
行政院國家科學委員會專題研究計畫 成果報告

一致性問題在多重錯誤同步分散式計算環境下的最佳解

計畫類別：個別型計畫

計畫編號：NSC91-2213-E-009-081-

執行期間：91年08月01日至92年07月31日

執行單位：國立交通大學資訊工程學系

計畫主持人：黃廷祿

計畫參與人員：陳勝雄

報告類型：精簡報告

處理方式：本計畫可公開查詢

中 華 民 國 92年10月30日

 1

行政院國家科學委員會專題研究計畫成果報告
一致性問題在多重錯誤同步分散式計算環境下的最佳解

A Tight Bound of Consensus Problem in Hybrid Fault
Synchronous Distributed Computing
計畫編號：NSC 91-2213-E-009-081

執行期限：91年8月1日至92年7月31日

主持人：黃廷祿 國立交通大學資訊工程學系

E-mail: tlhuang@csie.nctu.edu.tw

 計畫參與人員：陳勝雄 國立交通大學資訊工程學系

E-mail: chenss@csie.nctu.edu.tw

一、中文摘要

 一致性問題是分散式系統中容錯處理

必須面臨的重要課題。 Siu 等人於1998

年提出一致性問題在多重錯誤模式下容錯

能力的必要條件，並且提出一個演算法嘗

試證明此條件亦為充分條件。然而，我們

提出一個反例來說明他們的演算法違反了

一致性問題的基本要求。因此，一致性問

題容錯能力的最佳解是否存在仍然未定。

根據 Garay 與 Perry 的演算法加上 Siu 等

人在其演算法中所用的溝通機制（FTVC），

我們提出一個演算法證明 Siu 等人所提的

必要條件亦為充分條件，亦即此演算法為

一致性問題容錯能力的最佳解。

關鍵詞： 一致性問題、容錯系統、分散式

系統

Abstract

 Consensus problem is one of the most
important issues in literature of fault tolerant
distributed computing. Siu et al. in 1998
proposed a necessary condition of failures in
the hybrid fault model, and an algorithm
called GPBA to show that this condition is
also sufficient. However, we present a
counterexample to show that the algorithm
violates the agreement condition, the most
important safety property that was claimed.
The necessary and sufficient condition of
failures should be re-examined. Based on
Garay and Perry’s algorithm in addition to
the reliable communication protocol, FTVC,

used in GPBA, we propose an algorithm
showing that the necessary condition of Siu
et al. is indeed also sufficient.

Keywords: Consensus Problem,

Fault-tolerant Systems,
Distributed Systems

二、緣由與目的

 Achieving consensus is a key problem
in distributed computing systems tolerant of
failures. Many algorithms have been
proposed in different failure models [1-8].
Each algorithm attempted to maximize the
failure resilience.

Siu, Chin and Yang [1] in 1998
proposed a byzantine agreement algorithm,
generalized protocol for the BA problem
(GPBA), in a general network whose
topology is connected but may not be fully
connected. In such a network, each processor
can be subject to either arbitrary fault or
dormant fault, so can each link. An arbitrary
fault can exhibit arbitrary behavior, also
known as byzantine fault; while a dormant
fault consists merely of omission of
messages or delay in sending or relaying
messages. We follow the convention that a
dormant processor cannot stop receiving
messages since message reception is an
action regarded as not locally controllable.

Let n be the number of processors, V
the set of all possible values, c the system
connectivity, Pa (Pd) the number of

 2

processors subject to the arbitrary (dormant)
fault, and La (Ld) the number of links subject
to the arbitrary (dormant) fault. According to
Theorem 5 of Siu et al. [1], if failures are
constrained by conditions (i) n > Pa + Pd,
and (ii) c > 2Pa + Pd + 2(La + Ld), then
GPBA satisfies the following correctness
conditions, using (n-1)/3 +1 rounds.

Agreement: All fault-free processors
agree on the same common value v.

Validity: If the source is fault-free, then
the common value v should be the
initial value vs of the source.

 However, we discovered a
counterexample that satisfies the constraints
on failures of GPBA but violates the
agreement condition. Siu et al. [1] have
shown that the conditions of failures n > Pa
+ Pd and c > 2Pa + Pd + 2(La + Ld) are
necessary. Unfortunately, their algorithm is
wrong and therefore the tight bound of
failure resilience is still unknown. In this
project, we aim to determine the tight bound.

三、結果與討論

 First, we propose a counterexample for
GPBA, showing that the tight bound of
failure resilience should be re-examined.
Then, we show that there exists an algorithm
satisfying the conditions of failures proposed
by Siu et al. Thus, the necessary conditions
of failures are also sufficient, determining the
optimal resilience of the hybrid fault model.

