NSC91-2213-E-009-081-
91 08 01 92 07 31

9 2 10 30

A Tight Bound of Consensus Problem in Hybrid Fault
Synchronous Distributed Computing

NSC
91 8
E- mai |
E- mai |
Siu 199
Gar ay Perry
FTVC
Siu
Abstract

Consensus problem is one of the most
important issues in literature of fault tolerant
distributed computing. Siu et a. in 1998
proposed a necessary condition of failuresin
the hybrid fault model, and an agorithm
caled GPBA to show that this condition is
also sufficient. However, we present a
counterexample to show that the algorithm
violates the agreement condition, the most
important safety property that was claimed.
The necessary and sufficient condition of
failures should be re-examined. Based on
Garay and Perry’s algorithm in addition to
the reliable communication protocol, FTVC,

used in GPBA, we propose an algorithm
showing that the necessary condition of Siu
et a. isindeed also sufficient.

?(eywor ds. Consensus Problem,
Fault-tolerant Systems,
Distributed Systems

Achieving consensus is a key problem
in Qistrilbuted computing systems tolerant of
falures. Many algorithms have been
proposed in different failure models [1-8].
Each algorithm attempted to maximize the
faillureresilience.

Siu, Chin and Yang [1] in 1998
proposed a byzantine agreement algorithm,
generalized protocol for the BA problem
(GPBA), in a generad network whose
topology is connected but may not be fully
connected. In such a network, each processor
can be subject to either arbitrary fault or
dormant fault, so can each link. An arbitrary
fault can exhibit arbitrary behavior, also
known as byzantine fault; while a dormant
fault consists merely of omission of
messages or delay in sending or relaying
messages. We follow the convention that a
dormant processor cannot stop receiving
messages since message reception is an
action regarded as not locally controllable.

Let n be the number of processors, V
the set of all possible values, ¢ the system
connectivity, Pa (Pd) the number of

edu.

edu.

91-2213-E-009-081
1 92 7 31

tl huang@csie.nctu.

chenss@csie.nctu.

processors subject to the arbitrary (dormant)
fault, and La (Ld) the number of links subject
to the arbitrary (dormant) fault. According to
Theorem 5 of Siu et al. [1], if failures are
constrained by conditions (i) n > Pa + Pd,
and (ii) ¢ > 2Pa + Pd + 2(La + Ld), then
GPBA satisfies the following correctness
conditions, using|.(n-1)/3] +1 rounds.
Agreement: All fault-free processors
agree on the same common value v.
Validity: If the source is fault-free, then
the common value v should be the
initial value vs of the source.

However, we discovered a
counterexample that satisfies the constraints
on falures of GPBA but violates the
agreement condition. Siu et a. [1] have
shown that the conditions of failures n > Pa
+ Pd and ¢ > 2Pa + Pd + 2(La + Ld) are
necessary. Unfortunately, their algorithm is
wrong and therefore the tight bound of
failure resilience is still unknown. In this
project, we am to determine the tight bound.

First, we propose a counterexample for
GPBA, showing that the tight bound of
faillure resilience should be re-examined.
Then, we show that there exists an algorithm
satisfying the conditions of failures proposed
by Siu et a. Thus, the necessary conditions
of failures are also sufficient, determining the
optimal resilience of the hybrid fault model.

A Counterexample for GPBA

A network and an execution of GPBA
are presented in this section to show that the
algorithm violates the agreement condition.

& - fimli-free processor
A ddornant fanky processor

— [rvali=free link

Figure 1: The network topology of the
counterexample.

Fig. 1 shows the network of this
counterexample with five processors, for

2

which the connectivity is four. Let S be the
source and Vs its initial value. The value set
V={0,1} and v 1. Also, suppose that
processors S, B and C are subject to dormant
fault, and all the other components are
fault-free. Finally, we assume default value is
equal to 0. Processors will select the default
value as the initial value of the source when
receiving no message broadcast by the source.
That is, suppose n=5, c=4, v=1, Pa=0, Pd=3,
La=0 and Ld=0. It is clear that the constraints
on failures are satisfied. Therefore, applying
GPBA on this case, an agreement should be
achieved by | (n-1)/3] +1 = 2 rounds.

