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Abstract

For analyzing the coupled lateral and torsional vibrations of asymmetric rotor-bearing system, an extended transfer
matrix extended from one of the symmetric system is developed. Rather than the conventional “lumped system”, the
asymmetric rotating shaft is modeled by the Timoshenko beam in a continuous-system concept. According to our analysis,
for the asymmetric isotropic rotor-bearing system, the synchronous lateral mode will split; moreover, there is a 2 x lateral
mode that does not appear on symmetric isotropic rotor-bearing systems.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Schwibinger and Nordmann [1] investigated the influence of torsional-lateral coupling on the stability
behavior of a simple geared system supported by oil film bearings. Qin and Mao [2] developed a new finite
element model for analyzing the torsional-flexural characteristics of the rotor system. Additionally, Rao et al.
[3] studied the lateral transient response of geared rotors raised by torsional excitation. Mohiuddin and
Khulief [4] developed a reduced modal form of the rotor-bearing system for finding the transient responses
owing to different excitations using the finite element method. Al-Bedoor [5] presented a dynamic model for a
typical elastic blade attached to a disk mounted on a shaft, which was flexible in the torsional direction.
Additionally, Al-Bedoor [6] presented a model for interpreting the coupled torsional and lateral transient
vibrations of the simple Jeffcott rotor. Lee [7] formulated the coupled equations of motion in a lateral
bending-torsion for an unbalanced disk of the simple Jeffcott rotor for analyzing the instabilities. Hsieh et al.
[8] developed a modified transfer matrix method for analyzing the coupled lateral and torsional vibrations of
the symmetric rotor-bearing system with an external perturbing torque.

This paper extends the work of Hsieh et al. [8] and offers a modified transfer matrix method for analyzing
the coupled lateral and torsional vibrations of asymmetric rotor-bearing systems with an external perturbing
torque.
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2. Transfer matrix of Timoshenko’s shaft

Considering the kinetic energy and potential energy of the asymmetric shaft element expressed in fixed
coordinates [8,9], using Hamilton’s principle and assuming small twist angle displacement, we know that the
force equilibrium equations of the asymmetric shaft in the fixed coordinates can be obtained as follows:

pA[(peS cos(Qt + ¢ + B}) + pet sin (Qt + @ + ) — (2 + ¢)*ed sin(Qt + ¢ + )
+(Q+ ¢)e) cos(Qt + ¢ + B)] — pAx + k,GAKX" — 0,) = 0, (1)

pA[—pel cos(Qt + @ + ) + el sin (Qt + ¢ + B) + (2 + ¢)*e’ sin(Qt + ¢ + f})
+(Q + ¢)’e} cos(Qt + ¢ + P})] — pAJ + k;GA(O, + ") — pAg = 0, )
where A, p, G and k, denote the cross-sectional area, density, shear modulus and Timoshenko’s shear
coefficient, respectively, x and y denote the deflections of the geometric center in X and Y directions,
respectively, 0, and 0, denote the angular displacements in X and Y directions, respectively, ¢, and e} denote
the components of the eccentricity in U, V directions [8], respectively, ¢ and Q denote the angle of twist and

rotating speed, respectively, 3] denotes the initial angle between the principal axes U and X [8].
The bending moment equilibrium equations in the fixed coordinates are

.1 . o . Y
pI*0, + Eplj,(pﬁy + oI (Q + @)0, — EI'07 + ksGA(Ox + ') + pA°[0, sin 2(Qt + ¢ + f)

+20,(Q + @) cos 2(Qt + @ + ) + 0, cos 2(Qt + ¢ + B) — 20.(Q + ¢)sin 2(Q1 + ¢ + )]
+ EA'[-0] sin 2(Qt + ¢ + f) — 20,¢" cos 2(Qt + ¢ + f}) — 07 cos 2(Qt + ¢ + f})
+20.¢" sin 2(Qt + ¢ + )] =0, (3)
pI'0, — L0, — pIy(Q + )0, — EI'0) + kyGA(0, — x') + pA*[0y sin 2(Qt + ¢ + B})

+ 202 + ) cos 2Rt + @ + B) — 0, cos 2(Qt + ¢ + B) + 20,(Q + @) sin 2(Qt + ¢ + )]

+ EA[=07 sin 2(Qt + ¢ + f}) — 20,¢" cos 2(Qt + ¢ + ) + 0 cos 2(Qt + ¢ + f))

— 200" sin 2(Qt + ¢ + )] = 0, 4)
where I°, 4* and I’, denote the mean, deviatoric and polar area moment of inertia [8], respectively, E denotes
Young’s modulus.

