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Coupling of Polarization and Spatial Degrees of Freedom of Highly Divergent Emission
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The polarization of highly divergent modes of broad-area square vertical-cavity surface-emitting lasers
is shown to be only marginally affected by material anisotropies but determined by an interplay of the
polarization properties of the Bragg cavity mirrors and of the transverse boundary conditions. This leads
to a locking of the polarization direction to the boundaries and its indeterminacy for wave vectors oriented
along the diagonal. We point out a non-Poissonian character of nearest-neighbor frequency spacing
distribution and the impossibility of single-wave number solutions.
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Vertical-cavity surface-emitting lasers (VCSELs) are a
special kind of semiconductor lasers which combine a high
potential for applications with intricate dynamical behav-
ior of fundamental interest in physics. The coherence of
broad-area VCSELSs is limited by the appearance of high
order transverse modes [1,2] being a manifestation of self-
organization in nonequilibrium systems [3]. Particularly
interesting is that these structures open also a simple access
for studying the relation between wave and ray optics,
quantum and classically trajectories, respectively, in bil-
liard problems [4,5], where the reflective boundaries are
created by refractive index steps determining the size of the
active aperture. A further important aspect of self-
organization in VCSELs stems from the fact that the ideal
VCSEL is almost polarization isotropic and thus has an
additional continuous phase variable leading to enhanced
complexity. However, in small-area devices the polariza-
tion is closely related to the material anisotropies [6—9].

First observations in broad-area devices indicated that
the emission consists of a few spots in far field with well-
defined transverse wave vectors k | with the polarization
direction being orthogonal to k,; [1]. We will refer to
this as the “90° rule” in the following. This ten-
dency is due to an anisotropy appearing for off-axis waves
due to a difference in reflection of s and p waves (which
are polarized either perpendicular or parallel to k | ) of the
distributed Bragg reflectors (DBR) closing the cavity [10].
Later on, more complicated polarization configurations
such as vortex scars were observed [11], but the physical
reasons leading to these structures remained unclear.

In this work we shed light, for the first time up to our
knowledge, on the mechanisms leading to complex polar-
ization behavior of strongly off-axis emission in square
VCSELs. We show that the polarization direction actually
locks along the closest boundary. The structures having
wave vectors along the diagonal (k, = k,) become essen-
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tially polarization degenerate. We interpret these intriguing
observations by taking into account that reflections of
waves at the side aperture and DBRs couple the polariza-
tion orientation of wave vectors already in linear order.
Therefore, the 90° rule reported in [1] is valid only in a tiny
range of transverse wave vectors parallel to one of the
boundaries. Our argument shows also that single-wave
number solutions are not possible, which provides justifi-
cation for the phenomenological construction of superpo-
sition states to explain the scared structures in [4]. The
polarization degeneracy of the diagonal modes explains the
possibility of locking between states with different polar-
ization described in [11].

The linear framework of our considerations allows an
interpretation of the threshold-states as arising from a wave
billiard problem. It is known that the distribution of the
frequency spacing between nearest-neighbor modes (i.e.,
the statistics of the mode spacing parameter dw; =
w;j) — w; for the modal eigenfrequencies w;) is a good
indicator of the level of integrability of the system. The
eigenfrequencies of electromagnetic cavities used in mi-
crowave billiards [12] and microcavity lasers [13] with
perfectly rectangular (or circular) boundaries follow a
Poissonian distribution p(§w) ~ e %“, common for inte-
grable systems. We show however that this is not true for
square VCSELs, which makes the ‘““vectorial VCSEL bil-
liard” different from other types of optical cavities.

The devices under study are oxide-confined top-emitting
VCSELs emitting at around 780 nm. Their square aper-
tures have a cross-section of @ = 40 pm. The cavity, con-
sisting of three 8 nm thick Al Gay9As quantum wells and
Aly 4Gay ¢As spacer layers, is sandwiched by two highly
reflective DBRs (top mirror: 31 layers, bottom mirror: 47
layers). The laser is mounted onto a heat sink with a feed-
back circuit and put into an air-tight box to allow tempera-
ture control of the device from about 40° to —35°C. It is
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driven by a low noise dc current source. The laser beam is
collimated by a microscope objective with a numerical
aperture of 0.8. The near-field (image of the laser aperture)
and the far-field (spatial Fourier spectrum) intensity dis-
tributions of the laser emission are detected by a cooled
high-resolution charge-coupled device (CCD) camera. In
order to allow control of the detected polarization compo-
nent a half-wave plate and a linear polarizer are set into the
beam path.

