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Abstract

Dynamic origin-destination (O-D) pattern representing time-dependent trip demands from
one place (origin) to another (destination) is one of the most essential input data for most traffic
operational analyses. Historical studies assumed that the transition matrix is known or at least
approximately known, which is unrealistic for a real world network. And due to the fact that the
number of trips to a specific destination, vy, is easy to obtain and the O-D variable, x (path flow
based in this research), is not directly observable, a Gaussian state space model is formulated to
describe the relationships of x and y, observation equations, and the dynamics of x , state
equations with unknown transition matrix. Under the assumption of Gaussian noise termsin state
space model, the distribution of random transition matrix F is derived. A solution algorithm
combining Gibbs sampler and Kalman filter to tackle the problem of simultaneous estimation of
F and x; based on the latest available information is proposed. Real O-D data from Taipei Rapid
Transit is used to verify the presented model and solution method. Preliminary results are
generaly satisfactory, showing that also in the unknown transition matrix case, significant
estimates are achieved.
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1 Introduction

Due to the high cost of origin-destination O-D data collection in the highway, traffic
engineers and researchers have been seeking estimation methods to derive the valuable O-D flow
information from less expensive traffic data, mainly, link traffic counts of surveillance systems.
The existing studies on estimating time-dependent O-D matrices with time-series of link flows
were classified into two categories by [1], i.e. dynamic traffic assignment DTA based and
non-DAT based. Namely, the assignment based studies naturally employ the DTA concept to
formulate the interrelation between O-D flows and link flows so as to establish a set of
observation equations. eg. [2]; [3]; [1]; [4]; [5] Computation of the assignment matrix is a
difficult task, for the elements in the matrix depend on mapping time-varying path flows to link
flows. The non-DAT based studies manage to formulate observation equations without the DTA
notion but assume that complete entering and leaving flows at origin and destination nodes are
available from traffic counts. These methods were successfully implemented against some
special networks for which the entry and exit counts are provided. e.g. [6]; [7]; [8]; [9]; [10];
[11] All of the above approaches were also divided into two groups in another way, pertaining to
closed networks and pertaining to general networks, by [4]. A closed network possesses some
similar meaning with non-DTA based method but does not strongly imply that the assignment
matrix is not used in the solution algorithm. In this paper, based on the previous work of [12],
extensions to consider lagged effects and both forward and backward filtering are formulated.
Especidly, without prior information of transition matrix, another very hard work is calculating
assignment matrix. We propose an algorithm to simultaneously estimate O-D matrices and
transition matrix. Performance of the proposed approach is evaluated by the observed passenger
counts data from the Nangkang line of Taipei rapid transit systems.

2 Model Specifications
2.1 Bsaicformulations

The standard state space model is coupled with two parts. transition equations and
measurement equations, and is illustrated as the following form.

X = FXeq T Uy,
Y, =Hx +v,,t=12..,n

(1)

For convenience, all the variables and subscripts in (1) are described to fit the terminology of

transit O-D estimation. Let x =(x,,x,....x,)" bethe O-D transition vector at time period t, t = 1,

2,...,n,and x; denote the number of passengers traveled at time period t of O-D pair j, j = 1,

2, P Yr = (Y Yeo o Vi)' 1S @0 Observed vector at timeinterval t, and the elements of  y, are the

counts of transmitted messages at all q stations; F is apxp random matrix; u,and v, are the noise



terms with independent N (0,%) and independent N (0,r) respectively. For considering the

lagged effects, it is necessary to distinguish the formulation between entry measurement
equations and exit measurement equations in (1). Then the entry measurement equations can be
written as

Yo = HoX +Vy,t =12,.,n 2
, Wherey, = (You, Yoz Yorg) 1S 8N Observed vector of entry counts at time interval t; the
elements of y, are the entry passengers at al q stations; H, describe the gxp origin-OD pair

incident matrix; v, are the noise terms with independent N,(0,r,). The exit measurement

equations are rewritten as

tmaX
Yoo = z HaX -1 ¥ Ve .t =12,..,0 3
t'=1

, Whereyy = (Ya, Yoz Yag)' 1S @0 Observed exit vector at time interval t; the elements of

yq are the counts of exit passengers at all q stations;, H, are the gxp destination-OD pair

incident matrices considering t',t' =12,.,t lagged effects. t ., is the maximal travel time

max !

among p O-D pairs. Waiting time and walking time of intra station should be included in

calculating t'. v, arethenoisetermswithindependent N,(0,1).

