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THE DEVIL’S STAIRCASE DIMENSIONS AND
MEASURE-THEORETICAL ENTROPY OF MAPS
WITH HORIZONTAL GAP

JUNG-CHAO BAN AND SONG-SUN LIN

Dedicated to Professor. S-N Chow on the occasion of his 60th birthday

ABSTRACT. This work elucidates the measure-theoretical entropy
and dimensions of a unimodal map with a horizontal gap.

The measure-theoretical entropy and dimensions of the F; (which
is defined later )are shown to form a devil’s staircase structure with
respect to the gap size t. Pesin’s formula for gap maps is also con-

sidered .

1. INTRODUCTION

This study addresses a special family of maps (gap maps), which arise
in the communication with chaos in cellular neural networks. (Readers
should refer to [BHL]). Such maps are constructed by cutting a gap
into a given unimodal map f .

The most interesting invariants to be considered in determining whether
a map is chaotic are topological entropy, measure-theoretical entropy,
dimensions and Lyapunov exponents. In [ZB], the authors examined

such maps and observed the devil’s staircase structure of the entropy
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function with respect to the gap size. Then in [BHL], the authors ap-
plied kneading theory to prove rigorously this presence of such structure
for a map f with strong transitivity. In [M1], Misiurewicz proved that
this structure can be applied to more general maps by considering a
dynamic mean rather than kneading theory.

Nature questions arise regarding what happens to the measure-theoretical
entropy for certain measure for these families of maps, and what about
their dimensions (Hausdorff, upper box and lower box dimension are
considered).

This investigation addresses whether for some function f there ex-
ist some measure p (defined later), where the measure-theoretical en-
tropy h,(F}) (F; is a family of gap maps induced by f) with respect to
this measure p the devil’s staircase structure remains; that is, h,(t) =
h,(F}) is a monotonic and continuous function. Furthermore, the union
of the constant part of h,(t) is open and dense in parameter space,
i.e..{t €]0,1] | hu(t) is constant} is open and dense in [0, 1].

Moreover, for a given f , the Hausdorff, lower box and upper box
dimension can be determined. For these three dimensions, the devil’s
staircase structure also obtains. Additionally, these three dimensions
are equal for some function f.

Similar results of the well-known Pesin’s dimension theorem for these
maps were obtained .

This paper is organized as follows. Section 2 provides some well-
known definitions, results and the main theorem. Section 3 presents a
geometric structure developed by Moran, Pesin and Weiss. Section 4

includes relevant proof of the main theorems.
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2. PRELIMINARIES

This section presents some definitions and well-known theorems with-

out proof. f is assumed to be a continuous unimodal map.

Definition 1. A continuous map f :[0,1] — [0, 1] is unimodal if there
ezxist ¢ € [0, 1] such that

(i). f(0)=f(1)=0

(i1). f(x) is monotonically increasing on [0,c| and decreasing on
e, 1].

c 18 called turning point herein.

Definition 2. Tent map f :[0,1] — [0, 1] with slope X\ > 0 is defined

Az if 0<x
AMl—z) if

IA
—_ N
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X
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Definition 3. Given a continuous map f, for t € [0,1], we define

Ug=A{z| f(z) >t} and the gap map Fi(x) with respect to f(x) is

t iffIIEUt

Fy(z) = , :
flx) if x€[0,1]\ U

Furthermore,
C(t)=C(F,) ={x€l0,1] | f"(z) ¢ Uy, for all n > 1},

Cu(t) = Cp(F) = {z € [0,1] | f¥(z) ¢ Uy, for 1 <k <m},

D(t) = D(F) = {z €[0,1] | f¥(z) € U, for some k > 1}.
The box dimensions are defined as follows.

Definition 4. For a compact set A C R™, the lower box dimension of

A, dimp(A), is defined by

‘ .. o log Ny(e)
dimp(A) = lim inf = =20
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where N4 () is the least number of balls of radius € needed to cover A.

The upper box dimension of A is similarly defined, by

__ log N
dimp(A) = limsup LA(S).
eso loge™!

In particular, the lower and upper box dimension of C(t) fort € (0,1)
are defined by
dimp(t) = dimg(C(F)).
and

di—mB(t) = dl—mB(C(Ft))a

respectively.

Definition 5. Let X be a metric space with metric d. For x € X and
p >0, let

By(z) = {y : d(z,y) < p}.
The diameter of a cover k of X is sup{diamA: A € k}. Then the
Hausdorff dimension of X s defined by

dimy (X) = inf{a : llg(} inf Z (diamA)® = 0}
Aek
k: cover of X

with diamk < €

In particular, dimg (t) = dimy (C(F)).
The definition of topological entropy is defined as follows.

