
injected codes run in the kernel mode, extensible kernels usually result in better 
performance than that of micro-kernels. However, the injected codes usually can not 
run in full speed because of the security problems. Extensible kernels often perform 
run-time checks to ensure that the injected codes will not damage the kernels. For 
example, SPIN (Bershad et al., 1995) uses software fault isolation (SFI) (Wahbe et al., 
1993) to restrict the memory area that the injected codes can access. Systems such as 
packet filters (Mogul et al., 1987), and HiPEC (Lee et al., 1994) allow interpretative 
codes to be injected and use kernel mode interpreters to enforce the system security. 
Such run-time checks do degrade the system performance. 
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The main reason of the performance problem is that the kernels do not trust the 
extension codes. In contrast with their approaches, we assume that kernel extensions 
(i.e., kernel modules) are trusted. This assumption is used in the previous research 
(Auslander et al., 1997). It also holds for most of the UNIX implementations. In our 
approach, kernel modules are developed by trusted system programmers or third 
parties, and are verified prior to execution. Therefore, they can run in full speed. In 
addition, our approach requires no re-design of the operating systems and puts efforts 
on reducing the resource requirements of the kernels. 

 
5.3 Java Operating System 

Java operating systems (JOS, 1997; Saulpaugh et al., 1999) allow the 
programmers to write system modules such as TCP/IP, and file systems in Java 
(Ritchie, 1997). The system modules are compiled as Java class files and are loaded 
by the JVM at run time. Liao et al. (Liao et al., 1996) take another approach. They 
insert a JVM into a micro-kernel so as to allow users to write Java programs to extend 
the kernel. Similar to the previous techniques, these approaches also suffer from 
performance problems. The major problem is that Java codes are interpreted, not 
compiled. Although the performance of interpretation improves since the birth of Java, 
there is still a performance gap between the interpreted and the compiled codes. Some 
Java platforms take advantage of just-in-time compilation (JIT) to improve the 
performance. This technique, however, is hard to be applied on resource-limited 
devices since it consumes too much memory to perform the compilation. In addition, 
the codes generated by the JIT compilation are less optimized since there is not much 
time to perform code optimizations. 

In contrast with the Java operating systems, we use compiled codes. Since codes 
are compiled off-line, there is much time to perform optimizations. In addition, we 
focus on making a C language-based embedded kernel extensible instead of re-writing 
a whole kernel in Java. And finally, we put efforts on reducing the resource 
requirements of the kernels. 

 
5.4 Loadable Kernel Module (LKM) 

As described earlier, many desktop operating systems such as Linux, provide 
loadable kernel modules to extend their kernels at run time. After being installed, 
kernel modules can run in full speed without any further run-time checks. The major 
problem of the LKM is its space overheads. As shown in the performance 
measurement section, it requires much more overheads than our approach.  

Oikawa et al. (Oikawa et al., 1996) take an approach similar to the LKM. They 
make RT-Mach (Tokuda et al., 1990) extensible by introducing Dynamic Kernel 
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Modules (DKMs). The same as LKMs, DKMs are stored as files and are able to be 
loaded/unloaded at run-time. However, DKMs are managed by a user-level DKM 
server, instead of the kernel. The server is responsible for loading a DKM when it is 
needed, and unloading a DKM when the kernel is short of memory. In contrast to this 
approach, we manage the kernel modules at remote site, reducing much local memory 
requirements. In addition, we address the issue of run-time module replacement, 
which is not mentioned in their work. 

In addition to the research described above, there are still many efforts on 
system extensibility or customizability. At the end of this section, we give brief 
descriptions on them.  

Kohler et al. (Kohler et al., 2000) propose a configurable IP router architecture 
named Click. Under this architecture, router functions are implemented in elements, 
which can finally be composed into a single Linux kernel module. By composing 
different elements, the developers can customize the router according to their needs. 
However, this customization is too coarse-grained even that it does support 
fine-grained components (i.e., elements). This happens because all elements are 
finally linked into a single module, and therefore the customization requires the whole 
router to be unloaded before the new router can be loaded. Router Plugins (Decasper 
et al., 2000) is a software architecture for fine-grained customization of routers. It 
uses the LKM mechanism supported by the kernels to load different plugins to extend 
the functionality of the router. Since routers are usually equipped with rich resources, 
the researchers did not address the resource-limited problems that we encountered.  

