MPEG- 4

NSC91-22109 -
91 08 01

MPEG- 7

E-009-041-
92 07 31

9 2 10 23

(3

I I R I

M PEG-4 —
MPEG-4 MPEG-7 (3/3)

A Sudy on MPEG-4 and MPEG-7 Systems (3/3)

0 |
NSC 91-2219-E-009-041
91 8 1 92 7 31

92 10 15

MPEG-7

MPEG-4 MPEG-7 (3/3)

A Sudy on MPEG-4 and MPEG-7 Systems(3/3)
NSC 91-2219-E-009-041
o1 8 1 92 7 31

MPEG-4 (1)
MPEG-4 MPEG-4 IPMP)
MPEG-7

, MPEG-4, IPMP, MPEG-7,

Due to tremendous advances in multimedia communication and the aggressive expansion of
Internet in the past a few years, the MPEG-4 standards activity, which aims at establishing a
comprehensive specifications for multimedia object construction, manipulation, editing and
delivery, receives a lot of attentions. Our goals in this project are to (1) investigate and simu-
late the MPEG-4 Systems and its IPMP extension, and (2) study and simulate the MPEG-7
systems and construct an MPEG-7 platform for testing and research purpose.

K eywor ds: Multimedia communication, MPEG-4, IPMP, MPEG-7, Multimedia database

oow»

S0 wpx

1.

Table of Contents

C.-C. Huang, H.-M. Hang, and H.-C. Huang, “MPEG IPMP Concepts and Implementa-
tion,” The 3" IEEE Pacific-Rim Conference on Multimedia, Hsinchu, Taiwan, Dec. 2002.

F.-C. Chang, H.-M. Hang, and H.-C. Huang, “Research Friendly MPEG-7 Software
Testbed,” Image and Video Communications and Processing 2003 Conference, USA, Jan.
2003.

MPEG-4

A.
(Intellectual Property Management & Protection IPMP)
1997 MPEG IPMP
IPMP MPEG
MPEG-4
MPEG-2 IPMP MPEG
MPEG-21 IPMP
MPEG-4 IPMP IPMP hook
IPMP Extension (IPMPX) MPEG-21 IPMP
MPEG-21

MPEG-4 I[PMPX

B. - IPMP

MPEG-4 [1] MPEG-4 (ISO/IEC
14496-1) IPMP MPEG-21 IPMP MPEG IPMP

MPEG-4 Systems ver.l IPMP MPEG-4
players IPMP System[2] MPEG-4/AMD3[4]
IPMP IPMP Hook IPMP Extension (IPMPX)
IPMP Hook IPMP ES (Elementary Stream) IPMP (descriptor)
IPMP ES IPMP IPMP
object descriptor stream MPEG-4 IPMP Hook

IPMP Hook
[PMPX
(Virtual Terminal) MPEG-4 Message IPMP
Message Router (MR) Tool Manager (TM) Message Router
IPMP Message IPMP Tool Tool Message
Tool Manager Tool
MPEG-4 Message Router

| Elementa m Interface |

_ Audio .
A udio DE\ Decode —+pudic CB-—

Video DB Video | & eVideo CB—@ g . %J
Decode § a
% -
9008 |4 pecoge
BIFS DB|—} gy ng Lo SR gl BIFS Tree
L

ipre 0| Purs 7 PP System(s) @ Lohe

MPEG-4 IPMPHook [3]

IPMPX IPMP Tool Identifier Tool
® Unique Implementation --
® Parametric Description
]
[] Parametric Configuration Information
® List of Alternative Tools
W List Tool

| Parametric Description

COMTENT |

ETFEAM DEF

p— ity AL HID0 (3

Lo " | L e e L e

SRR) — — — €

VIED WDED WOED
cowmer | e " " _oe [*loecae & [7T* g E
ETRESM D) 1~ . L
Rl o] OO oD >
é o8 " DECODE 1
HF: HFS H BF3 JI;BTFI'EEJEECEHE
100 ™ g [P oecore ™ S0 BRAFH
TOeE, LIST
-)
L1
| THTE | PP "“""'|| TERTAIMAL
—_—] =] RS MESTOGE ROUTER /TR AN S
L IR L] S &
| BRI A | j |-
L

TODLESD |
L ben TOOL BARAGES HIERF AR |—| HESSAGE ROUTES HIERFACE |—
Titakn WS sl g r

=5 -
Tools 3]
Mms=ng - ﬁ J [" :l £
Toals wur [T Fur
PO & To B = B
IPMPX MPEG-4 [4]
Missing IPMP
Tools
Obtain Missing IPMP
Tool(s)
Content
4{ IPMP Tool Manager }7
IPMP Tool List
IPMP Tool ID(s)
Alternate IPMP Tool ID(s) (Content Request
Parametric Tool - Terminal
Description(s) Content Delivery
IPMP Tool Elementary
Stream
IPMP Information
—{ Terminal-Tool Message Interchange Interface }—
Terminal-IPMP Tool
Communications
IPMP Tool 1 IPMP Tool 2 - IPMP Tool n
IPMP [4]

IPMPX MPEG-4

® [PMP
L access control

[PMP Tools descriptoion

° Tool List

° Tool List Tool
Tool

) Tool

Tool instance

) Tool
o [PMP information
Tool Tool
® Tool [PMP information
]
o IPMP

MPEG-21[4] IPMP[6]
IPMP MPEG-21

IPMP
IPMP

IPMP

MPEG-21

IPMP Tool

MPEG
MPEG-21 IPMP
IPMP

IPMP

IPMP
IPMP

Functional Domains

Packaging, Rules
Generation and Modification

Value Chain Management
and License Services

Consumption Services

Trust Management Services

Security and Protected
Platform Services

Technical Elements

Rights Expression Language /
Rights Data Dictionary

Digital Item Structures and Formats

Rights Evaluation and Enforcement /
Representation of IPMP Tools Capabilities

Rendering Interfaces and IPMP Capabilities Negotiation

/

License Generation and Distribution
Value Chain Management Services
DIID Services

Trusted Entity References
Distributed Trust Management
Certification Services

Secure Channels

Key Management

Trusted Software and Execution Environment
Tamper Resistance

Abstract IPMP System Model[6]

® Packaging, Rules Generation and Modification

meta-data

® Value Chian Management and License Services

® Consumption Services

|
Service

® Trust Management Services

[] IPMP

*

*

URL

web

DID,
REL, RDD

DIl&D

DIA

SPKI,
X.509

XKMS

Consuption

* 6 0 o

L 4
® Security and Protected Platform Services
|
|
*
*
*
*
MPEG IPMP
MPEG-4 IPMPX[9]
MPEG-2 IPMP[9] Virtual Terminal IPMP
IPMP Message IPMP
MPEG-4 IPMPX MPEG-21 IPMP Terminal
C.
IPMPX[8][9] Craig A. Schultz
MOSES IM1 MPEG-4 player IM1[7] AHG (Ad-hoc group)
on Systems Reference Software Implementation MPEG
MPEG-4 System IM1 MPEG-4 System
MOSES () IM1
Craig IPMPX ()
IM1 Core IPMPX IPMPX
IPMPX
IPMP MPEG-4
Demultiplex player control point IPMP IPMPX

IPMP Tool control point

MOSES IPMPX MOSES
IM1 Implementation IPMPTool

MOSESSimple

Moses Messaie. Binary IPMPTool
Messages
Message | ».0
MP4 Router
_1- File >. Spec Messa%e'

BifsEnc M1

Descriptors . MOSES Msg Parser
. SDL Msg Parser
— MOSES Messages
IM1-IPMPX Interface IPMPX Message Binary — SPL Messages
“ipmpxinteface.h” Interface. — Binary Messages