2.2 F matrix and Gibbs sampler

For simplicity, following concept and expressions are trandated by means of standard state
space mode, i.e. (1). Just as mentioned, transition matrix in this paper is assumed to be a random
matrix without any historical information of transition vectors. Then, we focus on the discussion
of the transition equationsin (1). If the transition equationsin (1) are rewritten as

X; = X, F'+u,t=12..,n 4
Let
X X5 U
X,=| M|, X,,=| M|, u=| M (5)
Xn X1 Uy
then we have

X, =X _F'+U (6)



We shall further suppose that the parameterization in terms of F' is so chosen such that it is
appropriate to takeF' as locally uniform, P(F') O constant. Consider the pxp symmetric matrix

S(F') = {Slj (Fi" F )} (7)
, Where

T [ . n
Sj (F‘ ! l:j ) - tzluti utj
= (xn(i) - xn—lFi’)’(xn(j) - Xn—le’)

; Xy Isthei-th columnvector of X; F' isthei-th column vector of F'.Let

n(i i

S 1y
Fi'= (X Xao1) ~ X X o

be the least square estimate of F',i =1, 2,..., p. Consequently, we get

S(F) = A+(F' = F')X{_ X4 (F' - F 9)

and A={a;} isthepxp matrix withits elements

a; = Xy = XnaF)' Kogly = XnaF) (10)

n(i) n(j)

, i.e. A is proportional to the sample covariance matrix. From the genera result in Gaussian
model, the posterior distribution of F' isthen

p(F'/X) 0|s(F| 72 )
= | A+ (F' = By X)X (F' - lf')|_%

It is clear now that we need a sampling scheme to generate conditional distributionsof F' and X
with
X [F X g, Zy ~ N(FX_,2,) (12)

F/X,Z
- ] (13)
~[k(n, p)]‘l\/%( %\xa_lxn_l\% |A+FX; X4 F| 72

The key to the above sampling scheme leads itself naturally to Gibbs sampler. Gibbs sampler is
a technique for generating random variables from a distribution indirectly without deriving the

density. Given an arbitrary starting set of {z{?,z{?,..,z%} , we draw



1 0) 0) 0
z® ~[z,/29,28,.,2°] ,
1 0 0 0
20 ~[2,/20,29..20] |
1) ) 0 0 0
z¥ ~[z,/22,20,z,..,z27,......

® - © 50 50
z® ~1z,/2*,28,.,z].

Thus each variable is visited in the natural order and k random generations forms an iteration.

After m such iterations we have {z{™,z{™...,z{™}. Under mild conditions, the following results

hold.[13]

GG 1 (Convergence).
(zm zm . ,z™ ¢z, .,2,,...zand hence for each s, z{™ - [Z] a m - . In fact a

slightly stronger result is proven. Rather than requiring that each variable be visited in repetitions
of the natural order, convergence still follows any visiting scheme, provided that each variable is
visited infinitely often.

GG 2 (Rate).
Using the sup norm, rather than the L; norm, the joint density of {z™,z{™,..,z™} converges

to the true density at a geometric rate in m, under visiting in the natural order. A minor
adjustment to the rate isrequired for an arbitrary visiting scheme.

GG 3 (Ergodic theorem).

For any measurable function T of Zz,z,..z, whose expectation exits ,

As Gibbs sampling through r replications of the aforementioned m iterations produces r i.i.d. k

tuples (z{",zP....z{")(j =1.2....r), which the proposed density estimate for ~ [ZJ] having form

r

[2.] =% [2./29Dr 2. (14)
=1

j
3 Solution Algorithm

In the context of our state space model, samples from the conditional distributions by the
sampling shceme mentioned in section 2.2 to implement the Gibbs sampler. Since the



observation information is not used in the conditional distributions, the proposed algorithm
combines the Kalman filter and Gibbs sampler and is briefly illustrated as the common
algorithmic format.

o Step 1 (Initiaization)

1.Use prior information to generate F*
2GivenZ, o, I'd
3.Givenx0 ~ N(u0,V0)

+ Step2(Generate x\,t=0,1,2,...,n )

1.Generate x{® from N(u0,V0)
2.Generate x.% from x /x9, F(@ ~ N(FOXD 5)

3.Use Kaman filter to filter x¥
4.Repeat 2,3fort=2,3,...,n
+  Step 3 ( Generate F9)

A(g) - {a_(_g)}
1.Calculate !