The setup allows measurement of spatial resolved
Stokes parameters for the near-field and the far-field si-
multaneously. First checks, using a quarter-wave plate in
addition, showed that the ellipticity is very small, being
typically of the order of 0.02. Hence, we will assume linear
polarization in the following.

The main mechanism determining the length scale of
spatial structures for broad-area devices is provided by the
alignment of the cavity resonance and the gain maximum
[1,2]. If the cavity resonance is redshifted versus the gain
maximum (positive detuning & > 0) tilted waves are fa-
vored to on-axis emission, which leads to pattern forma-
tion. In the experiment, 0 can be changed by controlling
the temperature of the laser [2,6]. Figure 1 shows experi-
mental near-field and far-field images for three tempera-
tures (detunings). The shown images are typical for almost
all devices we studied.

For high temperature (6 = 0), emission occurs on-axis
[Fig. 1(a)]. This corresponds to the situation in small-area
VCSELs, where material anisotropies play the most im-
portant role in polarization selection at threshold. Thus, the
polarization at k| = 0 is a good indicator for the intra-
cavity anisotropy.

With increasing &, off-axis wave vectors k appear,
which align parallel to one of the transverse oxide bounda-
ries in tendency [see Fig. 1(b)]. At threshold, the resulting
near-field structures are stripes, slowly modulated in the
transverse direction. The far-field structure is dominated by
four strong Fourier modes. At the same time, the polariza-
tion direction is approximately orthogonal to the dominant
Cartesian component of the wave vector, i.e., seems to
follow the 90° rule. For increasing temperature the angle
¢ of the wave vectors with the x axis increases (Fig. 2)
whereas the polarization vector remains close to the axis
(except for k| near the diagonal discussed below) as it is
evidenced by the inset in Fig. 2, in clear violation of the
90° rule. Deviations can be seen already in Fig. 1(b), where
the polarization vector in the upper left (and the lower
right) peak is at a larger angle than expected from the
90° rule whereas the upper right one (and the lower left)
has a smaller angle. Though the rotation of the polarization
direction of the upper left peak could be explained by a
dragging of the polarization vector towards the material
anisotropy axis [denoted by the arrow in Fig. 1(a)], this is
not the case for the upper right peak, because its polariza-
tion angle is smaller than the anisotropy angle. We will
argue below that indeed the only significant influence of
the anisotropy is to decide between the ideally symmetric

FIG. 1 (color). Illustration of the patterns appearing at differ-
ent temperatures. (a) (42°C, 12 mA, threshold current I;;, =
11.1 mA): On-axis emission with polarization governed by the
material anisotropies. (b) (0°C, 16 mA I = 14.3 mA): Wavy
stripe patterns, consisting of four main Fourier modes near the
axes. (¢) (—36°C, 22 mA, Iy = 19.5 mA): Diamond-shaped
patterns with the Fourier modes along the diagonal. Upper row:
near-field intensity distribution, lower row: far-field; upper part:
intensity distribution, lower part: polarization angle (the behav-
ior is inversion symmetric to the origin). The average polariza-
tion of the intense peaks is indicated by the arrows, the area of
averaging by the circles. The intensity is color coded in a
temperaturelike scale with white denoting high intensities (left
bar). Images of the polarization angle are color coded as shown
by the right bar. All angles are given in the counterclockwise
sense from the horizontal reference axis. Device size 40 um,
displayed range in far field [-4.6, 4.6 um~!] in both directions.

configurations of the threshold modes having dominantly
polarization along £90° (and hence wave vectors along x)
or along 0° (and hence wave vectors along y). We note that
the latter modes disfavored by the anisotropy often appear
if the current is increased by a few mA. There are visible in
Fig. 2 as the data points with angles of k | greater than 50°
(see the auxiliary material [14]).

For lower temperature (higher transverse wave number),
the character of the structures in the near-field changes to a
rather localized scar (““diamond”, [4]), with the strongest
Fourier components at the diagonal. The data presented in
Fig. 2 allow an interpretation of this change of wave vector
configuration: Obviously, for lower temperature and thus
larger wave number the modes reach the cutoff of the
waveguide (red line in Fig. 2) at some point, if they stay
to be parallel to the boundaries. However, by moving to the
diagonal, they can avoid cutoff.