— SCR, Txt files

MOSES IPMPX

Application

Executive

) -
Service 4

------ Root Scene
Object
FlexMux : ~
' Media Stream i' Media Object
T

Presenter(T)

Media Stream

Media Stream

IPMP Stream

OD Stream

IPMP Tool A

|
1
\
|
|
]
1

!
Message Ryuter
i /

1
T
A s
y '. // Service
! K Retrieve Missing Toold ~Provider

Tool Manager

MPEG-4 IPMP Extension to IM1

T : Represents a component which uses a clock to control its operation Represents a component running as a separate threat

—————— - Points from the object which instantiates the object pointed to

Represents a component which is a shared data structure

Represents an IPMP tool

—_— Shows the direction of data movement
|:| Represents new IPMP Extension additions ©

IM1 IPMPX (Craig’s version)

.TRIF bitstream video stream " video stream
e Demux |22 ™ Control Point oo™yl player

A

1. Function call from Control Point
2. video stream

h J

Instantiated
1. IPMP Tool List Desgriptor IPMP Tool

2. IPMP Tool Descriptor \
3. IPMP message

1. Function call from IPMP module
2. IPMP message

Y
IPMPX Module

v

Available Availabl
Tool A e Tool B

Dataflow

IPMPX IPMP AES Tool
[PMP [PMP
IPMP update Tool (

) (

ID

10

P T P] 1...-..-’.._.::.|.‘
i Adcirsan: T3 TA HSUTH FEIAC
FERCH

D.
MPEG IPMP MPEG-4 IPMPX
MPEG-21 IPMP MPEG-21
MPEG-4 IPMPX IM1
IPMPX Message Router Tool Manager
IPMPX Message IPMP Tool
IPMPX IPMP Hook IPMPX
IM1 IPMPX IM1 MPEG-4
Terminal ~ IPMP Virtual Terminal MOSES
IPMP Message IPMP
IPMP IPMPX

MPEG-4 player

11

MPEG-7

MPEG

MPEG-2 frame-base MPEG-4

MPEG-1

object-base

MPEG-7

standard description

feature extraction

scope of MPEG-7

MPEG-7 Scope

B. -- MPEG-7

MPEG-7 MPEG-7

MPEG-7

MPEG-7 meta-data MPEG-7
MPEG-7 XML
meta-data XML Application MPEG-7
descriptor D description scheme DS
Descriptor
Description scheme

MPEG-7

» Systemg[10] MPEG-7 meta-data

12

search engine

MPEG-7

meta-data

MPEG-7

(D or DS)

XML

MPEG-7 binary (BiM)
» Description Definition Language[10] D DS

Schema

» Visual[10] D DS
meta-data

> Audio[10] D DS

» Generic Entitiesand Multimedia Description Schemes[10]
meta-data
meta-data

» Reference Softwar€g[10] XM eXperimentation Model
C++ D DS
MPEG-7 XM
MPEG-7

» Conformance[10] MPEG-7

MPEG-7 D DS meta-data
MPEG-7 formative
informative

C. MPEG-7
MPEG-7 XM C++

D DS XM

Java
framework framework

® Data meta-data

® DataAlg Data
meta-data

® Viewer Data Data

Data DataAlg
Component Management Unit
Component Management Unit

XML

meta-data

D DS

MPEG-7

Viewer

framework
D DS

Scalable Color Color Layout Dominant

Color Edge Histogram meta-data image

JDBC

13

Persistence

Manager

Applications
Concrete Components
£ £
Z Sul|l8ea
= EE S E =
= == S = 2o
z | 25| =35 | &% z
2852 52| ° g2
E 8 W E
i = - =
T
iHilities
Cempaornert Sargich
danagemet &=nagemert
Jawva Virtual Machine
o
key(obj) key unique key
listKeys(type) key

get(key) key

|

|

|

B insert(key,obj)
B remove(key)
B match(obj)

|

match(obj,alg)

getlnstance(config)
configure(config)
register(type, cmds)

deregister(type)

14

interface super class

Histogram Color Layout Edge Histogram Scalable Color feature extraction

feature matching image/feature viewer Component Management
Concrete Components
matching weighted matching multi-step matching
weighting factor D DS
weighted matching

weighted matching weighted matching

1
| P | Bricarics | Wpoiey |
Fel Wl B LG Lt E
emmpe [Diigeu[w =~ [eyipei[m
T T P T T T T
"'Hﬁ:'r Lvtiamsam Lhtaal ta0

==

15

D.

MPEG-7 MPEG-7 MPEG-7
MPEG-7 XM
MPEG-7 Java
framework (Viewer-Data-DataAlg) Component Management
Persistence Management

MPEG-7 Descriptor
meta-data
MPEG-7 ()
descriptor
MPEG-7

[1]ISO/IEC JTC1/SC29/WG11 N3747. MPEG-4 Overview - (V.16 — La BauleVersion), Con-
tribution for La Baule, October 2000.

[2]ISO/IEC JTC1/SC29/WG11 N3850. ISO/IEC 14996-1 ,COR1, AMD1.

[3]ISO/IEC JTC1/SC29/WG11 N2614 MPEG-4 Intellectual Property Management & Protec-
tion (IPMP) Overview & Applications.

[4]ISO/IEC JTC1/SC29/WG11 N5068, Sudy of FPDAM I1SO/IEC 14496-1:2001/AMDS, Jul.
2002.

[SJISO/IEC JTC1/SC29/WG11 N5333, MPEG-21 Requirements v.14, Dec. 2002.

[6]ISO/IEC JTC1/SC29/WGI11, N5535, Requirement for MPEG-21 Intellectual Property
Management and Protection, Pattaya, Mar. 2003.

[7]ISO/IEC JTC1/SC29/WGT1, Part 5 — Reference Software — Systems (ISO/IEC 14496-5
Systems)

[8]ISO/IEC JTC1/SC29/WG11 N4702, MPEG-4 IPMP Extension Reference Software Archi-
tecture based on IM1, Jegju, Mar. 2002.

[9]ISO/IEC JTC1/SC29/WGI11 N4850, MPEG-2 and MPEG-4 IPMP Extension Reference
Software Architecture based on IM1, May. 2002.

[10] ISO/IEC FCD 15938-1 Information Technology - Multimedia Content Description Inter-
face- Parts1to 7.

16

MPEG-4 Systems (IPMP) MPEG-7

MPEG-4 MPEG-7

Publications:

(1) C.-C. Huang, H.-M. Hang, and H.-C. Huang, “MPEG IPMP Concepts and Implementa-
tion,” The 3" IEEE Pacific-Rim Conference on Multimedia, Hsinchu, Taiwan, Dec. 2002.

(2) F.-C. Chang, H.-M. Hang, and H.-C. Huang, “Research Friendly MPEG-7 Software Test-
bed,” Image and Video Communications and Processing 2003 Conference, USA, Jan.
2003.

(3) Kin-Lam Tong , An Implementation of MPEG IPMP System, MS Thesis, NCTU,
June 2003.

1. C.-C. Huang, H.-M. Hang, and H.-C. Huang, “MPEG IPMP Concepts and Implementa-
tion,” The 39| EEE Pacific-Rim Conference on Multi media, Hsinchu, Taiwan, Dec. 2002.

2. F.-C. Chang, H.-M. Hang, and H.-C. Huang, “Research Friendly MPEG-7 Software
Testbed,” Image and Video Communications and Processing 2003 Conference, USA, Jan.
2003.

17

<ggg>

Advances in Multimedia Information Processing — PCM 2002, pp. 344-352,
Springer-Verlag, Dec. 2002.

MPEG IPMP Concepts and | mplementation

Cheng-Ching Huang?, Hsueh-Ming Hang?, and Hsiang-Cheh Huang?