A Counterexample for GPBA

A network and an execution of GPBA
are presented in this section to show that the
algorithm violates the agreement condition.

Figure 1: The network topology of the

counterexample.

Fig. 1 shows the network of this

counterexample with five processors, for

which the connectivity is four. Let S be the
source and vs its initial value. The value set
V={0,1} and vs = 1. Also, suppose that
processors S, B and C are subject to dormant
fault, and all the other components are
fault-free. Finally, we assume default value is
equal to 0. Processors will select the default
value as the initial value of the source when
receiving no message broadcast by the source.
That is, suppose n=5, c=4, vs=1, Pa=0, Pd=3,
La=0 and Ld=0. It is clear that the constraints
on failures are satisfied. Therefore, applying
GPBA on this case, an agreement should be
achieved by (n-1)/3 +1 = 2 rounds.

During the execution of GPBA on the

above network, each fault-free processor
maintains a tree structure having 2 levels to
collect the messages. After the first round,
each fault-free receiver stores the message
received from the source, denoted as val(S),
at the root S of this tree. In the second round,
each processor broadcasts the root's value to
all receivers except S. If sender B sends a
message val(S) to receiver i, i will store the
message received from B, denoted as val(SB),
at vertex SB of its tree. The value of vertex
SB in processor i's tree is meant to be the
initial value of S that B has conveyed to i;
thus, the vertex SB is said to correspond to B.
Value ∅ for a vertex indicates that a
processor receives no message from the
processor to which the vertex corresponds. It
will be replaced by the default value in the
first round and by value A in the second
round after applying the absent rule in each
round. A will be ignored in the VOTE
function.

Based on the network in Fig. 1, Fig. 4

shows an execution of GPBA in which
fault-free processors A and D are unable to
decide the same value, and exhibits the states
of all non-faulty processors after each round.
In the first round, source S should use FTVC
protocol to broadcast its initial value “1” to
all other processors, but S sent its initial
value only to A, B and C and then became
dormant, omitting the sending to D. Since
processor D didn't receive the message from
source S, it selected the default value, 0, as
the initial value of S, as shown in Fig. 4(a). In

 3

the second round, all processors (except S)
should exchange the message received from
S. Assume processors B and C suffered
dormant faults in this round. After sending
the message to A using FTVC protocol,
processor B stopped sending and stopped
relaying messages. Similarly, C stopped after
sending the message to A. Fig. 4(b) shows
the messages received at each non-faulty
processor after the second round. Finally,
after applying the function VOTE onto the
received messages, processors A and D (the
remaining fault-free processors) decided on 1
and 0, respectively, as shown in Fig. 4(c).
This is a disagreement error.

A resilience-optimal Algorithm

 The resilience-optimal algorithm is
based on the Frangible Consensus Protocol
proposed by Garay and Perry [2]. The
original protocol is designed for a failure
model in which all links are reliable and the
underlying network is complete. In the
hybrid failure model, each link can be subject
to either arbitrary fault or dormant fault. If
we can find out a protocol making the
underlying network as if a complete reliable
network, the Frangible Consensus Protocol
works on the network.

 The fault-tolerance virtual channel
(FTVC) protocol proposed by Siu et al. [1]
can be used to provide a reliable
communication between any two processors
if the connectivity of the network satisfies the
condition c > 2Pa + Pd + 2(La + Ld). We
combine the FTVC protocol and the
Frangible Consensus Protocol to obtain the
resilience-optimal algorithm. The resulting
algorithm is correct if failures are constrained
by conditions (i) n > Pa + Pd, and (ii) c >
2Pa + Pd + 2(La + Ld). As a result, the
conditions of failures are tight.

The resilient-optimal algorithm is
briefly described as follows. First, the
MakeUnique protocol ensures that all
processors that accept a value accept the
same value, but some processors may not
accept any value (indicating by “accepting”
the value 2).

Figure 2: MakeUnique Protocol.

Lemma 1 (Garay and Perry [2]) If p and q

are nonfaulty processors such that, in
MakeUnique, p assigns r ≠ 2 to vp and q
assigns s ≠ 2 to vq, then r = s.

Figure 3: The optimal algorithm for each processor i.

Lemma 2 (Garay and Perry [2]) At the end of

phase (Pa + Pd) + 1 for any nonfaulty
processors p and q, vp = vq.