During the execution of GPBA on the
above network, each fault-free processor
maintains a tree structure having 2 levels to
collect the messages. After the first round,
each fault-free receiver stores the message
received from the source, denoted as val(S),
at theroot Sof thistree. In the second round,
each processor broadcasts the root's value to
al receivers except S If sender B sends a
message val(S) to receiver i, i will store the
message received from B, denoted as val (SB),
at vertex SB of its tree. The value of vertex
B in processor i's tree is meant to be the
initial value of S that B has conveyed to i;
thus, the vertex SB is said to correspond to B.
Vaue [0 for a vertex indicates that a
processor receives no message from the
processor to which the vertex corresponds. It
will be replaced by the default value in the
first round and by value A in the second
round after applying the absent rule in each
round. A will be ignored in the VOTE
function.

Based on the network in Fig. 1, Fig. 4
shows an execution of GPBA in which
fault-free processors A and D are unable to
decide the same value, and exhibits the states
of all non-faulty processors after each round.
In the first round, source S should use FTVC
protocol to broadcast its initial value “1” to
all other processors, but S sent its initial
value only to A, B and C and then became
dormant, omitting the sending to D. Since
processor D didn't receive the message from
source S, it selected the default value, 0, as
theinitial value of S asshowninFig. 4(a). In

the second round, all processors (except S
should exchange the message received from
S Assume processors B and C suffered
dormant faults in this round. After sending
the message to A using FTVC protocol,
processor B stopped sending and stopped
relaying messages. Similarly, C stopped after
sending the message to A. Fig. 4(b) shows
the messages received at each non-faulty
processor after the second round. Finaly,
after applying the function VOTE onto the
received messages, processors A and D (the
remaining fault-free processors) decided on 1
and 0, respectively, as shown in Fig. 4(c).
Thisis adisagreement error.

A resilience-optimal Algorithm

The resilience-optimal agorithm is
based on the Frangible Consensus Protocol
proposed by Garay and Perry [2]. The
original protocol is designed for a failure
model in which all links are reliable and the
underlying network is complete. In the
hybrid failure model, each link can be subject
to ether arbitrary fault or dormant fault. If
we can find out a protocol making the
underlying network as if a complete reliable
network, the Frangible Consensus Protocol
works on the network.

The fault-tolerance virtual channel
(FTVC) protocol proposed by Siu et al. [1]
can be wused to provide a reliable
communication between any two processors
if the connectivity of the network satisfies the
condition ¢ > 2Pa + Pd + 2(La + Ld). We
combine the FTVC protocol and the
Frangible Consensus Protocol to obtain the
resilience-optimal agorithm. The resulting
algorithm is correct if failures are constrained
by conditions (i) n > Pa + Pd, and (ii) ¢ >
2Pa + Pd + 2(La + Ld). As a result, the
conditions of failures are tight.

The resilient-optimal algorithm s
briefly described as follows. First, the
MakeUnique protocol ensures that all
processors that accept a value accept the
same value, but some processors may not
accept any value (indicating by “accepting’
the value 2).

MakeUnique(v)

FTVC(v) to all processors,

C[0] := number of O's received,

C[1] := number of 1's received,

if C[0] 2 n-(PatPd) OC[1] < Pa
then v:=0

C[1] =z n-(Pat+Pd) O C[0] < Pa
then vi=1

v:i=2

elseif

else
fi;

Figure 2: M akeUnique Protocol.

Lemma 1 (Garay and Perry [2]) If p and g
are nonfaulty processors such that, in
MakeUnique, p assignsr =2 to v, and ¢
assignss Z2tovg, thenr = s.

v :="initial value’;

for K:=1to (Pat+Pd) + 1do
/* Universal Exchange 1 */
MakeUnique(V);

/* Universal Exchange 2 */
FTVC(v) to all processors,
D[0] := number of 0’s received;
D[1] := number of 1'sreceived;
D[2] := number of 2’sreceived;
if D[0] = Pathenv: =0
elseif D[1] =Pathenv:=1
fi;

/* King's Broadcast*/
if i = K then FTVC(v) to all processorsfi;
W := value received from processor K;
if (v=20D[v]<PalD[2] >Pa)
then v:=min(1,W)
fi;
od;
“final value” :=v

Figure 3: The optimal algorithm for each processor i.

Lemma 2 (Garay and Perry [2]) At the end of
phase (Pa + Pd) + 1 for any nonfaulty
processorsp and g, Vp = Vq.