Department of Electronics Engineering, National Chiao-Tung University,
Hsinchu, Taiwan.
lcchuang. ee89g@ct u. edu. tw
2f hmhang, huangh} @c. nctu. edu. tw

Abstract. Intellectual Property (IP) protection is a critical element in a multi-
media transmission system. Therefore, ISO/IEC MPEG started the |IP protec-
tion standardization project on MPEG-4 a few years ago. A basic IPMP (Intel-
lectual Property Protection and Management) structure and interface was first
defined in its System part. In this paper, we will first outline the MPEG-4 basic
IP protection mechanism and then describe our simulation of an MPEG-4 IPMP
system. An IP protection application is constructed using the MPEG-4 system
software — IM1 (Implementation Model one). This application includes a client-
server program, in which a client can request the keys from a server in a secure
way using a hierarchical key distribution structure.

1 Introduction

With the rapid development in computer industry and the swift growth of Internet,
there is awidespread use of the digital multimedia contentsin our daily life. The pro-
gress in data compression techniques also makes transmission of multimedia data
stream possible. However, Internet is an open environment, therefore, if the user data
and information are not protected, it might be illegally used and altered by hackers.
To protect privacy and intellectual property (IP) right, people often use cryptographic
techniques to encrypt data, and thus the contents protected by encryption are expected
to be securely transmitted over the Internet.

One requirement of typical multimedia applications is the demand for real-time
transmission. In contrast, conventional security methods are often designed to protect
digital datafiles, which might not be suitable and efficient for real-time applications.
To fulfill the demands for both real-time distribution and data security, including the
I P protection mechanism into the multimedia standard might be a feasible and effec-
tive way to achieve an unambiguous communication environment.

MPEG (Moving Picture Expert Group) is the ISO committee to set up the interna-
tional standards for multimedia data exchange. MPEG-2 has been applied to digital
video broadcasting with some access control specifications [1][2]. IPMP (Intellectual
Property Management and Protection), proposed for MPEG-4 standard, aims at pro-
tecting the compressed multimedia. In this paper, we will describe and implement a
multimedia transmission system using the MPEG-4 IPMP concepts.

hmhang
<附件一>

This paper is organized as follows. Sec. 2 is an overview of the MPEG-4 System
and IPMP standards. Sec. 3 describes the IPMP plug-ins in the MEPG-4 System ref-
erence software “IM1.” Sec. 4 describes the procedure of constructing the MPEG-4
IP plug-ins and an application example isincluded. Sec. 5 concludes this paper.

2 MPEG-4 Standard Overview and |PMP Framework

MPEG-4 is an international standard defined by the ISO/IEC committee. Compared
to it predecessors, MPEG-4 pays more attention on the following three subjects: (i)
real-time streaming, (ii) object-based coding, and (iii) enriched user interaction.

MPEG-4 standards contain 10 parts. The portion related to |P protection is in the
first part, Systems. The IPMP framework in ISO/IEC 14496 consists of a normative
“interface” that permits an ISO/IEC 14496 terminal to host one or more IPMP sub-
systems. An IPMP sub-system is a non-normative component of terminal, which pro-
vides several intellectual property management and protection functions. At the mo-
ment, MPEG committee is refining and extending the MPEG-4 IPMP specifications.
A Message Router mechanism is to be added into the third Amendment of 14496-1.

In the MPEG-4 standards, the IPMP interface consists of IPMP elementary streams
and IPMP descriptors. The IPMP elementary streams usually convey time-variant in-
formation such as keys associated with the encryption algorithm, which may change
very rapidly. IPMP descriptors often convey time-invariant information associated
with a given elementary stream or a set of elementary streams. IPMP elementary
streams are treated as regular media elementary streams. And the IPMP descriptors
are transmitted as part of an object descriptor stream.

Fig.1 shows how an IPMP sub-system works in an MPEG-4 terminal. Almost all
the streams may be controlled or accessed by the IPMP sub-system but the Object
Descriptor streams shall not be affected by the IPMP sub-systems.

Sream flow controller is a conceptual element that accompanies with every ele-
mentary stream. Stream flow controller can take place between the SyncLayer de-
coder and the decoder buffer. As Fig. 1 indicates, elements of IPMP control can take
place at other points in the terminal. For example, they can appear after decoding (as
in the case with watermark extractors).

3 IPMPinIM1

IM1 is an MPEG-4 Systems software developed by the MPEG committee. It may be
used to verify and demonstrate the functionalities of MPEG-4 [4].

The Systems Core module in IM1 defines the infrastructure to implement MPEG-4
players. It provides the functionality of MediaObject, the base class for al specific
node types. The API for Decoder, DMIF and IPMP plug-ins is also supported by
IM1. Moreover, the code is written in C++, which isfairly platform-independent [5].

Elementary Stream Interface]

DMIF _ Audio
+—»Audio DB|—j Decode
—rVideo DBﬁt"{ Dve'ggge

oD
—> — ODDB Decode

BIFS Decoded
—* BIFS DBI 1@ pecode BIES BIFS Tree

IPMP-Ds "
[ewe oe) s ™ IPMP System(s)| @ St

Fig. 1. IPMP sub-system in the ISO/IEC 14496 terminal architecture [3]

ﬂVideo CB

anusodwo)d

3.1 IPMPManager

In IM1, IPMP sub-systems are implemented by extending the IPMPManager class.
IPMPManager is an interface between MPEG-4 player and the IPMP sub-system. Each
media content access unit goes through the sub-system before it is stored in the de-
coding buffer. An implementation of IPMPManager can decrypt the encrypted content
and thus block the unauthorized access to the media content.

IPMPManagerimp extends the IPMPManager interface, and it provides the major
functionality of an IPMP sub-system. Simple implementations need to overload a few
setup functions and the Decrypt() function, which decrypts one access unit using one
IPMP stream. More complex implementations, for instance, when multiple IPMP
streams are used to decrypt a single el ementary stream, may overload the Run() func-
tion and implement different data flows by directly accessing the MediaStreams.

IPMP plug-ins interact with the core codes of the player through a special kind of
buffer, known as MediaStreams. An IPMPManager object fetches an access unit, which
is a kind of media, from one MediaStream object. After decrypting an access unit, it
will dispatch one decrypted access unit into an output MediaStream object, which usu-
aly isadecoding buffer [6].

3.2 IPMPManagermp

IPMPManagerimp extends the IPMPManager interface. It is the base class of al the
IPMP sub-systems. IPMPManagerimp provides all the needed functions of a regular
IPMP sub-system.

Each IPMP sub-system runs on its own thread. An IPMP sub-system is usually at-
tached to three MediaStream objects — the encrypted input stream, the decrypted output
stream, and the IPMP stream. According to the SDK [6], the workflow of a typica
IPMP sub-system is shown in Fig.2. Our design procedure is modified from that in
[6] and is outlined below.

9.

DMIF Video
i Video CB
——————————@»|Video DB Decodé

¥

-(oD DB | ,| ©op
g Decode
|
|
—

BIFS
BIFS DB Decode 1
|
- IPMP-Ds
| moros [1775 ™77 1PMP System(©)]® Eunue

Fig. 2. A typical IPMP sub-system workflow

(@]
o
3
=]
<]
@,
3
2

Jasepuay

BIFS

Decoded H BIFS Tree

. An object derived from IPMPManagerlmp is instantiated by the IPMP sub-system

module (usually a Dynamic Link Library, or DLL).

. The application calls IPMPManager:: SetlnputSream() and IPMPManager:: Set

OutputStream() to attach input and output MediaStreams to the |PM P sub-system.

. The application calls IPMPManager:: SetiPMPSream() to attach an IPMP stream

to the IPMP sub-system. This function may be called more than once if the ele-
mentary stream is protected by multiple IPMP streams.

. The application calls IPMPManager :: SetDescriptor () for each IPMP descriptor as-

signed to the elementary stream.