The polarization structure of these diamonds is rather
complex: We find components nearly parallel to the diago-
nal as well as ones parallel to the boundaries [Figs. 1(c) and
2]. There is even some gradient of polarization within the
wings of a single peak (see the auxiliary material [14]). In
other devices, all four peaks might have all main polariza-
tion components along the diagonal or all along the bound-
aries without any apparent regularity (see a few other ex-
amples in [14]). This lack of an apparent rule for polariza-
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FIG. 2 (color). Mode map showing the polarization direction 6
(color coded as in Fig. 1) for different wave vectors observed in
dependence on temperature. The displayed range in the far field
is [0, 3.6 wm™!] in both directions. The red line indicates the 1D
cutoff of the oxide waveguide. The inset shows the dependence
of 6 on the absolute values of the angle ¢ between the wave
vector and the x axis [magenta (green): peaks from first (second)
quadrant]. The levels of 0° and 90° are marked by dashed lines.

tion selection indicates that the polarization is highly de-
generate in the vicinity of the diagonal.

In order to analyze the behavior described above we use
a model for a broad-area VCSEL which accounts for its
cavity structure including DBRs [10]. As shown in [10,15],
the cylindrical symmetry of a VCSEL is broken for off-axis
waves. Hence, many features of pattern selection are al-
ready obtained by a linear stability analysis. Below, we
present only the main milestones of the analysis, the tech-
nical details can be found in the auxiliary material [14].

For the spatially homogeneous device with infinite ap-
erture, the eigenmodes are plane transverse waves
E(x, y, 1) = e(t)exp{i(k,x + k,y)}, where E(x,y,1) =
{E., E,} is the slowly varying complex envelope of the
field inside the cavity. Linearization of the laser equations
at lasing threshold leads to an eigenvalue problem

Bk )e=Ae with B=T+iakd +ibs(k,)— kY(k_).
(1

B(k ) is a2 X 2 matrix (with k | -dependent coefficients)
describing the polarization states. It includes the material
anisotropy I', the diffraction both in the cavity iaky and in
the DBRs ibs(k | ) (a and b are some coefficients, s is the
phase shift due to reflection from the DBRs), as well as the
losses and the gain kY(k ;) (x is the field decay rate). I'
includes amplitude (y,,) and phase (y,) anisotropies and is
described by a matrix, diagonal in their principal axes

coordinate system I' = diag(y, + iy,, —v, — iv,). The
other source of anisotropy is provided by Y(k ;), which
includes the matrix of reflection R from the DBRs. R is
diagonal in the basis of s- and p-waves: R = diag(r,, r,,).
Because for k; >0 |ry| > |r,|, an s wave is preferred at
threshold, which is the origin of the 90° rule [10].

To describe the finite device, we rewrite 8 in terms of
the modes of the waveguide formed by the oxide refractive
index steps at the side boundaries. For a device with

an aperture length of a, these are E() = fularx/a)X
fm(WY/a)nx, Eglyn)’t = fn(ﬂ-x/a)fm(wy/a)ny’ where n,, ny
are unit vectors in the corresponding directions, f,(p) =
cos(np) if n is even and sin(np) if n is odd. In far field
they are represented by four wave vectors {(k, k),
(ky, —ky), (—ky, k), (—k,, —k,)} with equal field ampli-
tudes and polarization directions.

It is important to realize that these modes are not eigen-
modes of the reflection of the DBR because the incident
waveguide mode cannot represent a pure s or p wave
simultaneously for all the constituent wave vectors. For
example, for the case of E(Z);),Zm = n, cos(2mnx/a) X
cos(2mmy/a) being incident onto the DBR, elementary
calculations show that the reflected wave has a component
proportional to n(r, — r,)sin(2@nx/a) sin(QmTmy/a),
which is not an eigenmode of the waveguide. Mathe-
matically, it can be represented as a sum of waveguide
modes with different |k | |, which physically means that
such a component is rescattered into the other waveguide
modes. The rescattered modes can be seen in the experi-
mental pictures [especially in the lower part of Fig. 1(c),
Fig. 3 of the auxiliary material [14], and in Fig. 4 of [4] and
Fig. 2 of [1]]. This rescattering is essentially a polarization
effect because it disappears for r,, = r,. The scattering pro-
cess provides a seed, invalidating true single-wave number
solutions expected in simpler laser models [10,16] and thus
can be at the origin of the more complex wave vector
configurations found experimentally and described phe-
nomenologically before as superposition states of off-axis
waves centered around a certain wave number [4].