(9) — (y(9) (9) £1(9) yrry (9) (9) ¢ 1(9)
& = (Xn(i) ~ Xnah )(Xn(j) _Xn—le )

~i(9) 1(9) y (9) =1y, 1(9) y (9)
I:i - (xn—l xn—l) xn—l xn(i)

2.Caculate x:@x @

3.Generate w ~ Wishart (X9 x ‘9, n-p)

4.Generate

where z, ~iid Np(O,A(g))
5.Generate F (g) = ((wl/2)')-1 Z.

e Step 4 (Iteration)
Repeat Step 2, Step3 m  times.

4 Numerical results

Data resources in this paper is from O-D counts of Nangkang Line provided by Taipei
Rapid Transit Corperation. There are nine stations, between Taipei City Hall and Lungshan
Temple, considered and each is both origin node and destination node except two terminal nodes.
From the topology of nodes, the selected number of O-D pairs is fifteen for one direction. O-D



counts of 5-minute time period from 6:30am to 9:30am are collected. Then we show the
estimations of O-D pattern and the observed O-D data on Table 1.

Table 1. O-D Estimations vs. Real O-D Data

t |EST-1|RI-1.| EST-2 | RI-2. | EST-3 | RL-3 | EST-4 | RL-4
1 0 0 0 0 1 0 1 1
2 0 0 0 0 0 0 1 0
3 0 0 0 0 2 0 1 0
4 0 0 0 0 2 0 3 1
5 1 0 3 0 1 1 2 0
6 2 0 0 0 2 0 1 0
7 0 1 1 3 1 3 1 0
8 1 0 1 0 0 0 0 0
9 0 0 1 0 2 0 2 1
10| O 0 1 0 0 0 0 1
1| 1 0 1 0 0 0 0 0
121 O 0 1 0 1 0 2 1
13| 1 0 0 0 1 0 3 0
14| 1 0 0 0 3 0 2 1
151 0 0 1 0 1 0 0 1
16| 1 0 1 0 1 2 2 1
17| 1 0 1 0 0 0 2 3
18| O 0 0 0 1 0 1 0
19| O 0 0 0 1 0 1 0
2| 0 0 1 2 1 0 3 1
211 0 0 1 0 2 1 2 1
2| 1 1 1 0 3 0 1 2
231 0 0 1 0 1 1 0 2
241 0 0 1 0 0 0 1 1
25 1 0 2 0 0 0 1 0
26| 1 0 1 0 0 2 2 3
271 O 0 1 0 1 0 1 1
28| 1 1 2 0 3 1 1 2
29| O 0 2 2 3 1 0 0
30 2 0 2 2 1 2 1 0
31| 1 2 0 0 0 2 2 0
32| 2 0 1 1 2 0 1 3
33| 1 3 1 0 1 1 2 1
34| 0 0 1 0 0 0 2 1
35 0 0 1 5 1 1 3 0
36| 0 1 0 0 1 0 3 0
t | EST-5|RI-5.| EST-6 | RI-6. | EST-7 | RL-7 | EST-8 | RL-8