. The application calls IPMPManager::Init() to initialize the IPMP sub-system and

to confirm that the user has access to the protected elementary stream.

. The application calls IPMPManager:: Sart(), which spawns the IPMP sub-system

thread.

. The IPMP sub-system thread fetches an access unit from the input stream and the

corresponding access unit from the IPMP stream. Note that one IPMP access unit
can control multiple content access units.

. The IPMP sub-system calls a private virtual function, Decrypt(). This function is

overloaded by specific IPMP sub-systems and performs the actual decryption.
The output of Decrypt() is stored in the output MediaStream.

10. Steps 7-9 are repeated until IPMPManager:: Sop() is called by the application, or

until reaching the end of the input stream.

Some of these steps have been implemented in IPMPManagerimp class, but in some
special cases, we heed to re-implement them again.

3.3 MediaStream

MediaStream class handles the buffering and synchronization of an elementary stream.
It manages the memory buffer and fetch/disfetch access units from the buffer. The
stored access unit maybe has time stamp on it. The current solution is to fetch the ac-

cess unit immediately and ignore the time stamp, fetch the matured unit only, or oth-
erwise suspend.

4 Constructingan MPEG-4 IPMP Application Example

We will implement and demonstrate a multimedia transmission system with MPEG-4
IPMP by incorporating modern cryptographic techniques [7]. In designing the sys-
tem, we adopt the Conditional Access (CA) concept by using a hierarchical key dis-
tribution structure as shown in Fig. 3.

In this system, we encrypt only the bitstreams in the TRIF files. The server gener-
ates and embeds the keys into the hitstream. When the keys are correctly retrieved,
the decoded and decrypted video sequence can be played properly. Otherwise, the
bitstreams cannot be decoded successfully.

Diffie Hellmen Key Agreement

EndKd—» AES!

KC KC
) o

Ox nx
———Content——»| DES/XOR | —Ep oy orContent] —»| (DES/XOR)* [— Content—»

Fig. 3. The hierarchical key distribution structure

4.1 System structure and handshaking protocol

Our hierarchical key distribution systemisillustrated by Fig. 3. At the upper level, we
use the Diffie-Hellmen Key Agreement [8] that enables both the client-end and the
server-end to securely retrieve the Session Key, Kpy, over the Internet. By applying
the Advanced Encryption Standard (AES) [9], Kpy can serve as a secret key to en-
crypt Kc, and the encrypted K¢ are then transmitted. The use of K¢ isto serve as the
key for the bottom layer encryptor. In our example, the contents to be encrypted are
the compressed video, audio, or image bitstreams. Similar to the CA system in DVB,
we achieve the security requirement by changing K¢ frequently. The throughput of
K¢ isso high that we need a K¢ pool to generate the keys constantly.

Client Server

I

request

—
S

accept

L

server_key_exchange Diffie-Hellmen

Key Agreement

wig

client_key_exchange

—

|
!

user_name. !
\ |

|

|

cont_number

|
i Encrypted by AES
|

block_length |

P
key_length i

/ /

L

/ I ask_for_key
I

Loop until end
[

key_period

/KC

end_of_service

Fig. 4. The handshaking protocol

One of the most important elements of our system is the handshaking protocol.

Fig. 4 shows the basic steps in establishing a connection between the client-end and
the server-end. The procedure is stated as follows.

1
2.
3.

Client sends request = 0x31403 (4 bytes).
Server sends accept = 0x31403 (4 bytes).

Client and server proceed with the Diffie-Hellmen key agreement; al the forth-
coming information will be encrypted with AES by this key.

. Client sends user_name (44 bytes) and cont_number (4 bytes), representing the user

name and content number, respectively.

. Server sends block_length (2 bytes) and key lengh (2 bytes) to initialize the encryp-

tor, and key_period (1 byte) to tell the bottom layer encryptor the lifetime of Kc.

. Client sends ask_for_key = 0x5327 (4 bytes) to ask for a new key from the server.

Server sends anew K¢ to client after recelving ask_for_key.

. Client sends end_of service = 0x0 (32 bytes) to terminate the handshaking.

4.2 Theclient-end IPMP plug-in

The player isthe “IM1 2D player” executed under the Windows environment. Hence,
the IPMP plug-in can be implemented with the DLL file in Windows.

There is one implementation of IPMP plug-inin 1M1 core called IPMPNull. It works
like a buffer to send the input MediaStream directly to the output side. Based on the
existing IPMPNull program, we implement two new IPMP plug-ins in our system:
IPMPXOR.dIl and IPMPDES.dIl. They are essentially two encryption methods. The first
plug-in conducts the XOR operation between the received hitstreams and the key at
the decryptor, a very simple encryption technique; the second one uses the DES [7]
scheme for decryption.

In the MPEG-4 design, the IPMP stream is used to transmit keys. In our example,
we transmit the key using TCP/IP, not DMIF, to avoid the incompatibility between
our example system and the standard system.

Thefirst step to implement IPMPDES isto create an IPMPDES class, and it inherits a
class called “IPMPManagerimp.” Then, we implement the SetDescriptor() function.
The IPMPDescriptor within the TRIF file contains the information of the server loca-
tion and the content identification number that is to be played. The SetDescriptor()
function uses the above information to make a connection to the server and to initial-
ize the decryptor locally. Next, we implement the Decryptor() function, which can
decrypt the received MediaStream, and count the number of times K¢ is used.

Figs. 5(a) and 5(b) are the demonstrations of two IM1 2D players. The video se-
quence is coded in the H.263 format. The bottom-left bitstreams in both figures are
decrypted by IPMPXOR, and the ones on the bottom-right are decrypted by IPMPDES.
The sequences on the upper side are not protected in both Figs. 5(a) and 5(b). In Fig.
5(a), we assume that the key can be reliably transmitted and received. Hence, the two
encrypted bitstreams can be decrypted and displayed successfully. In Fig. 5(b), the
keys are not retrieved. Thus, the encrypted bitstream cannot be decoded and dis-

played.

(@ ' (b)
Fig. 5. Demonstration of the proposed system: the unprotected bitstreams (upper) and the pro-
tected bitstreams (lower). (&) Correctly retrieved keys, and (b) keys not retrieved

4.3 Theserver-end

The server can be divided into two parts, one is the encryptor and the other part is re-
sponsible for sending keys. Fig.6 is a screenshot of the server-end application. We
write it in C++ and it is a DOS command-line program. But the GUI is done in Java
using the pipes stdin and stdout.

Fig. 6. The server that can turn on/off keys

5 Conclusions

In this paper, we first briefly describe the MPEG-4 IPMP system concepts. We then
analyze the IPMP API in the reference software of the MPEG-4 Systems— IM 1. After
studying the IM1 Core and its IPMP API, we implement a functional IPMP sub-
system by modifying IPMPNull — a prototype of the IPMP sub-system.

We use the hierarchical key architecture to construct an application example, fol-
lowing the MPEG-4 IPMP concepts. Our example simulates the functionalities sug-
gested by the standard. We demonstrate that the MPEG-4 IPMP is a practical way for
protecting the multimedia content.

6 Acknowledgement

This work was supported by National Science Council (Taiwan, ROC) under Grant
NSC 90-2213-E-009-137.