The torque equilibrium equation in the fixed coordinates is
pLp — GLip" + 1pIi(0.0, — 0,0,) + pA[—Xe} cos(Qt + @ + B}) — Xe), sin(Q1 + @ + )

+ jeb cos(Qt + ¢ + ) — je sin(Qt + ¢ + B) + (¢°)2P] + pA°[—20,0, cos 2(Qt + ¢ + )

+ (05)*sin 2(Q1 + ¢ + B}) — (0,)sin 2Q1 + ¢ + B})] + EA'[+20.,0), cos 2(Q1 + ¢ + B})

— (0,)sin 2(Qt + ¢ + B}) + (0,) sin 2(Q1 + ¢ + B})] = 0. (5)

The natural boundary conditions are
Vi+[kGAWO, —=x)] =0, V,+[-kGAWO+))] =0, T+[-GIpp']=0,
M +[~EI0, — EA°0] cos 2(Qt + ¢ + B) — EA°0) sin 2(Qt + ¢ + f})] = 0,
M,y +[—EI0, + EA'0, cos 2(Qt + ¢ + f)) — EA0 sin 2(Qt + ¢ + 7)] = 0, (6)
where V', and V), denote the shear forces in X and Y directions, respectively, M, and M, denote the bending
moments in X and Y directions, respectively, 7 denotes the perturbing axial torque.

If the deviatoric area moment 4° is zero, Egs. (1)—(5) and Eq. (6) are simplified into the equilibrium
equations and natural boundary conditions of the symmetric shaft, respectively [8].
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Using the same procedure illustrated in Ref. [8], one can construct the shaft transfer matrix [T7], relating two
sides of the asymmetric Timoshenko shaft for the static deflection, synchronous whirl, and n x (n times the
rotating speed) whirl, in the static frame.

3. Transfer matrix of the rigid disk

Assuming the disk is rigid, thin, and asymmetric, one gets the force equilibrium equations of the asymmetric
disk in the fixed coordinates:

VR VL L m[—% + (e cos (Qt + ¢ + ) + el sin(Qt + ¢ + p9) — (Q + ¢)*e? sin(Qt + ¢ + 7)
+(Q+ @)el cos(Qr+ ¢+ D] =0, (7

Vf - Vf + m[—5 — (pe? cos(Qt + ¢ + ) + pe sin(Qt + ¢ + ) + (Q + )el sin(Qt + ¢ + )
+ (24 ¢)*e! cos (Qt + ¢ + ] —w? =0, (8)

where m“ and w? denote the mass and weight, respectively, ¢? and ¢? denote the components of the eccentricity
in U, V directions, respectively, V§ and Vﬁ denote the shear forces in X direction acting on right and left sides
of the disk, respectively, Vf and V'L denote the shear forces in Y direction acting on right and left sides of the
disk, respectively, ﬁf denotes the initial angle between the principal axes U and X.

The bending moment equilibrium equations in the fixed coordinates are

ME— ML — 10, — 11250, — I9Q + ¢)b, — 470, sin 2Qt + ¢ + p{) — 490, cos 2AQt + ¢ + )
—2490,(Q + @) cos 2(Qt + ¢ + ) + 24%0.(Q + p) sin 2(Qt + ¢ + ) = 0, 9)

