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Abstract
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The membrane transport in terms of transmission matrix, T(s), in the Laplace domain has
been extended to a more useful formulation. Thisis achieved with the help of a combination of
the uses of the matrix transport equations appropriate for initial conditions of void concentration
or saturated equilibrium within the membrane and the theorem det[T(s)] = 1. This new
formulation gives T(s) in power series of the Laplace variable, s, with the expansion coefficients
as the algebraic functions of the experimentally measurable parameters. permeability, time lag,
forward and backward time leads and their higher moments.  The utility of this new formulation
of the transmission matrix isillustrated in the estimation of the time moments for the first passage
and residence times, which are not measurable directly from the experiments.



Background, Purpose and Significance of the I nvestigation

Permeation transport across membranes is of great importance in science and technology,
and has played a crucial role in such diversed fields as chemical sensors,™? controlled release®*
separation processes,” protection against pollution,® electrodialysis,’ to name just a few. In
practical applications, three modes of membrane transport are employed:® (a) absorptive
permeation, zero and the activities at the upstream and downstream faces are at a constant level
ag (b) forward and/or backward desorptive permeation, (c) desorption, For heterogeneous
membranes, where the diffusivity D(x) and partition coefficientK(x) depending on position, the
permeation can be mathematically described by the Smoluchowski equation®™*
0 _ 0 0 p(x,t)
Ep(x’t)_&D(x)K(x)a_x KOO
entails the full time-dependent solution to the diffusion equation subject to appropriate boundary
and initial conditions. Unfortunately such a solution is seldom obtained except for some
simple, trivial cases. Thus one is usualy satisfied with a few diffuson parameters
characteristic of the permeation such as permeation (P), time lag (t, ) for absorptive and time
lead (t,) for desorptive permeation and their higher moments.’>*®* All these permeation

The complete knowledge about the membrane permeation

parameters can be obtained directly from the suitably designed experiments. Theoretically, they
can also be formulated via the Taylor expansion of the transmission matrix, T(S), in power series
of s with the expansion coefficients expressed in terms of the repeated integrals of

[K(x)D(x)] "t and K(x)** or by the method of repeated integration of the diffusion equation.**®

However, these formulations are useful only in the cases where the functions K(x) and D(x) are
known beforehand.

Anocther concern about diffusion transport is the moments of the first passage time'****®and
resdence time!*®  Ordinarily, neither are obtainable directly from the experiments.
Mathematically the former can be obtained by solving the adjoint (or backward)
diffusionequation'®™ and the latter by the Green's function of the diffusion equation.*”*®  Again
these tasks are feasible only when K(x) and D(x) are known ahead of time.

Method of Investigation and Results

Starting with the matrix transport equation and the appropriate initial and boundary conditions
and a further use of the definitions of the experimentally accessible diffusion parameters for
P(permeability), t_(time lag), t.(forward time lead), t(backward time lead) and their higher
moments, we are able to derive the Taylor’s expansion of the transmission matrix in a power
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series of Laplace variable, s, with the expansion coefficients as functions of the above mentioned
parameters.. Namely

F‘d (S)} _ T(S)Fu (S)} _ Fll (s T (S)} Fu (5)}
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where T, =t -t,, t@ =t —t@ 1 =t ¥ t_=t, -t_, 1?2 =tP® -t@ and

t® :tf_S) ~t®. The super index number in the parenthesis denotes the respective rank of

moment, and the definition of a j, B i, y jand & ; are self-explanatory.



Application
As an example, we consider the first passage time for a particle initialy located at X

between a reflecting face x,, and an absorbing face x4, X, <Xy <X4.™'® Solving this
problem requires the matrix transport equation for an initial condition of 3 -function type'**°

89 [2u®], [0
{ﬁd(sJ‘T(s){ﬁu(s)}” (S)M ©

where T (s) is the transmission matrix for the subdomain from x, to x4 . After

substitution of J,(s) =0 and a4(s)=0 into egn. (6), the flux escaping the face x4 is

caculated to be

_ T11(9)T22(8) = Tor (9 Tra(9)

J4(9) (7
‘ T11(9)
The mean first passage time can be represented by
jtJd (1) dt !
0 im d
=== —J 8
H1 =7, s 0ds a(® ®)
j Jq(t) dt
0

where the denominator represents the initial total amount which is equal to unity. Putting egn.
(7) into egn. (8) followed by expanding the transition matrix elements in terms of egns. (2), (3),
(4) and (5), we obtain

*

_ _ P
M1 =[t, +t—]F_t+ ©)

Here the quantity associated with the superscript * denotes the fact this quantity is to be specified
to the subdomain, xy<x<x4. The second moment of first passage time is also easily

calculated by



jtZJd (t)dt
0

lim d2 -
Mo=———"= —Ja(9)
S > Ods
de(t)dt
0
* % —(2)* P —(2 —(2 -2 * —
=2t T -1+ 0 410 2t 26 (f + ) (10)

where f: :tT_ —t: and fﬁrz)* :tf_z)* —tﬁrz)*. Thus with each quantity on the right-hand sides

of egs 9 and 10 being experimentally accessible, p; and p, can be estimated.

Conclusion

With such a Taylor expansion of transmission matrix as a tool and in cooperation with
appropriate matrix transport equations, the problems of time moments for first passage time, and
residence time can be solved algebraically. As aresult, various time moments can be expressed
by the agebraic function of the above-mentioned measurable parameters. Thus, some
experimentally inaccessible time moments can be estimated from permeation parameters
measurable in appropriate permeation experiments. This methodology for the estimation of the
time moments would provide a useful vehicle for the treatment of the membrane permeation and
other problems in diffusive transports.
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