References

1. ISO/IEC 13818-1 Generic Coding of Moving Pictures and Associated Audio Information:
Part 1 Systems (1SO/IEC JTC1/SC29/WG11 NO801rev), April 1995.
2. H. Benoit, Digital Television, MPEG-1, MPEG-2 and Principles of The DVB system, Ar-
nold, 1997.
3. ISO/IEC 14496-1:2000(E) Coding of Audio-visual Objects: Part 1 Systems (ISO/IEC
JTC1/SC29/WG11 N3850), October 2000.
. ISO/IEC JTCL/SC29/WG11 N4291, MPEG Systems (1-2-4-7) FAQ, Jul. 2001.
. ISO/IEC JTC1/SC29/WG11 N4709, MPEG-4 Systems Software Satus and Implementation
Workplan, March 2002.
. ISO/IEC JTCL/SC29/WG11 M 3860, |PMP Development Kit, Aug. 1998.
. B. Schneier, Applied Cryptography, 2nd edition, John Wiley & Sons, 1996.
8. PKCS#3: Diffie-Hellman Key-Agreement Standard, An RSA Laboratories Technical Note,
ftp://ftp.rsa.com/pub/pkcs/ascii/pkcs-3.asc.
9. J. Daemen and V. Rijmen, AES Proposal: Rijndael (corrected version),
http://www.esat.kuleuven.ac.be/~rijmen/rijndael/rijindaeldocV2.zip.

[0

~N o

<ggd>

Research Friendly MPEG-7 Software Testbed

F.-C. Chang, H.-M. Hang, and H.-C. Huang®

%Department of Electronics Engineering, National Chiao Tung University (NCTU), 1001
Ta-Hsueh Road, Hsinchu, Taiwan 30010, R.O.C.

ABSTRACT

We design and implement a research friendly software platform, which aims at the flexibility and the abstraction
of MPEG-T7 application prototyping. We studied and analyzed the MPEG-7 standard, including a typical
scenario of using MPEG-7. In order to fulfill to needs of researches, in addition to the normative parts of
MPEG-7, additional requirements are included. By examining these requirements, we propose a research friendly
software platform. The architecture consists of a framework, utility units, and the descriptors. Because this
system is implemented using Java, it also incorporates the features of the Java environment, and thus it is
flexible for developing new components and prototyping applications. We demonstrate the flexibility of this
testbed by constructing an example program which allows users to manipulate image related descriptors.

Keywords: MPEG-7, testbed, platform, feature extraction, matching

1. INTRODUCTION

With the sweeping development and deployment of computers, the widespread use of the internet, and the
advances of the audio-visual technology, it is easy to produce, distribute, and consume numbers of multimedia
contents.!*? The enormous amount of digital contents hence make searching and retrieval a difficult task. The
emergence of MPEG-7 aims at solving the problems for multimedia searching and retrieval.

MPEG-7,%4 also called Multimedia Content Description Interface, is an efficient tool for searching and
retrieval of multimedia data. MPEG-7 specifies a standard way of describing various types of audio-visual
information irrespective of its representation format and storage support.

The objective of MPEG-7 is to standardize content-based description for various types of audio-visual in-
formation. It enables fast and efficient content searching, filtering, and identification. Therefore, MPEG-7
provides a rich set of standardized tools to describe multimedia content® with a minimum set of tools, called
the normative components, essential for interworking, including Descriptor (D), Description Scheme (DS), and
Description Definition Language (DDL).6 A Descriptor is a representation of a distinctive characteristic of the
data. A DS specifies the structure and semantics of the relationships between its components, which may be
Descriptors or Description Schemes. The DDL is a language that allows the creation of new DSs and Ds, and
the extension and modification of existing DSs.

In addition to these standardized tools, the MPEG-7 eXperimentation Model (XM) is a reference software
used to evaluate the standard Ds and DSs. It is a collection of programs contributed by the members of MPEG
standard committee. Originally, each piece in it implements a straightforward MPEG-7 application type, which
generates a single feature and lists the matching results.

For real world applications, both the description generation, such as feature extraction, and consumption,
such as search engine, are essential but they are non-normative parts of MPEG-7 (Fig. 1). We thus are

Further author information: (Send correspondence to H.-M. Hang)
H.-M. Hang: E-mail: hmhang@cc.nctu.edu.tw, Telephone: +(886)3-5731861, FAX: +(886)3-5723283/5731791
F.-C. Chang: E-mail: u8811833@Qcc.nctu.edu.tw
H.-C. Huang: E-mail: huangh@cc.nctu.edu.tw

hmhang
<附件二>

motivated to design a platform that allows MPEG-7 researchers to develop various features and algorithms on
this platform. Users can manipulate the MPEG-7 descriptors in the abstraction layer without concerning of the
low-level functions, such as system calls and database connections. They can dynamically assemble different
algorithms together, execute them, and view the generated data in various formats by visual viewer tools. Also,
they can compose a new searching scheme (search engine) and test its feasibility on this testbed.

feature extraction standard description search engine

scope of MPEG—7

Figure 1. Scope of MPEG-7

This paper is organized as follows. Sect. 2 describes the motivation behind this project. Sect. 3 proposes
the software architecture of this research friendly platform. The detailed system design and architecture im-
plementation are described in Sect. 4. An application example is presented in Sect. 5. Sect. 6 concludes this

paper.

2. MOTIVATIONS

Many different types of applications can be developed based on the MPEG-7 specifications. For example,
a multimedia search engine typically has its own scheme in organizing and processing the meta-data. This
scheme may comprise several standard Ds and DSs, but it is likely that we need to create application-specific
descriptions and operations, and then to evaluate their performance. As discussed earlier, the MPEG-7 XM
is a collective software set. Although it includes a few basic tools that can incorporate new Ds and DSs, it is
mainly organized to demonstrate the extraction/matching results of using individual Ds (and/or DSs) and it
has no database support. The database support is essential for a typical multimedia database application.® For
research purposes, we need a platform that not only produces algorithm outputs, but also helps us analyzing the
performance of an algorithm. We group the MPEG-7 related research topics into two categories. One category
is developing a new description and its companion extraction and matching algorithms; the other is developing
a new application, which is a composition of existing descriptions and algorithms.

For new description development, what we care is how useful the description is, and how well the extrac-
tion/matching algorithm performs. It is helpful if we have an environment that allows us to add and remove
description data structures and algorithms easily. We evaluate the newly designed structures or algorithms by
their experimental results. And the results need to be examined by various data visualization viewers.

For a new application development, we usually pick up several existing descriptions from a library, organize
them into a scheme, and evaluate the new scheme to check its performance. A simple combination of the
components, each designed originally for a single objective, may not perform well enough to achieve our goal.
A carefully arranged processing sequence together with dedicated database schema design may greatly enhance
the overall performance. After designing the application-specific descriptions and algorithms, we also need a
versatile interface for handling the inputs and outputs of MPEG-7 streams.

3. ARCHITECTURE

Motivated by the discussions in Sect. 2, we start to design a research software platform. The design process
to be elaborated below includes defining the requirements, analyzing the use-cases, and finally developing an
architecture of the testbed. The unified modeling language (UML),% 10 developed by the Object Management

Group (OMG),!! is a graphical language for visualizing and documenting a software intensive system. We will
use UML to design our platform throughout this paper.

3.1. Requirements of the Testbed

The platform should provide an environment for both developing descriptors and feature-based applications;
correspondingly, the users of the system are classified into two categories. We call the descriptor developers the
“designers”’, and call the application developers the “developers”. The common requirement for both groups of
users is a flexible and extensible environment for conducting MPEG-7 related researches that involve algorithm
simulation and data analysis.

The designers develop descriptors and their companion algorithms, such as extraction, matching, encoding,
and decoding. We need a well-organized architecture that enables the designers to design the structure of
descriptions, the algorithms to extract features from media contents, the algorithms to compute the similarity
measure between two objects, and the encoding/decoding algorithms. In some cases, designers may want to
compare different algorithm implementations for the same descriptor, e.g., distance calculation based on the
quantized values or the reconstructed values. Using this platform, designers can test their descriptors and
algorithms by the quick prototyping mechanism.

In addition to evaluating the correctness of algorithms, the designers may want to evaluate the efficiency
or the fitness of the algorithms. Sometimes we can rate the efficiency of a descriptor by examining the query
results. For some descriptors, subjective examination of the extracted feature values may be helpful. To facilitate
examining various types of descriptors, feature visualization components are necessary in our platform.