Fig. 3 shows the resilient-optimal

algorithm. It follows the Phase King
paradigm of [3] in which the computation
proceeds in phases, each of which has a
processor designated as the phase king. Each

MakeUnique(v)
FTVC(v) to all processors;
C[0] := number of 0’s received;

 C[1] := number of 1’s received;
 if C[0] ≥ n-(Pa+Pd) ∧ C[1] ≤ Pa

then v:=0
 elseif C[1] ≥ n-(Pa+Pd) ∧ C[0] ≤ Pa

then v:=1
 else v :=2

 fi;

v := “initial value”;
for K := 1 to (Pa+Pd) + 1do
 /* Universal Exchange 1 */
 MakeUnique(v);

 /* Universal Exchange 2 */
 FTVC(v) to all processors;
 D[0] := number of 0’s received;
 D[1] := number of 1’s received;
 D[2] := number of 2’s received;
 if D[0] ≥ Pa then v: = 0
 elseif D[1] ≥ Pa then v: = 1
 fi;

 /* King’s Broadcast*/
 if i = K then FTVC(v) to all processors fi;
 W := value received from processor K;
 if (v = 2 ∨ D[v] ≤ Pa ∨ D[2] > Pa)
 then v := min(1,W)
 fi;
od;
“final value” := v

 4

phase K of the resilient-optimal algorithm
consists of 3 rounds of communication. In
the first round, each processor executes the
MakeUnique protocol. Then, each processor
communicates with one another by the FTVC
protocol. In the third round, only the phase
king sends messages to all processors.
According to Lemma 2, the resilient-optimal
algorithm satisfies the agreement condition.

We assume that our model is

synchronous round-based message-passing
model and assume that a processor can
communicate with each processor by using
FTVC once during a period of one round.
The resilient-optimal algorithm consists of
(Pa+Pd) + 1 phases, and each phase consists
of 3 rounds of communication. The time
complexity of the algorithm is 3(Pa+Pd+1)
rounds.

四、計畫成果自評

 本計畫首先指出 Siu 等人所提出具
有最大容錯能力的一致性演算法有錯誤。

這也指出一致性問題的容錯能力極限必須

再重新探討。此部分成果已經投稿至 IEEE
Transactions on Parallel and Distributed
Systems.
 其次，我們改進 Garay 與 Perry 所提
出的演算法確認 Siu 等人所提容錯能力的
必要條件的確也是充分條件。因此，Siu　
等人追求最大容錯能力的方向是非常正確

的。然而，此演算法主要依循 Garay 與
Perry所提出的演算法再加上 Siu等人所提
的溝通機制（FTVC protocol），因此尚不具
太多學術價值。可以再突破的地方為目前

尚無關於多重錯誤模式下時間複雜度的下

限。

五、參考文獻

[1] H.-S Siu, Y.-H. Chin and W.-P. Yang, “Byzantine
Agreement in the Presence of Mixed Faults on
Processors and Links,” IEEE Trans. on Parallel
and Distributed Systems, vol. 9, no. 4, pp.
335-345, Apr. 1998.

[2] J.A. Garay and K.J. Perry, “A Continuum of
Failure Models for Distributed Computing,” In
Proceedings of the 6th International Workshop

on Distributed Algorithms, volume 647 of
Lecture Notes in Computer Science, pp. 153-165,
Haifa, Israel, November 1992.

[3] P. Berman, J.A. Garay and K.J. Perry, “Towards
Optimal Distributed Consensus,” In Proceedings
of the Thirtieth Annual Symposium on
Foundations of Computer Science, pp. 410-415,
1989.

[4] F.J. Meyer and D.K. Pradhan, “Consensus with
Dual Failure Modes,” IEEE Trans. on Parallel
and Distributed Systems, vol. 2, no. 2, pp.

214-222, Apr. 1991.

[5] H.-S. Siu, Y.-H. Chin and W.-P. Yang, “A Note
on Consensus on Dual Failure Modes,” IEEE
Trans. on Parallel and Distributed Systems,

vol. 7, no. 3, pp. 225-230, Mar. 1996.

[6] K.-Q. Yan, Y.-H. Chin and S.-C. Wang, “Optimal
Agreement Protocol in Malicious Faulty
Processors and Faulty Links,” IEEE Trans. on
Knowledge and Data Engineering, vol. 4, no. 3,
pp. 266-280, June 1992.

[7] P. Lincoln and J. Rushby, “A Formally Verified
Algorithm for Interactive Consistency Under a
Hybrid Fault Model,” In Proceedings of the
Symposium on Fault-tolerant Computing, pp.
402-411, 1993.

[8] P. Thambidurai and Y.K. Park, “Interactive
Consistency with Multiple Failure Modes,” In
Proceedings of the Symposium on Reliable
Distributed Systems, pp. 93-100, Oct. 1988.

 5

Figure 4: The states of nonfaulty processors after each round.