ME — ME— 190, + 11950, + 19Q + ¢)0, — 490, sin 2(Q1 + @ + B) + 490, cos 2(Q1t + ¢ + B7)
— 2490 (Q + () cos 2Qt + ¢ + ) — 2470,(Q + p)sin 2(Qt + ¢ + 1) =0, (10)

where 14, A% and I;f denote the mean, deviatoric and polar mass moment of inertia [8], respectively, M* R and
M L denote the bending moments in X direction acting on right and left sides of the disk, respectively, M, R and
M, L denote the bending moments in Y direction acting on right and left sides of the disk, respectlvely

The torque equilibrium equations in the fixed coordinates is
TR = TF — 196 = 1190,0, + 1190,0, + m?[5e! cos(Qt + @ + p}) + el sin(Qt + ¢ + B7)
— jed cos (Qt + @ + 1) + je? sin (Qt + ¢ + ) — () @] +2490,0, cos 2(Qt + ¢ + )
— A0, sin 2Qt + @ + B + 470 sin 2Q1 + ¢ + ) = 0, (11)

where ¢/ denotes the eccentricity, T® and T* denote the axial torque perturbation acting on right and left sides
of the disk, respectively.

Similarly, Egs. (7)—(11) can be simplified into the equilibrium equations of the symmetric disk in Ref. [8] by
setting 49 = 0.

In this paper, the defections are assumed very small. Therefore, the order of magnitude of the high-order
nonlinear terms, such as @2, @0,, (péy, which involve square term or multiplication term, are quite small and
can be ignored, for simplification. Expressing the steady-state responses and inputs in Fourier series forms and
substituting them into Egs. (7)—(11) and equating the coefficients of the same harmonic term can yield the
transfer matrix of the disk [77] for static, synchronous whirl and non-synchronous whirls in the static frame.

The overall transfer matrix of the rotor system is the relation between the two ends of the shaft, and can be
derived by a stepwise relationship of the state vectors from the left end to the right end, and the state variables
of other stages are obtained by multiplying transfer matrices from stage 0 of the left end stepwise until a
specific stage is reached [8].
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4. Numerical example

For comparison, we introduce the same isotropic rotor-bearing system shown in Ref. [8] except that the
flexible shaft is asymmetric (Fig. 1). Table 1 lists the relative details of this asymmetric isotropic rotor-bearing
system. The response amplitudes and whirling orbits when no external perturbing torque, only the unbalance
force and weight acting in the system are shown in Fig. 2. Comparing the results in Ref. [8] with those in
Fig. 2, due to the effect of the asymmetric shaft, one gets that the synchronous lateral mode will split and the
2 x lateral mode appears additionally. In a rotating coordinates fixed to the asymmetric shaft, the weight can
be considered as a 1 x external force, which can excite 1 x forward whirl and 1 x backward whirl due to the
effect of the haft asymmetry. In other words, the weight will excite 2 x forward whirl and static deflection with

unit: cm _ - -
13.1 16 16 18 13.1 .
T
-
K disk 1 disk 2 disk 3 K C

Fig. 1. Configuration of the asymmetric isotropic rotor-bearing system.

Table 1

Details of the asymmetric isotropic rotor-bearing system

The coefficients of the shaft
A
1
I

S QM

s
u

B
The coefficients of the disks
ol
d
1,
S

ed, el of the disk 1

u> ~v

ed, ¢! of the disk 2 and disk 3

> v

B¢ of the disk1, disk 2 and disk 3

\
. e

i3}

The coefficients of the bearings
Kiv, Ky

K\’ya nya KOxxs KOyya KOxya K()yx
K, of the left bearing

K, of the right bearing

Cyx, Cyy

Cyys Cyxs Coxxs Copyr Conys Cope
C, of the left bearing

C,, of the right bearing

1.2566 x 107> m?
1.3823 x 107" m*
1.1309733 x 10~ m*
207 x 10° Nm™2

81 x 10°Nm™?

0.68

7750 kgm
1x107°m

0

2.5kg

1020 x 10~ *kgm?
512 x 10"*kgm?
7%x107%m

0

0

1x10’Nm™'

0

5% 10N mrad™!
0

2x10°Nsm™
0

INmsrad™!