By rewriting $ in the terms of waveguide modes we
obtain an operator ;, acting on the whole mode set since
all the modes are coupled by the rescattering. However, for
a first analysis of the polarization behavior we neglect the
rescattered modes in B, and thus obtain a set of 2 X 2
matrices 3 p(kx, ky) (acting on the pairs of modes Eﬁ,’%, E%
with the corresponding k,, k). The eigenvector of B, with
the largest real part is shown in Fig. 3 (the second one is
always perpendicularly polarized).

The polarization state at k; = 0 is determined by the
intracavity anisotropy, which was adjusted to match the
experimental observation. For larger k|, the polarization
locks to the nearest axes due to the influence of the
boundaries. This locking induces a rather abrupt transition
close to the diagonal. In addition, at the diagonal the two
branches of eigenvalues intersect [see the inset in Fig. 3(b)]
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FIG. 3 (color). Theoretical analysis of polarization selection
neglecting the rescattered modes. (a) —the polarization direction
6 of the eigenmode of B, with maximal Re()) versus k | inside
the cavity for the first quadrant [spot 1 in the right inset in (b)].
The color coding is shown in Fig. 1. The diagonal (k, = k) is
highlighted by a thin black line. (b) Cross section of (a) (solid
black line) along the circle with |k, | = 3.1 wm™!. The polar-
ization directions outside of the cavity for the first and second
quadrant (spots 1 and 2 in the right inset illustrating the wave
vector configuration) are shown by magenta and green dashed
lines. The left inset shows Re(A) versus the wave vector angle for
two eigenmodes (with orthogonal polarization). Polarization
anisotropies taken for calculations are 7y, = 60 ns™!, v, =
—0.1 ns™! with the principal axis being at —78°. The circle at
the origin in (a) emphasizes the corresponding color.

and the polarization modes are degenerate. This explains
the possibility of frequency locking between diamond
states of orthogonal polarization reported in [11]. The
degeneracy is evidenced experimentally by the continuum
of polarization angles between about —40° and 45°. The
wave vectors with 8 = 10° present in Fig. 2 but not in
Fig. 3(b) are interpreted to stem from the nearly degenerate
orthogonally polarized branch of eigenvectors.

The polarization state of the extra-cavity field is differ-
ent from the intracavity one due to the final transition
through the DBR. In transmission, p-wave components
are favored. Hence the polarization state of the transmitted
light is rotated towards the wave vector (see the dashed
lines in Fig. 3(b)]. The polarization of wave vectors in
neighboring quadrants is therefore slightly different, which
is also obvious in the experiment [Fig. 1(a)]. The inset in
Fig. 2 also shows nicely the splitting present for the dashed
lines in Fig. 3(b) and their remerging close to the diagonal
(¢ = 45°).

Finally, we can interpret the linear operator 83, describ-
ing the onset of pattern formation also as an operator of a
quantum billiard problem. In our case the operator 3
contains not only the kinetic energy term ~k7, but the
complex linear coupling terms due to the vectorial degrees
of freedom. First calculations indicate that the solution of
the eigenproblem for 8;—now including the rescattered
modes—shows a clear deviation of the nearest-neighbor
eigenfrequency spacing distribution from a Poissonian one
despite the fact that the device boundaries are assumed to
be perfectly square. Such a distribution is similar to one
present in a certain class of pseudointegrable billiards [17],

i.e., ones which are in between fully integrable and fully
chaotic ones. This provides a promising starting point for
further investigations.

In conclusion, we have shown that the main mechanism
for polarization direction selection for strongly off-axis
emission in square VCSELs is related to the interaction
of the reflection from the DBR and from the side bounda-
ries, leading to rescattering into neighboring transverse
modes with different wave number and providing dynami-
cal justification for the construction of superposition states
in [4]. This leads to a locking behavior of the polarization
axis at the boundaries and correspondingly to an indeter-
minacy of polarization state for modes at the diagonal.
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