A designer concentrates on a single descriptor design, while a developer focuses on a larger scale of software
organization. The typical scenario for a developer is picking up desired descriptors and algorithms from a library,
preparing the input/output interface, organizing the operations, attaching the visualizers, and building the main
program. The scenario suggests that the developers need an architecture that enables easy composition of the
ready-to-use components developed by the designers.

In developing and prototyping MPEG-7 applications, the platform should be flexible for integrating various
components into a complete system. This requires not only a structure that holds all the components, but
also a management mechanism that gets/puts components in an organized fashion. Because a large percentage
of applications are search-engine-like, the condition of multi-user accesses should be considered. This implies
that the platform should be able to evaluate the performance when a new scheme is involved in concurrent
processes. The database support, or the persistence mechanism, is critical in developing an application. It may
not be a critical element for a designer, because a designer usually deals with a small set of test data. For a real
application, a developer should concern the organization of the database; otherwise, the execution performance
may degrade drastically with a large data set.

3.2. Use-Cases

A use-case diagram specifies the behaviors of a system and also it captures the expected interactions that occur
at run-time. It is important in that it serves to validate the software architecture (which will be discussed in
Sect. 3.3) during project development.” The requirements of the testbed suggest many use-cases between the
system (the testbed) and the actors (the users). According to the classification of users discussed in Sect. 3.1,
we identify three types of actors in the use-case diagram: the user, the designer, and the developer. A user, no
matter he/she is a designer or a developer, may want to decode the input media data, extract some descriptors,
and calculate the distances among descriptors. Since our system views the data structures and algorithms as
components, the user needs to execute the component fetching operation to get the desired components before
he/she can really perform the other operations.

In the following paragraphs, we will discuss the designer/developer specific use-cases. Fig. 2 shows the
use-cases for designers. A designer performs two types of specific operations: one is to register the developed

components, and the other is to view a descriptor by a visualizer. Examining the requirements, we know that
the designer produces three types of components. The first is the descriptor. It is a pure data structure that
holds the extracted multimedia features. The second type of component is the (data) associated algorithms,
such as extraction, matching, encoding, and decoding algorithms. The last one is the descriptor visualizer (we
call it “viewer” in the following text for abbreviation). When the designer registers a component to the system,
the system also records the associations related to a component. For example, we register a vector viewer
with associations connected to the histogram descriptor. Then, the system records that the vector viewer is
an available viewer of the histogram. Without the association records, the system is nothing but simply a

component holder.

/ . ‘ record associations
register descriptor
register component 4

; i register algorithm register matching
) algorithm
designer
—_—
register decoder
register extraction
algorithm register encoder

Figure 2. Use-Case diagram for designers

\

/“

Fig. 3 illustrates the use-cases for developers. A developer performs three specific types of operations. The
developer may want to extract application-specific features, calculate the similarity between two features, and
export the feature values according to an external format. For example, a developer extracts the color histogram
of a query image, transforms the internal feature representation to MPEG-7 format, dispatches the MPEG-7
feature to a search engine, and searches the best matches by comparing features in a local database. It is worth
noting that the extraction and matching operations are different from those of general users in two aspects.
First, the “features” that a developer requests is usually a composition of descriptors residing on the platform.
Second, the extraction/matching algorithms are application-specific, because the MPEG-7 standard does not
specify any method of combining multiple-descriptor algorithms.

export features
access database
extract features

compare features decode feature

Figure 3. Use-Case diagram for developers

developer

3.3. System Architecture

Before we design and implement the detailed structure of the system, we need an architectural view of the
platform. The requirement and use-case analysis is focused on the behavioral view of the system. They
explicitly describe how the system works, and implicitly hint what the system should have. We develop the
main structure from those analysis results, especially the nouns appearing on the descriptions and the diagrams.

The system contains a number of concrete components, including descriptors, algorithms, and viewers, as
shown in Fig. 4. To manage those components, the platform has a component management unit that deals
with the registration and association of the components. The database support is handled by the persistence
management unit. These two units are not directly related to the descriptor design, but are necessary to the
application and prototype development. Hence, they are utility units of the testbed. The most important part,
though not explicitly mentioned in the requirements, is the framework. The framework is the programming
styles and rules when we use the platform to develop new applications. For instance, the common programming
interface of using the components and the concurrent execution algorithms are defined in this part. It glues the
scattered components and utilities by programming interfaces and class libraries.

Applications
Concrete Components
g 2
%) < B
c Lw o w
o T £ S o
8 ||2£||8s || 8¢
5 S5 || 35| 838 x
@ 25| | £ S 2 g
o & < | < 29
= o n £
x c () a
L w =2
LL
Utilities
Component Persistence
Management Management

Java Virtual Machine

Figure 4. Architecture of the software platform

In general, database access and data input/output are the less portable part of an application, because
they differ from system to system. We choose the Java platform as the base of our testbed, because it hides
most platform dependent issues under the Java virtual machine. The Java platform tries to unify the database
accesses through the JDBC drivers.!>!? In our experiences, almost all JDBC driver implementations conform
to the SQL standard, and handle text-based data very well. As to the binary data access, it is not always
well-implemented in the drivers. Since binary object access is inevitable in a normal MPEG-7 application, this
issue is handled by the persistence management unit rather than JDBC.

The interfaces exposed to the designer and the developer are the framework and the implemented compo-
nents. Since these two parts are designed to be system independent, this framework enables users to create
or use the system components without knowing the underlying system configuration. Another feature of this
architecture is component re-use. As projects (applications) are gradually developed on this platform, more
and more components are registered on the system. It is beneficial to be able to re-use the previously developed
modules.

4. IMPLEMENTATION

We will describe the implementation of our proposed testbed in this section. Based on the proposed architecture
in Sect. 3, the core of the platform is the framework and the utilities units. The concrete components are the
extensions to the core. Our design will proceed from the use-case and the architecture level to the class level.

4.1. Framework Implementation

The framework is the most important part of our platform. For users, it is the interface that connects their
applications to the testbed. For the system itself, it is the internal structure that holds the relationships among
components. We identify the functionalities of the system by use-case diagrams in the last section, and we now
identify the basic classes in our system. These classes are called “domain classes.” Fig. 5 shows the classes we
identified.

First of all, the Viewer/Data/DataAlg classes are the root of all subsequent components. Data, as the name
implies, is a collection of bytes that represent the multimedia content. Specifically, it can be a picture, a video
clip, a duration of sound, or any meaningful media data. The DataAlg is the algorithms associated with the
data. For example, JPEG encoder and decoder are two DataAlgs bounded to JPEG data. Viewer classes are
the renderers for Data classes, such as an image viewer, a sound player, and etc.

There are two special branches of DataAlg: one is for media data and the other is for meta-data (descriptions).
The reason we separate these two types of algorithms is that the operations for media data and meta-data are
significantly different. The operations applied to media data are encoding and decoding, while the meta-data are
usually connected to feature extraction and feature matching. It is often reasonable to group encoder/decoder
and extraction/matching algorithms in pairs. Note that we treat an MPEG-7 descriptor as a kind of media
data, and hence the MPEG-7 bit-stream is the encoded result of a plain data structure. The associations
among viewers and the data are not hard-coded, because a viewer can display more than one kind of data. For
example, a vector viewer can display the histogram or the zig-zag scanned DCT coefficients of an image block.
The association between data and algorithm is not one-to-one, because several algorithms may be associated
with the same data. All the association management tasks are delegated to the ComponentMgr which will be
discussed in Sec 4.2.

The domain classes are the conceptual building structures of the platform. In constructing the testbed, we
need to define more detailed behaviors of the classes. The Data interface is a wrapper of the real data, and it
is the most generic type in the testbed. It acts as a tag interface indicating if the wrapped object is acceptable
by this system. Programmers can retrieve MIME-type information through this interface if the system can
recognize the object when it is constructed.