The OSKit (Ford et al., 1997) allows users to build their customized kernels by 
composing different system components. It also has a linking toolkit, named Knit 
(Reid et al., 2000), to assist users when composing these components. Different from 
our work, the researchers put most of their efforts on the link-time techniques, instead 
of providing a customizable and economic run-time environment.  

Helander and Forin (Helander and Forin, 1998) propose a modular system 
architecture. They also describe a dynamic module-updating mechanism that is 
similar to our module replacement technique. However, in their architecture, the 
extension modules are loaded via the file system. Therefore, it is similar to the LKM 
approach that we mentioned above. As we described in the performance measurement 
section, our approach requires much less overheads than theirs. 

DEIMOS (Clarke and Coulson, 1998), Kea (Veitch and Hutchinson, 1996), and 
Pebble (Gabber et al., 1999) are all extensible systems. However, they maintain 
symbol tables on the local site for dynamic extension. In addition, they do not address 
the problem of run-time module replacement. 

Finally, some other research (Gheith et al., 1994; Messer and Wilkinson, 1996) 
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allows the internal implementation, or the invocation methods of a service to be 
varied at run time, according to the invocation attributes. However, since all of the 
possible implementations of a service have to be installed in prior, this approach does 
not consider the resource consumption of the kernels. 

 

6. Limitations 
Although the OSP framework provides a way to extend embedded kernels 

effectively. It does have some limitations. In this section, we will describe these 
limitations. 

Scalability: In our prototype implementation, we use single sever machine as the 
OS Portal. Moreover, the OS Portal maintains a persistent connection for each on-line 
client. Therefore, the average request latency for a client will become longer as the 
number of on-line client increases. According to our experiment, the request latency is 
proportional to the number of on-line clients. When there are 100 clients, the request 
latency is 0.124 seconds while it becomes 1.26 seconds as the client number reaches 
to 1000. The experiment reveals that the request latency will become unacceptable if 
there are large number of clients, say 10000. We intend to use the following 
approaches to increase the scalability of the framework. First, we will replace the 
single server machine with a cluster of servers. Second, we intend to use 
connectionless protocols for client-server communication to reduce the server 
overheads for each client. In the future we will implement the approaches and 
evaluate the result performance. 

Static Module Interfaces: Although the client kernels can dynamically download 
kernel modules to extend their functionality, module interfaces are static. They must 
be defined and implemented in the client kernels in advance. For example, if a client 
kernel doesn’t implement a scheduler interface, it cannot perform module replacement 
on scheduler modules. To enable the replacement, a scheduler interface must be 
incorporated into the kernel and therefore kernel modification is needed. 

 

7. Conclusions and Future Works 
In this paper, we propose the Operating System Portal (OSP) framework to 

make an embedded kernel extensible while keeping the added overheads minimal. In 
this framework, embedded kernels are extended via kernel modules that are stored in 
the OS Portal server. We propose server side module linking to reduce the space 
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overheads of the embedded kernels. Moreover, we use the cooperation based module 
replacement technique to perform on-line module replacement.  

To prove the concept of the OSP framework, we implement a dynamically 
replaceable scheduling system based on the framework. According to the performance 
measurement, the space overhead of the OSP framework is only about 1%, when 
compared to those of the other approaches. Besides, its performance is acceptable for 
current network technology. 