Definition 6. Let f : X — X be uniformly continuous on the metric
space X. For E,F C X we say that E (n,d)—spans F(with respect to
f), if for each y € F there is an x € E so that d(f*(z), f*(y)) < 4
for all 0 < k < n. We let r,(F,5) = rp(F, 9, f) denote the minimum
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cardinality of a set which (n,0)—spans F. If K is compact, then the

continuity of f guarantees r,(F,0) < oo. For compact K we define

1
(K, 0) = limsupﬁ logr, (K, 0)

n—0o0

and
h(f,K) = (lsin%Ff(K, J).

Finally let hop(f) = supg hiop(f, K) where K wvaries over all compact
subsets of X.

Here, some well-known theorems concerning topological entropy are

presented without proof.

Theorem 1. If f is a continuous map, then

hion(f) = lim log card(P,(f)) ~ m log lap(f™)

n—00 n n—00 n

where P,(f) is the set of periodic points of period < n, card(A) presents
cardinality of A, and lap(f™) is the number laps of ™, that is , the

manimal number of intervals on which f™ is monotonic.

Proof. Ref[ALM]. O

The measure-theoretical entropy is defined as follows.

Definition 7. Suppose f : X — X is a map on a metric space (X, d),
where d is a metric. Let u be a Borel measure on X with p(X) = 1,
and p is f-invariant (i.e. p(f~'(A)) = u(A) for every Borel set A).
One can then define a measure theoretic entropy h,(f) as follows: Call
a = {Ay, -+, A} a (finite) measurable partition of X if the A; are
disjoint measurable subsets of X covering X. Now set

Ho@) = Y () F A logu(() F4Ay).

1<ig, - yim—1<r k=0
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Then the limit h,(f, o) = lim,,_,(1/m)H,,(«) ezists and one defines
h,(f) =sup{h,(f, o) : «is a finite measurable partition of X}.

The well-known theorem that relates the topological and measure-

theoretical entropy is stated as follows.

Theorem 2. (Goodwyn). Let (X,d) be a compact metric space, let
f X — X be continuous map and p be a f—invariant Borel measure

on X with (X)) = 1. Then h,(f) < hop(f)-
The main results in the work of [BHL| and [M1] are included.

Theorem 3. (BHL & Misiurewicz ) If f is a unimodal map with
hiop(f) > 0, the topological entropy function hiey(t) = hiop(F;) of the
gap map F; forms a devil’s staircase function with respect to t; that is,
hiop(t) is a monotonic, continuous function, and the constant parts of
hiop(t) is open and dense in parameter space, i.e.,{t € [0,1] | hip(t) is

constant} is open and dense in [0, 1].
Then, the main theorem of this work is as follows.

Theorem A. If f is a unimodal map with hy,(f) > 0 and let F; be
the gap map induced by f , then

(i) dimg(t),dimg(t) and dimy(t) are monotonic increasing func-
tions.

(1) The union of the constant parts of each of the three dimensions
are open and dense in parameter space; that is {t € [0,1] | dimg(¢)
(dimp (t) and dimp(t), respectively) is constant} is open and dense in
[0, 1].

Furthermore, If f is a tent map with slope A > 1, then
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(iii) dimp(t) = dimp(t) = dimg(t) and is devil’s staircase function
with respect to t,
(iv) there exist a measure p (which is defined in Theorem 4 )such that

h,(t) of the gap map F; forms a devil’s staircase function with respect

to t.

Theorem B. Under the same assumption as in Theorem A. Let V be
some magzimal interval of the constant part of hi,(t); V is also a the
mazimal constant part in dimy, dimp and dimp .
Furthermore, there exist t € OV such that for allt € V
. hiop(t) —— log&;!
2.1 dim,(t) < =22 lim (—"
( ) —B()— log)\ n%oo(logéﬁl)’
where A = lim | Df"(f) |v the Lyapunov exponent, £,(t) is the mini-
n—o00
mum length of the elements in C,(t), and &,(t) is the mazimum length
of the elements in C,(t).

In addition, if f is a tent map with slope X > 1, the inequality is
actually equality; that is,

htop (ﬂ
log X\

dimg(t) =

3. MORAN-LIKE GEOMETRIC CONSTRUCTIONS

In this section, we recall the Moran-like geometric construction given
by Y.Pesin and H.Weiss [P], [PW], and some theorems are stated with-
out proof.