The DataAlg is also a tag interface, which represents the algorithms associated with the Data object. It is
the root of all algorithm classes. It intends to serve as a common interface of the system to manage algorithms.
For the developers (sometimes the designers), it is not directly used as often as its inherited classes. For example,
the encoding/decoding algorithms consume MediaData. We use MediaCodec to group them for management,
and we use the inherited MediaEncodeAlg class to implement the encoder.

Here we briefly describe how a designer can use our platform to prototype a simple evaluation application.
He or she first implements the feature extraction and matching algorithms. Then, he/she specifies a designed
ExtractionAlg to consume the MediaData and produce a Description; the MatchingAlg computes the similarity

""" > MediaDecodeAlg

Description <

MatchingAlg
PersistenceMgr ComponentMgr -7
1
______ L > 1
< DescriptionAlg \
1
— I 1
’ | \ . I
1 N ExtractionAlg \
! N
’ 1
’ ! \ L -

/ I \ -: !
’] \ 1
’ | N [
’ \ N [
, \ ! 1

’ ! \ 1 |
, | \ ’ | :

1
Viewer Data DataAlg / : !
1
1

______________ [
> < II ol
[b
/ T
I T
/ T
r-==-=====7"r~-7=7"7"7"7777 MediaEncodeAlg : !
1 1
1 5 L]
v/ h
h
MediaData MediaCodec ~ | = === - - h
i
i
i
i
i
h
h
h
h
i
h
1
1
1
|

Figure 5. MPEG-7 testbed domain classes

of two Descriptions and gives the distance as the measure of the similarity. To generate a list of matching scores
under this framework, the designer may conduct one-by-one comparison. Obviously, this may not be the best
solution to a database search, but we view this an application specific issue and we let the developer handle it.

A Viewer is used to view the data object. Following the notations of the model-view-controller (MVC)
pattern,!* the Viewer interface merely indicates that it would co-operate with the model object (the Data)
and it provides the general application programming interface (API) for feeding the data into the viewer. Note
that we do not define the controller interface in our system, because different applications demand different
interactions between a view object and a model object.

The multi-user concurrent execution requirement can be solved by the threading mechanism in Java. Algo-
rithms are a collection of executable codes and related objects. Their properties are similar to those of a thread.
Hence, we can implement the algorithms by using the Java Runnable interface, which extends the usability of
the class in both single-thread and multi-thread design.

4.2. Utilities

The ComponentMgr manages the associations among viewers, data, and algorithms. One of the requirements
of our testbed is to integrate a vast variety of components with their implementations. As more and more
applications added into the system, the number of associations grows at a very fast pace. This unit copes with
the complexity of the relationships among concrete classes.

The associations of the components are described by the Data-Viewer-DataAlg relationships. They are
complicated because they are multi-to-multi associations. To make them simpler, we choose Data as the main
entity and break the triple-relation into two double-relations. As illustrated in Fig. 6, one of the association
is the relationship between the Viewer and the Data, and the other is the relationship between the Data and
the DataAlg. The ComponentMgr holds all the valid associations. The manager provides the interface that
retrieves/adds/removes the corresponding Viewers and DataAlgs for a given Data.

ComponentMgr

N 0.* DataDataAlgRel
DataViewerRel 0.*

7 Y

<<interface>> <<interface>> <<interface>>

Viewer Data DataAlg

Figure 6. Relationships managed by the component management

The relationships should be stored for future use; however, it is not a good solution to record them as raw
objects. The object references should be in an “indirect” form, such as string representation of the class names.
We recover a real object from its indirect form. The Java platform provides the class-class, which loads the
class by its name and instantiates an object from its class.

The system architecture allows that the users to store objects without knowing detailed database access
commands. To satisfy this requirement, we design the persistence management unit, PersistenceMgr, which is
a singleton'# class, the run-time object it points to can be configured in the global configuration.

The PersistenceMgr also configures the JDBC driver automatically, and allows users to obtain Connection
objects easily to handle the SQL commands. The binary data persistence is handled by other methods. Cur-
rently, our platform supports the binary object persistence of the PostgreSQL database. The implementation
uses the LargeObject API provided by PostgreSQL to manipulate bit-stream type data.

5. AN APPLICATION EXAMPLE: A GENERIC IMAGE FEATURE
MANIPULATION PROGRAM

In this section, we will demonstrate the flexibility of our testbed by constructing an example program. This
application provides a user interface that manipulates image-related descriptors. The testbed framework makes
it possible to operate different descriptors through a unified interface. Newly created descriptors can be easily
included into the program, because the component manager has the ability to incorporate different kinds of
descriptors.

Similar to the testbed design, we start developing this application program from its requirements. We will
not describe programming details, such as the descriptor implementations, but we will show the framework and
component re-use by an “evolutionary” design. The first requirement is that it shows an image on a window,
and it extracts image features. The second requirement is to extract and store image features in a batch. The
rest of the functionalities are needed for descriptor matching. We implement three matching schemes. They
range from the simple single-descriptor matching to the more sophisticated multi-step matching.

5.1. Extraction-related Operations

Feature extraction is often the first step in a typical MPEG-7 scenario. In addition to the extracting operations,
a research friendly program should provide the following extra functionalities:

e A user can select a desired image through a file chooser or an URL input dialog.
e A user can display an image using the specified image viewer.

e A user can extract a specified descriptor from an image.

A user can display a descriptor by a specified viewer.

e A user can save an image and its associated descriptor for future use.

According to the requirements, we design the classes needed in our program to perform the extraction related
operations. Many of these classes can be found in the testbed framework and in the Java class library; therefore,
we only need to implement the graphical user interface (GUI) related and the I/O-related classes.

Sometimes we want to process a number of images by a single command, the so-called batch processing. It
is convenient to have such a functionality to help users extract features of images. These extracted features can
be saved for future processing. In this example program, we assume all images reside in the local file-system.
Hence, additional requirements are listed below:

e Allow user to select image files for processing.
e Allow user to select descriptors for extraction.

e Allow user to (re-)build or update (according to the timestamp) the existing descriptors.

To implement the above operations, we need a few directory and file manipulation functions. Fortunately, Java
provides them in the java.io.File class. We may create, check existence, and check timestamp by using these
functions. Fig. 7 shows the result of our implementation. In Fig. 7(a), an image is loaded and its histogram is
extracted. A two-file batch extraction process is shown in Fig. 7(b).

5.2. A Single-descriptor Match

The single-descriptor matching is a very simple matching method. We build a user interface to demonstrate
this kind of search. The use of this functionality is similar to that in a typical MPEG-7 scenario. Since search
techniques are not closely related to the framework flexibility, we implement a brute-force search algorithm.
Reusing the CmdBase and CmdStatusListener introduced in Sect. 5.1, we design and implement the GUI and
the command objects. The command extracts the feature from the query image, searches for similar images
in the storage, and returns a list of matched results. The image files are displayed as 64 x 64 icons on the
user interface. Fig. 8(a) is the implementation of the single-descriptor match function. The screenshot shows
that a user selects the color layout descriptor as the feature, and chooses the default extraction and matching
algorithms to perform the operations. The maximum number of returned (matched) images is set to 20. The
sample image database contains 797 images. The returned image icons are displayed in the window from left
to right and from top to bottom with the most similar one on the top-left corner. When an icon is clicked, its
original image is displayed in a temporary image viewer. To speedup icon rendering, we implement a simple
icon cache. The icon is generated and stored in the cache when the image icon is first-time listed on the query
result. The same icon is loaded directly from the cache, if it is called again.