In addition to the scheduling subsystem, we will implement other subsystems in 
the future for the completeness of our work. Moreover, current implementation of the 
OSP framework uses TCP/IP as the transport layer protocol. However, owing to the 
rapid development of wireless technologies such as Wireless LAN and Bluetooth, it 
should be useful to adapt our system to wireless network. However, we should 
consider the problem of mobility management if we use wireless technologies as the 
transport layer mechanisms. For example, if a client roams from an area controlled by 
the current OS Portal to another, the kernel symbol table for the client should be 
transferred to the new OS Portal. In the future, we shall try to implement the OSP 
framework on wireless links, measure their performance, and perform research on the 
mobility management in this framework.  
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結果自評 

在此計畫中，我們的目標是研究並製作一個具可延展性的嵌入式系統架

構。它可以讓應用程式選擇需要的系統功能及策略元件。我們把所有的系統功

能及策略元件放在元件入口站（Component Portal Site）。如此一來，嵌入式設
備便可動態地將其所要的元件從元件入口站載入。此外，我們以交通大學資訊

科學系系統實驗室這二年在國科會支持下開發的一個元件化的核心程式作為
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基礎，分析及研究其內各元件及元件間相互的關係，並將它修改成適用於支援

動態元件下載。我們的動態連結程式分成兩個部分：一個是 client端的Module 
Manager，一個是 server端的 OS Portal。我們將大部分負載重及耗費系統資源
的工作都放在 server 端作。如此一來，client端既具可擴充性又可大大節省系
統資源。至於元件入口站，其功能主要由 OS Portal 負責。經實驗證明，我們
的元件入口站可以支援每秒上千個要求，這對一般企業而言是非常足夠的了。

而嵌入式設備與入口站間通訊我們目前是用 TCP/IP。因為 TCP/IP是可信賴的
傳輸協定，讓我們不用去處理資料在網路中傳輸可能會遺失的問題。這樣可以

簡化我們系統在初期設計的複雜度。其協定如圖二。我們系統的優點在於：我

們的動態下載機制對系統資源要求遠比其他傳統方式低(甚至只有 1%)，所以非
常適用於嵌入式系統內。 

整體說來，此計畫的成果與預期之結果符合。同時，此計畫成果也已經

在國際期刊 The Journal of Systems and Software發表，並成為博士論文 A Study 
of Extensible System for Resource-Constrained Embedded Device的一部份。在此
計畫中，我們增加了許多嵌入式系統與作業系統的技術，對未來的研究有

頗大助益。 
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國科會補助計畫 

計畫名稱：具可延展性嵌入式核心程式及其資源排程技術之研究與設計

計畫主持人： 張瑞川        

計畫編號：                    學門領域：資訊工程 

技術/創作名稱 
Operating System Portal 

發明人/創作人 張大緯，張瑞川 

中文： 
我們提出了 Operating System Portal (OSP)的架構。它可以讓嵌入式系統
變得更有彈性。同時，我們也將使系統變得有彈性所需要花的成本降到

最低。我們將所有可能會用到的核心模組放在遠端的伺服器中，等到嵌

入式設備要用到時才將要用的模組下載到嵌入式設備來。除此之外，我

們也在嵌入式設備上實作一個機制可以動態抽換核心模組。 
 技術說明 

英文： 
We introduce the Operating System Portal (OSP) framework, which makes 
embedded kernels become extensible while keeping the added overheads 
minimal. By storing kernel modules on a resource-rich server and loading 
them on demand, the need for equipping a local storage on the device is 
eliminated. In addition, we propose mechanisms for reducing the memory
requirements and performing on-line module replacement on the embedded 
devices. 

可利用之產業 

及 

可開發之產品 

嵌入式系統 
消費型電子產品 
PDA, Smart Phone 

技術特點 

Remote Downloadable and Upgradeable System Components 
Efficient Downloading Framework 
On-Line Kernel Module Replacement 

推廣及運用的價值 
Make Resource Constrained Embedded System Become Flexible 
Reduce the Cost of System Upgrading 

※ 1.每項研發成果請填寫一式二份，一份隨成果報告送繳本會，一份送 
貴單位研發成果推廣單位（如技術移轉中心）。 

※ 2.本項研發成果若尚未申請專利，請勿揭露可申請專利之主要內容。 
※ 3.本表若不敷使用，請自行影印使用。 

 
 