Fig. 3 shows the resilient-optimal
algorithm. It follows the Phase King
paradigm of [3] in which the computation
proceeds in phases, each of which has a
processor designated as the phase king. Each

phase K of the resilient-optimal agorithm
consists of 3 rounds of communication. In
the first round, each processor executes the
MakeUnique protocol. Then, each processor
communicates with one another by the FTVC
protocol. In the third round, only the phase
king sends messages to all processors.
According to Lemma 2, the resilient-optimal
algorithm satisfies the agreement condition.

We assume that our modd is
synchronous round-based message-passing
model and assume that a processor can
communicate with each processor by using
FTVC once during a period of one round.
The resilient-optimal algorithm consists of
(Pa+Pd) + 1 phases, and each phase consists
of 3 rounds of communication. The time
complexity of the agorithm is 3(Pa+Pd+1)
rounds.

Siu

|EEE
Transactions on Parallel and Distributed
Systems.

Garay Perry
Siu
Siu
Garay
Perry Siu
FTVC protocal

[11H.-SSiy, Y.-H. Chin and W.-P. Yang, “Byzantine
Agreement in the Presence of Mixed Faults on
Processors and Links,” IEEE Trans. on Parallel
and Distributed Systems, vol. 9, no. 4, pp.
335-345, Apr. 1998.

[21JA. Garay and K.J. Perry, “A Continuum of
Failure Models for Distributed Computing,” In
Proceedings of the 6th International Wbrkshop

on Didributed Algorithms, volume 647 of
Lecture Notesin Computer Science, pp. 153-165,
Haifa, Israel, November 1992.

[31P Berman, JA. Garay and K.J. Perry, “Towards
Optimal Distributed Consensus,” In Proceedings
of the Thirtieth Annual Symposium on
Foundations of Computer Science, pp. 410-415,
1989.

[41FJ. Meyer and D.K. Pradhan, “Consensus with
Dual Failure Modes,” IEEE Trans. on Parallel

andD/ st ri but edv8ystemsno.

214-222, Apr . 1991.
[51H.-S. Siy, Y.-H. Chin and W.-P. Yang, “A Note
on Consensus on Dual Failure Modes,” |EEE

Trans. on Parallel and D/ st r 7 but ed Syste
225-230,

vol . 7, no. 3, pp.
[6]1K.-Q. Yan, Y.-H. Chin and S.-C. Wang, “Optimal
Agreement Protocol in Malicious Faulty

Processors and Faulty Links,” IEEE Trans. on
Knowledge and Data Engineering, vol. 4, no. 3,
pp. 266-280, June 1992.

[71P Lincoln and J. Rushby, “A Formally Verified
Algorithm for Interactive Consistency Under a
Hybrid Fault Model,” In Proceedings of the
Symposium on Fault-tolerant Computing, pp.
402-411, 1993.

[81 P Thambidurai and Y.K. Park, “Interactive
Consistency with Multiple Failure Modes,” In
Proceedings of the Symposium on Reliable
Distributed Systems, pp. 93-100, Oct. 1988.

Processors A. B and C Processor [

val{s) = 1 val{5) = 1 val{5) = sf val{s) =0
O — i (] —
& Abzent 3 5 Abeent s
mle rile
(a) roumnd 1
Processor A
First level Second level Farat level Second level
val{5) =1 val(5) =1
(O————1 8A val{S8A)=1 O—7 SA wl(SA)=1
g T SB val{SB) =1 3 7 8B val(SB)=1
———
") 8C val{SC) =1 Absent ") 8C val(8C) =1
e | R val(BIN) =100 mile — 5D wal(SD) =10
Processor 3
First level Second level Furst level Second level
val{5) =0 wal(3) =0
(i] BA val{S4) =1 [(p———{" A val{S8A) =1
g 1 SB wal(SB) = ¢ g L SB val(SB)=A
—_—
——O 3C valSO = Absent) SC wal(SC)=A
7 8D val(SD) =0 rule L 5D val(SD) =0
(1) vownd 2
Processor A
YVOTE of VOTE of
Lest level 2ond level
valiBA) =1
val(SH) = 1
val{($€) = 1
wval{SL¥) =0

VOTE of VOTE of
Lost level L-ud Jeve]

- i
11— 54 valiSA) =1

‘-"lgf} =0 . |Aa——)SB valiSB) = A
; A a—Ee " 50 val{SC) = A
0 -—L Ogp val(SD) = 0

() applying the VOTE

Figure 4: The states of nonfaulty processors after each round.