Let Z; be the set of all one-sided infinite sequences (ig, i1, --) of p
symbols, and o be the shift map, i.e., o(w); = w;yq if w = (ig, 41, -+ ).
The basic geometric construction is considered first. Starting from p

arbitrary closed subsets Ay, ---, A, of R™ , a Cantor-like set is defined
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(3.1) F:ﬁ U Ao

n=0 (7/0”Zn)
Q—admissible

where the basic sets on the n—th step of the geometric construction,
Nigins i = 1,-++,p (n > 0) are closed, and ) C Z; is compact set
invariant under the shift map o.

In 1996 [PW], Pesin and Weiss established the following geometric
construction whose basic sets satisfy the following conditions:

(1) Aig,esing C Djg iy for j =1, p;

(11) Bio,---,i C Aio,--- - Bi07"'7in7 where EZ’O,... i

in

n Jin and Bio,"',in are

closed balls of radii Tigooni and 7. . ;

stn 105" Hin

n n

(111) Eio,“',in = K1 HO )\i]-a 771.0,___,1.” = K2 HO )‘ija where )\i]- € {)\1, T ;)\k}
j= j=

with0 < Ay <1lfork=1,---,p, K; >0, and Ky > 0 are constants;

(iv) int Bj,.... i, () int By,.... j,, = 0 for any (i, ,in) # (Jo, "+, Jm)
and m > n.

Let (@, o) be the dynamical systems generated by the above con-
struction, where () C Z;r is a compact shift invariant set and o is shift

map. Pesin and Weiss were able to prove following results for F' and

(Q,0), [PW] and [P].

Theorem 4. Let F be the limit set for a geometric construction ((i)-
(iv)) modeled by a symbolic dynamical system (Q, o). Then

(1) dimgzF = dimgF = dimy F = sy where sy is such that
PQ(S/\ IOg)\iO) = 0,

Pq denote the topological pressure on @Q with respect to the shift map o
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(2) s\ = _f;l‘:%(% where pybe an equilibrium measure for the

function (ig, - -+ ,i,) — sxlog N, on Q (Ref Theorem 13.1 of [P], p125).

Theorem 5. Let F be the limit set for a geometric construction ((i)-
(iv)) modeled by a symbolic dynamical system (Q, o). Then

(1) sy < _ﬁ)‘é(/\(’n)]ax, where Apax = max{\; : 1 < k < p} and hg(o)

18 the topological entropy of o on Q; equality occurs if \; = X for i =
L,---,p; in particular, if hg(o) =0, then

dimgF = dimpF = dimy F = 0;

(2) if \y =X fori=1,---p, then

hq(o)

di_mBF:di—mBF:dimHFzs)\: —log)\

(Ref Theorem 13.2 of [P], p129)

4. PROOF OF THE MAIN THEOREM

This section presents detail proofs of the Theorem A and Theorem
B . f is assumed throughout to be a unimodal map with positive
topological entropy.

We first prove (iv) of Theorem A .

Lemma 6. If f is a tent map with slope A > 1, let F} be the gap maps
induced by f, then the measure-theoretical entropy h,,, (t) with respect to
the equilibrium measure defined in Theorem j is monotonic, continuous
and the constant part of hy,, (t) is open and dense in parameter space;

that is, {s | hy, (t) =constant} is open and dense in [0, 1].

Proof. The geometric construction of Pesin and Weiss can be easily

demonstrated as follows.
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(1) Take p = 2, and let A; = Cy; = Cy1(t) be the left part and
Ay = C15 = C)(t) be the right part of [0,1] \ U;, where C,,; are
the elements of Cy,. Now Ay..;,_,; € Cpyy is such that f(Aj..q,_,;) =
Ay oiy_y; > Where A

(2) Conditions (ii) and (iv) clearly hold for C,, and Cy, 41,

(3) Condition (iii) holds by showing K; =diam(C}; = diamA,; or
Ky =diam(' » = diamA, and Ay = A, for k =1, 2.

iin_1; 18 some element of Cy,,

Thus for such a measure u, defined in Theorem 4, and by applying

Theorem 5 we have

hlb\ (U | Q) hlb\ (U | Q)

S/\:_leog)\ioduA:_ log\

Since A\, = A, for k =1, 2,

/ log \j,dpy = log A.
Q

Therefore we obtain

by (8) = Py (0| Q) = hg(0) = huop(1).