1 4 0 0 0 1 0 0 0
2 0 1 0 0 1 0 1 0
3 2 2 0 0 1 0 3 1
4 0 0 0 0 1 0 2 0
5 0 0 0 0 0 0 1 0
6 2 0 0 0 0 0 2 0
7 0 1 0 0 0 0 2 0
8 2 0 0 0 1 0 0 1
9 2 0 0 0 0 0 7 0
10| 2 1 0 0 0 0 0 2
1] 1 1 0 0 1 1 4 1
12| 1 0 0 0 2 0 0 0
13| O 1 0 0 1 0 1 0
14| 2 0 0 0 1 0 0 0
15| 2 0 0 0 1 0 1 0
16| 2 0 0 0 0 0 2 2
17| 2 0 0 0 2 0 3 0
18| 2 0 0 0 0 0 4 0
19| 1 0 0 0 1 1 2 0
201 O 1 0 0 1 0 1 0
21| 1 1 0 0 1 1 3 1
22| 1 0 0 0 2 0 2 0
23| 1 0 0 0 1 0 4 1
24| 1 1 0 0 0 0 1 0
25| 1 0 0 0 0 1 1 1
26| 2 0 0 0 3 0 1 8
27| 4 0 0 0 1 0 2 4
28| 1 3 0 0 0 1 3 1
29| 1 0 0 0 2 1 1 3
30| 0 0 0 1 2 2 1 0
31| 4 0 0 0 1 1 3 2
32| 0 6 0 0 1 0 0 0
33| 1 0 0 0 1 0 3 0
34| 0 0 0 0 1 0 1 1
3B| 2 1 0 0 0 1 2 2
36| 1 1 0 0 0 0 2 0
t | EST-9 |RI-9.| EST-10 |RI-10.| EST-11 | RL-11 | EST-12 | RL-12
1 1 1 6 1 11 0 6 0
2 3 0 3 1 15 2 5 0
3 0 2 1 0 3 4 2 1
4 3 0 4 1 4 6 2 2
5 2 0 6 0 27 1 7 0
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t |EST-13|RI-13.| EST-14 | RI-14. |EST-15| RL-15
1 0 0 2 0 0 1
2 0 0 1 0 2 0
3 1 0 0 0 1 0
4 0 1 1 0 0 0
5 0 0 0 1 1 0
6 0 0 2 0 2 0
7 1 0 0 0 1 0
8 0 0 1 0 0 0
9 0 0 1 0 1 0
10 1 0 0 0 1 0
1 2 0 1 0 0 0
12 0 0 1 0 1 0
13 3 0 0 0 1 1
14 0 1 0 1 0 1
15 2 0 1 0 1 1
16 1 0 2 2 3 0
17 2 1 1 0 1 0
18 3 0 2 0 0 0
19 1 0 1 0 0 0
20 1 0 0 0 0 0
21 1 1 2 0 0 0
22 0 0 0 0 0 0
23 0 3 2 0 0 0
24 1 0 1 0 2 0
25 1 0 2 0 1 0
26 0 1 2 1 2 2
27 0 4 0 1 1 0
28 2 0 3 1 2 1
29 0 0 1 2 3 0
30 1 0 1 0 2 0
31 0 0 1 0 0 1
32 2 2 1 0 0 1
33 2 3 3 0 1 2
34 0 0 0 0 1 1
35 0 0 1 1 2 0
36 1 0 1 1 0 0

The results shown above are generally satisfactory with estimated O-D pattern fitting with
real data. And the value of root mean square error (RMSE) is evaluated as 3. However, it is clear
that for those O-D pairs with very small or even zero counts illustrated here are not good enough.



This might come from the assumption of Gaussian noise terms. Or due to the limitation of
computer memory, the iteration number in Step 4 is not enough to reach the convergent state. So
it reminds us two things at least. First, non-Gaussian assumption would be better theoretically.
The second one is that the Monte Carlo-like simulation process to reach the convergent state is
deserved to further research both in theoretical and numerical analysis.

5 Conclusions

This paper provides a method of estimating time varying origin-destination matrices for the
rapid transit system by using the Gaussian state space model with an unknown transition matrix.
An agorithm illustrates the process that combines the Kalman filter and Gibbs sampler to
simultaneously estimate origin-destination matrices and transition matrix. Performance of the
proposed approach is evaluated by the real observed passenger counts data. Preliminary results
are generaly satisfactory, showing that also in the unknown transition matrix case, significant
estimates could be obtained. However, non-Gaussian assumption in noise terms and the
convergent behavior of MonteCarlo-like simulation process are deserved to futher study both in
theoretical and numerical analysis. Extentions to prediction process by considering real-time
updating information and the hierarchy-based estimation algorithm to relax the limitation on the
entry-exit-count specific network are also valuable issues in future research.
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