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一、中文摘要 

  

 一致性問題是分散式系統中容錯處理

必須面臨的重要課題。 Siu 等人於1998

年提出一致性問題在多重錯誤模式下容錯

能力的必要條件，並且提出一個演算法嘗

試證明此條件亦為充分條件。然而，我們

提出一個反例來說明他們的演算法違反了

一致性問題的基本要求。因此，一致性問

題容錯能力的最佳解是否存在仍然未定。

根據 Garay 與 Perry 的演算法加上 Siu 等

人在其演算法中所用的溝通機制（FTVC），

我們提出一個演算法證明 Siu 等人所提的

必要條件亦為充分條件，亦即此演算法為

一致性問題容錯能力的最佳解。 

 

關鍵詞： 一致性問題、容錯系統、分散式

系統 

 

Abstract 
 
 Consensus problem is one of the most 
important issues in literature of fault tolerant 
distributed computing. Siu et al. in 1998 
proposed a necessary condition of failures in 
the hybrid fault model, and an algorithm 
called GPBA to show that this condition is 
also sufficient. However, we present a 
counterexample to show that the algorithm 
violates the agreement condition, the most 
important safety property that was claimed. 
The necessary and sufficient condition of 
failures should be re-examined. Based on 
Garay and Perry’s algorithm in addition to 
the reliable communication protocol, FTVC, 

used in GPBA, we propose an algorithm 
showing that the necessary condition of Siu 
et al. is indeed also sufficient.  

 
Keywords: Consensus Problem, 

Fault-tolerant Systems, 
Distributed Systems 

 

二、緣由與目的 

 
 Achieving consensus is a key problem 
in distributed computing systems tolerant of 
failures. Many algorithms have been 
proposed in different failure models [1-8]. 
Each algorithm attempted to maximize the 
failure resilience. 
 

Siu, Chin and Yang [1] in 1998 
proposed a byzantine agreement algorithm, 
generalized protocol for the BA problem 
(GPBA), in a general network whose 
topology is connected but may not be fully 
connected. In such a network, each processor 
can be subject to either arbitrary fault or 
dormant fault, so can each link. An arbitrary 
fault can exhibit arbitrary behavior, also 
known as byzantine fault; while a dormant 
fault consists merely of omission of 
messages or delay in sending or relaying 
messages. We follow the convention that a 
dormant processor cannot stop receiving 
messages since message reception is an 
action regarded as not locally controllable. 
 

Let n be the number of processors, V  
the set of all possible values, c the system 
connectivity, Pa (Pd) the number of 
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processors subject to the arbitrary (dormant) 
fault, and La (Ld) the number of links subject 
to the arbitrary (dormant) fault. According to 
Theorem 5 of Siu et al. [1], if failures are 
constrained by conditions (i) n > Pa + Pd, 
and (ii) c > 2Pa + Pd + 2(La + Ld), then 
GPBA satisfies the following correctness 
conditions, using (n-1)/3 +1 rounds. 

Agreement: All fault-free processors 
agree on the same common value v. 

Validity: If the source is fault-free, then 
the common value v should be the 
initial value vs of the source. 

 
    However, we discovered a 
counterexample that satisfies the constraints 
on failures of GPBA but violates the 
agreement condition. Siu et al. [1] have 
shown that the conditions of failures n > Pa 
+ Pd and c > 2Pa + Pd + 2(La + Ld) are 
necessary. Unfortunately, their algorithm is 
wrong and therefore the tight bound of 
failure resilience is still unknown. In this 
project, we aim to determine the tight bound.   

 
三、結果與討論 

 
 First, we propose a counterexample for 
GPBA, showing that the tight bound of 
failure resilience should be re-examined. 
Then, we show that there exists an algorithm 
satisfying the conditions of failures proposed 
by Siu et al. Thus, the necessary conditions 
of failures are also sufficient, determining the 
optimal resilience of the hybrid fault model. 
 
A Counterexample for GPBA 
 

A network and an execution of GPBA 
are presented in this section to show that the 
algorithm violates the agreement condition.  
 

 
Figure 1: The network topology of the 

counterexample. 
 
Fig. 1 shows the network of this 

counterexample with five processors, for 

which the connectivity is four. Let S be the 
source and vs its initial value. The value set 
V={0,1} and vs = 1. Also, suppose that 
processors S, B and C are subject to dormant 
fault, and all the other components are 
fault-free. Finally, we assume default value is 
equal to 0. Processors will select the default 
value as the initial value of the source when 
receiving no message broadcast by the source. 
That is, suppose n=5, c=4, vs=1, Pa=0, Pd=3, 
La=0 and Ld=0. It is clear that the constraints 
on failures are satisfied. Therefore, applying 
GPBA on this case, an agreement should be 
achieved by (n-1)/3 +1 = 2 rounds. 