0
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Fig. 2. Response amplitudes and orbits of disk 1 (without perturbing torque).
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Fig. 3. Whirling orbits of disk 1 (without perturbing torque).

respect to the static frame. Moreover, the critical speed due to the weight is roughly equal to half the critical
speed due to the mass unbalance. The synchronous whirl is excited by unbalance force and the 2 x whirl is
excited by the weight. Two synchronous lateral modes occur at 5698 and 6084 rev/min, respectively, and the
2 x lateral mode occurs at 2842 rev/min. The response is composed of synchronous (i.e., 1 x ) and 2 x whirls.
The synchronous whirl is excited by unbalance force and the 2 x whirl is excited by the weight. Fig. 3 shows
the orbits of the 1 x, 2 x , and synthetic whirls. The orbits of the 1 x and 2 x components are all forward and
right circular so that the synthetic orbit is forward too.

Fig. 4 illustrates the response amplitudes and the orbits of disk 1 excited by the 1 x perturbing torque
(T = 5000 cos Q¢f Nm) along with unbalance force and weight. Other than synchronous and 2 x lateral modes,
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Fig. 4. Response amplitudes and orbits of disk 1 (7"= 5000 cos Q1).
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Fig. 5. Angle of twist of disk 1 (7"= 5000 cos Q).

one peak clearly appears at 4580 rev/min. The response amplitude of the angle of twist of disk 1 is shown in
Fig. 5. Like the symmetric isotropic rotor-bearing system [8], the torque will excite the torsional vibration with
torsional exciting frequency and, under the system coupling effect, also stimulate the lateral vibration whose
frequency is that of the perturbing torque plus or minus the rotating speed. Therefore, owing to the coupling
effect of the rotor system, the 1 x torque excites a 1 x torsional mode at 4580 rev/min, a 2 x lateral mode at
2842 rev/min. Fig. 6 shows the orbits of the 1 x, 2 x, and synthetic whirls.

When 1 x external perturbing torque is replaced by 2 x one, the response amplitudes excited by the 2 x
perturbing torque (7 = 5000 cos 2Q¢) along with unbalance force and weight, and the orbits of disk 1 are
shown in Fig. 7. The response is composed of synchronous (i.e., 1 x ), 2 x , and 3 x whirls. Figs. 8 and 9 show
the response amplitude of the angle of twist and whirling orbits, respectively. Similar to the symmetric
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Fig. 6. Whirling orbits of disk 1 (7= 5000 cos Q1).
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Fig. 7. Response amplitudes and orbits of disk 1 (7' = 5000 cos 2Qr).

isotropic rotor-bearing system [8], a 3 x lateral mode in Fig. 7 occurs at 1876.0 rev/min (around one-third
of the lateral resonant frequency 5698.0 rev/min) since the 2 x perturbing torque excites the 3 x forward and
1 x backward whirls. Furthermore, a 2 x torsional mode occurs at 2290.0 rev/min (see Fig. 8, half of the
torsional resonant frequency 4580.0 rev/min) appearing on the 1 x and 3 x whirl components simultaneously
(see Fig. 7). Finally, the 2 x and 3 x components are excited by weight and the perturbing torque,
respectively, their component orbits are forward and right circular (Fig. 9).

5. Conclusion

Due to the impact of the shaft asymmetry, the synchronous lateral mode of asymmetric isotropic rotor-
bearing system splits. Different to symmetric system, there exists a 2 x lateral mode in the asymmetric system.
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Fig. 8. Angle of twist of disk 1 (7= 5000 cos 2Q¢).
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Fig. 9. Whirling orbits of disk 1 (7"= 5000 cos 2Q¢).

Unbalance force and weight excited the synchronous whirl and the 2 x whirl, respectively. Besides, like the
symmetric isotropic rotor-bearing system, the torque will excite the torsional vibration with torsional exciting
frequency and, under the system coupling effect, also stimulate the lateral vibration whose frequency is that of
the torque plus or minus the rotating speed. In other words, when the unbalance force, weight and the
perturbing torque with n x frequency of the rotating speed simultaneously excite the system, the (n+1) x
forward and (n—1) x backward whirls appear, along with synchronous and 2 x whirls.
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