[Pttt 008

File Config Tools Help

—
Batch Extraction e

select Descriptor
Descriptor

Extraction

coe

File Config Tools Help select Image Fiels

. Image Source -3
image Viewsr | commlab.mpeg.viewer.ImageViewer

Look in: |CJimage | @ & o RES

ED 100-0077_IMG jpg
[100-0083 MG jpg

. Descriptor g B) 101-0112 MG jpg
Descriptor commlab.mpeg. feature.Probabilityvector

b |0 101-0113 MG jpg
Fxtiaction Algorithm commlab.mpeg.descalg.Defaultisto.. ~
jewer commlab.mpeg.viewer. Probabilityvectorviewer -

14l 1D

[101-0123 1mG jpg

M a1nz Azer msc ina

File name: 100-0077_IMG jpg

Files of type: | All Files (*.%) -

1% Terminate

(a) Loading and extraction (b) Batch extraction

Figure 7. User interface for extraction-related operations

5.3. Weighted Match

A second match, called weighted matching, is implemented and discussed in this section. The single-descriptor
matching often does not produce satisfactory results. The returned images are not subjectively similar to the
query item from time to time. A descriptor represents one specific aspect of an image. The single-descriptor
matching is not sufficient to imitate the human semantic matching. One improvement is considering a weighted
distance sum of several descriptors in matching.

The basic requirements of this functionality are similar to those of the single-descriptor matching. The
descriptor selections and matching commands are now extended to multiple-descriptor selections. We also need
to include the weighting factors that are associated with the descriptors. We use a table to select descriptors
and set their properties, such as algorithms and the weighting factors. Fig. 8(b) shows the user interface of the
weighted match parameter input table.

5.4. Multi-step Match

The matching methods described in Sect. 5.2 and 5.3 are one-step matching; that is, the similarity metrics are
calculated in one-shot. We obtain the searching results right after we scan through the entire image database.
Although the weighted matching method often performs better than the single-descriptor matching method,
one-shot scheme has a rather limited performance. This can be further improved by the multi-step schemes.

We can set the priorities of multiple descriptors using sequential steps. Each step produces a subset from
the previous searching results. For example, we may first use the edge histogram to find, say, 100 similar images
from the database. Then, we search by color layout in this list to produce the final 20 matches. This method
can be considered as a chain of weighted matching processes.

One of the implementation issue is that we do not restrict the re-use of the same query descriptor in different
steps. We have to modify the WeightedMatchCmd to prevent re-extract an extracted descriptor. This can be
easily solved by adding a collection to hold all extracted descriptors. Before we extract the query descriptor, we
fetch it in the collection. If there is an extracted version in the cache, we skip the extraction and continue the

remaining process. If the descriptor has not been extracted, we perform the extraction and put the descriptor
into the cache. Fig. 8(c) is a screenshot of the multi-step search. A user can input the step parameters in the
left and the upper-right panel. For each step, the central part of the right panel is the same as the weighted
matching parameter panel. The bottom part of the right panel displays the progress of both the global and the
current processing.

|

File Config Tools Help

) Image Source “d
mage Viewe: |cammiab.mpeg.viewer.ImageViewer
Simple Match Ll
scriptor commlab.mpeg.feature.ColorLayout -
|commlab. Avscaly, =]
| Avscaly ~|
mber of Matches [20
Q35.png $044.1pg 5045.3pg sf111jpg $067.ipg.
116118 1170400 Temp Image Viewer 2 od B

Viewer commlab.mpeg.viewer.imageViewer v

“l" Distance = 44.57104167941897 |0 e

¥
110-1047_IMG.jpg 5169.ipg

« D

(a) Single-descriptor matching

File Config Tools Help

— | Descriptors | Results|
r a Btep Name [color
DefaultColorLayou . DefaultColorLayou 45 is j# of Matches [20
103 Des cription raction
|ProbabilityVe . DefaultHistog. OefaultHistog |
[commiab mpeg.descalg DefaultEdgenistogramExtractionAlg ColorLayowt DefaultColorl... DefaultColorl.
lEdgeHistogram DefaultEdgeHi DefaultEdgeni |

Step Progress Finished
Total Progress Finished

(b) Weighted matching (c) Multi-step matching

Figure 8. Screenshots of matching related operations

6. CONCLUSIONS

In this paper, we designed a research friendly software testbed based on the concepts of MPEG-7. The system
requirements come from an MPEG-7 typical scenario, plus the functionalities a researcher may need. The
testbed has a framework that provides user programming interfaces and an abstraction of all MPEG-7 defined
operations. We believe the viewer-data-algorithm relationship covers most of the research requirements. Though
the testbed is designed for researchers, it can also be used as the base for developing a real MPEG-7 application.
The application designer may benefit from the additional functionalities offered by the framework in this testbed.

For example, an image search engine can use the viewers as the renderers for browsing, and a distributed search
engine may take the advantage of the Java platform to eliminate the cross-platform issue.

Treating the descriptors as a type of media data makes it possible to re-use the codec interfaces without
messing up the architecture with redundant classes. The persistence and component management units hide
the tedious database and configuration jobs, thus the users can focus on the descriptor design and application
prototyping. With a few implemented concrete components, we show the flexibility of this testbed by an
example, which contains three types of matching schemes. This example not only demonstrates the feasibility of
developing applications on our platform, but also shows the extensibility and re-usability when the functionalities
are incrementally added.

There are a few issues for further improving this testbed. Our system is built on the Java platform and
it uses JDBC as the database connection method. Our experiences indicate that the binary object accesses
are relatively slow comparing to the text-based accesses. The performance may be bounded by the JDBC
driver. If we want to speed up the search, a search algorithm targeting at a particular application should be
carefully designed. Java provides many network related functionalities such as socket, URL, and RML'® Tt is
an interesting topic to extend our testbed across the network. Java has several media extensions, such as JMF!6
and JAL'” They are useful extensions for handling media streams and images. We may enrich our testbed
implementation by incorporating these extensions. Solutions to these issues are expected to be added into the
next version.

REFERENCES

1. J. D. Gibson, Multimedia Communications — Directions and Innovations, Academic Press, San Diego,
CA, 2001.
2. A. Puri and T. Chen, Multimedia Systems, Standards, and Networks, Marcel Dekker, New York, NY, 2000.
3. Overview of the MPEG-7 Standard (version 5.0), ISO/IEC JTC1/5C29/WG11 N4031, MPEG7 Commit-
tee, Mar. 2001.
4. F.-C. Chang and H.-M. Hang, “An introduction to mpeg-7,” in Computer Vision, Graphics, and Image
Processing Conference, pp. 50-57, (Taipei), Aug. 2000.
5. http://www.cselt.it/mpeg/, “Mpeg homepage.”
6. Multimedia Content Description Interface - Part 2: Description Definition Language, ISO/IEC
JTC1/5C29/WG11, FDIS N4288, MPEG Committee, Jul. 2001.
7. Multimedia Content Description Interface - Part 6: Reference Software, ISO/IEC JTC1/5C29/WG11,
FCD N}206, MPEG Committee, Jul. 2001.
8. Q. Huang, A. Puri, and Z. Liu, “Multimedia search and retrieval: New concepts, system implementation,
and application,” IEEE Trans. Circuits Syst. Video Technol. 10, pp. 679-692, Aug. 2000.
9. G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language User Guide, Addison Wesley
Longman, Inc., 1999.
10. http://www.uml.org/, “Uml home page.”
11. http://www.omg.org/, “Omg home.”
12. http://java.sun.com/products/jdbe/, “Jdbe.”
13. G. O’Sullivan, Java 2 Complete, SYBEX Inc., 1999.
14. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns, Addison Wesley Longman, Inc., 1995.
15. http://java.sun.com/products/jdk/rmi/, “Remote method invocation.”
16. http://java.sun.com/products/java media/jmf/, “Java media framework.”
17. http://java.sun.com/products/java media/jai/, “Java advanced imaging.”