The result follow by applying Theorem 3 to Ay (t). The proof is com-
plete. O

Next, (iii) of Theorem A is proven.

Lemma 7. If f is a tent map with slope X\ > 1, then the lower and
upper box dimension and Hausdorff dimension of the gap map F; form
devil’s staircase functions with respect to t. Furthermore, these three

dimensions are equal.

Proof. By Theorem 5 and the proof of Lemma 6, we have

hq(o) _ Piop(F1)

dimzC(t) = mBC(t) = dimy C(t) = —log \ T log \’
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and from the definition of F}, A is independent of ¢. The results follow.
O

Next, we prove (i) of Theorem A.

Lemma 8. (Monotonicity) If s < t, dimg(s) < dimg(t), dimp(s) <
dimp(t) and dimg(s) < dimg(t).

Proof. We only prove the lemma for dimpg(t), dimp(t) and dimg(t)
can be treated analogously. If s < ¢, C'(s) C C(t) is easily checked.
If kis a cover of C(t) with diamx = &, then k is also a cover of
C(s), and a subcover & of k can be chosen that, covers C(s); with
card(k) < card(k). Hence dimyzC'(s) < dimzC(t), and the proof is

completed. O

To prove (ii) of Theorem A, we need to introduce the kneading se-

quence K (t) of t € [0,1] with respect to Fj.

Definition 8. Let f be a unimodal map with turning point c.

(i) The itinerary of x with respect to f, defined by I(x) is the sequence

i = (io(x),i1(x), -+ yin(x),---) where
0, if fi(z)<e,
o) =91, if fi(2) > ¢,
¢, if fli(z)=c

(ii) A signed lexicographic ordering < on Y. = {0,¢, 1}V is defined
as follows. Let s; =t; fori=1ton —1, then s <t if either

(a) Th—1(s) is even and s, <ty

or

(b) Tn—1(s) is odd and s, > t,,

k
where 1i,(s) = Y s;. We also write s <t if s <t or s =t.
i=0
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(111) The kneading sequence of f, denoted by K f, is defined as follows,
(a) If ¢ is aperiodic point,

Kf=1(f(c)),

(b) If c is periodic point of f with period n,

Kf = lim I(f(z)),

rz—ct
Moreover, K(t) = KF, = I(f(t)), and K(t) is called even(odd) if
Tn-1(K(t)) is even(odd).

We need some lemma from [BHL)].

Lemma 9. If f is a continuous unimodal map, and F; is induced by f
and t € [0,1] is a periodic point of f with period n; that is, f™(t) =t,
then there exists a neighborhood Vi of t in [0,1] such that if K(t) is
even(odd), then t is the left (right) end point of Vi such that for all
seV,, C(s)=C(t). Furthermore,

htop(s) = htop(t),VS € W
Proof. Ref [BHL]. O

Lemma 10. Ifh(f) > 0, then the union of the constant part of dimg(t)

(dimp(t) and dimg(t))of the gap maps is dense in parameter space.

Proof. The lemma is proven by contradiction. Suppose there exist open
interval K of [0,1] such that for all s,¢ in K, and s < t , dimg(s) <
dinm ().

First, we may assume 0 < hyyp(s) < hyop(t) for some s,t in K, and
s < t , thus there exist a periodic orbit p € (s,¢) with periodic n. We
assume K (p) is even(odd), then there exists a neighborhood V,, C K of
p from Lemma 9 with p is the left (right) end point of V], such that for
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all g €V, , C(q) = C(p), which implies dimz(q) = dimg(p), this leads

a contradiction. dimp(t) and dimg(t) can be treated analogously. [

Combined with results of Lemmas 6, 7, 8, 9 and 10, the proof The-
orem A is complete.

We first prove the first part of Theorem B.

Lemma 11. If V is a mazimal interval of the constant part of hyey(t),

then V is a maximal constant part in dimp(s), dimpg(t) and dimy(t).

Proof. Let t € [0,1] , and V; be such that hy,,(t) is constant in V;. V;
is assumed to be maximal; that is 3 £ € [0, 1] such that # is a periodic
point of period n, and if K () is even(odd), then # is the left (right)
end point of V; by Lemma 9, thus we have

C(s)=C(t),Vs € V.

It implies dimp(s) = dimy(¢), Vs € V;. Similar arguments can apply to

dimp(t) and dimy(t) , the proof is complete. O

To prove the second part of Theorem B, we need following lemmas.

Lemma 12. If f is a unimodal map, and F; are the family of gap maps

induced by f, we have
log N,
lim 108V (®)

n—00 n

= htop (t)

where N, (t) is the cardinality of the mazimal interval of C,,(t).
Proof. Ref [M1] O

Lemma 13. If f is a unimodal map, and F; are the family of gap maps

induced by f, we have

1 =1
%8 > Yim log |[DF™(¢)[*
n—0o0

(4.1) lim

n—00 n
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forallt € C.
Furthermore, if f is a tent map with constant slope A > 1, then we
have
. loge,t
(4.2) lim = log A
n—o0 n

Proof. By the definition of C,(t), F} |¢,(1is a homeomorphism; Then,
by the mean value theorem, for each A € C,,(t), there exists t € A such
that

p(F(A)) = [DEP ()] n(A),
where p is Lebesgue measure of [0, 1].
Let k; = min{p(C 1), u(Ci2)} and ky = max{pu(C1,1), 1#(Ci2)}), thus
we have

by < p(FP(A)) < .

By the definition, 0 < £, < p(A) for all A € C,,, this implies

loge,! - log |[DF™(t)| — log ky
n o n '

Since k; is constant independent of n and N,>,C, = C. Taking n — oo,
then (4.1) holds.

If f is tent map with slope A > 1, then pu(A) = kA" or kx A" for
all A C C,(t). Hence, for all A, B € C,(t),

p(A) _ ke _
W(B) Sk

where k3 is a constant independent the choice of A, B and n. Hence,
ksp(A) > 2, > p(A).

This implies

log k3 + log |[DF?(t)| — log k2 S loge,! S log |DF(t)| — log kq
n - oon n .
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Since ki, ko and k3 are constants independent of the subcover of C,,

log| DF (1))
n

and = A. Letting n — oo,then (4.2) follows. The proof is

complete. O

Lemma 14. If f is a unimodal map, and F; are the family of gap maps
induced by f, then

log N, (t ) — .
nggf% > dimp(¢) (dimp(t), dimg (2)).
Furthermore, if f is a tent map with constant slope A > 1, then we

have

lim inf 7log {Vn (t)
n—oo log &yt (t)

= dimgz(t) = dimp(t) = dimpg/(t).
Proof. Since C,, is a cover of C with diamC,, = £,,, thus we have N,, >
N¢(£,), which implies
log N,
dimg(t) = liminf 208 Nole) c(€)
£—0 loge—!

log No (1
= liminf 08 CtEn ) CA((?" )
n— 00 log 551

log N, (t
< liminfiOg ~ ( )
n—oo  logért

If f is tent map with slope A > 1,as in Lemma 13, we have

Thus we have

which implies

log Ne(k3én) S log N, S log No(£,)
log(é,)~t  ~ log(é,)~t = log(é,)!
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Since k3 is independent of n, letting n — oo, implies

log N,
dimg(¢) > lim inf#

> di t
n—00 log(an)_l - ﬂB( ),

the result follows. The proofs of Hausdoff and upper box dimensions

are similar. O

To complete the proof of Theorem B. Given ¢; > 0, choose n; € Z*
such that
log Nu(t) _ ..
= >d t
logé-1(t) — dimp (#) + &1

whenever n > n;. Given £, > 0, choose ny € Z* such that

log N,
n

S htop(Fs) — &2

whenever n > n,y. Given €53 > 0, choose n3 € Z* such that

logz—! 1
%8 n_ > log |DF™(t)|" + e
n

whenever n > n3. Let N = max{ny,ns,n3},asn >N,

log Ny (t)
= logs,'(t)
_ (logNn(t))( n )(loge,’b

n loge, !

dimpg(t) + &

)

logé, !
log 5’;1)
logé 1"

< (luop(F) — £5)(log [DF™ (£)[7 +25) " (

Since €1, 9 and €3 are arbitrary, now letting n — oo yields

lim (10g 6__1 rion (F1) T
n—oo log £, M im log |[DE™(t)|»

n—oo

) = dimp ().

If f is tent map with slope A > 1, since
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where k3 is defined in the proof of Lemma 13, then equality in Lemmal4

can be replaced by

lim inf 710g No(t)

n—oo log &= (1) = dimy (1).

From Lemmas 12, 13 and 14, we have

F,
dimp(t) = Liﬂé’g( At) .

Then the proof of Theorem B is complete.

Remark 1. Some relationship exists between hip,(f), Hausdoff dimen-

sion, and lip(f), where lip(f) is the lipschitz constant of f,says

| Biop(f)
dim(f) < log lip(f)

, see [M2].
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