 
During the execution of GPBA on the 

above network, each fault-free processor 
maintains a tree structure having 2 levels to 
collect the messages. After the first round, 
each fault-free receiver stores the message 
received from the source, denoted as val(S), 
at the root S of this tree. In the second round, 
each processor broadcasts the root's value to 
all receivers except S. If sender B sends a 
message val(S) to receiver i, i will store the 
message received from B, denoted as val(SB), 
at vertex SB of its tree. The value of vertex 
SB in processor i's tree is meant to be the 
initial value of S that B has conveyed to i; 
thus, the vertex SB is said to correspond to B. 
Value ∅  for a vertex indicates that a 
processor receives no message from the 
processor to which the vertex corresponds. It 
will be replaced by the default value in the 
first round and by value A in the second 
round after applying the absent rule in each 
round. A will be ignored in the VOTE 
function. 

 
Based on the network in Fig. 1, Fig. 4 

shows an execution of GPBA in which 
fault-free processors A and D are unable to 
decide the same value, and exhibits the states 
of all non-faulty processors after each round. 
In the first round, source S should use FTVC 
protocol to broadcast its initial value “1” to 
all other processors, but S sent its initial 
value only to A, B and C and then became 
dormant, omitting the sending to D. Since 
processor D didn't receive the message from 
source S, it selected the default value, 0, as 
the initial value of S, as shown in Fig. 4(a). In 
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the second round, all processors (except S) 
should exchange the message received from 
S. Assume processors B and C suffered 
dormant faults in this round. After sending 
the message to A using FTVC protocol, 
processor B stopped sending and stopped 
relaying messages. Similarly, C stopped after 
sending the message to A. Fig. 4(b) shows 
the messages received at each non-faulty 
processor after the second round. Finally, 
after applying the function VOTE onto the 
received messages, processors A and D (the 
remaining fault-free processors) decided on 1 
and 0, respectively, as shown in Fig. 4(c). 
This is a disagreement error. 

 
A resilience-optimal Algorithm 
 
 The resilience-optimal algorithm is 
based on the Frangible Consensus Protocol 
proposed by Garay and Perry [2]. The 
original protocol is designed for a failure 
model in which all links are reliable and the 
underlying network is complete. In the 
hybrid failure model, each link can be subject 
to either arbitrary fault or dormant fault. If 
we can find out a protocol making the 
underlying network as if a complete reliable 
network, the Frangible Consensus Protocol 
works on the network. 
 
 The fault-tolerance virtual channel 
(FTVC) protocol proposed by Siu et al. [1] 
can be used to provide a reliable 
communication between any two processors 
if the connectivity of the network satisfies the 
condition c > 2Pa + Pd + 2(La + Ld). We 
combine the FTVC protocol and the 
Frangible Consensus Protocol to obtain the 
resilience-optimal algorithm. The resulting 
algorithm is correct if failures are constrained 
by conditions (i) n > Pa + Pd, and (ii) c > 
2Pa + Pd + 2(La + Ld).  As a result, the 
conditions of failures are tight. 
 

The resilient-optimal algorithm is 
briefly described as follows. First, the 
MakeUnique protocol ensures that all 
processors that accept a value accept the 
same value, but some processors may not 
accept any value (indicating by “accepting” 
the value 2). 

 
 
 
 
 
 

 
 
 
 
 

 
Figure 2: MakeUnique Protocol. 

 
Lemma 1 (Garay and Perry [2]) If p and q 

are nonfaulty processors such that, in 
MakeUnique, p assigns r ≠ 2 to vp and q 
assigns s ≠ 2 to vq, then r = s. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: The optimal algorithm for each processor i. 
 
Lemma 2 (Garay and Perry [2]) At the end of 

phase (Pa + Pd ) + 1 for any nonfaulty 
processors p and q, vp = vq. 

 
Fig. 3 shows the resilient-optimal 

algorithm. It follows the Phase King 
paradigm of [3] in which the computation 
proceeds in phases, each of which has a 
processor designated as the phase king. Each 

MakeUnique(v) 
FTVC(v) to all processors; 
C[0] := number of 0’s received; 

  C[1] := number of 1’s received; 
  if     C[0] ≥ n-(Pa+Pd) ∧  C[1] ≤ Pa 

then v:=0 
  elseif  C[1] ≥ n-(Pa+Pd) ∧  C[0] ≤ Pa 

then v:=1 
  else   v :=2 

 fi;

v := “initial value”; 
for K := 1 to (Pa+Pd) + 1do 
  /* Universal Exchange 1 */ 
  MakeUnique(v); 
 
  /* Universal Exchange 2 */ 
  FTVC(v) to all processors; 
  D[0] := number of 0’s received; 
  D[1] := number of 1’s received; 
  D[2] := number of 2’s received; 
  if     D[0] ≥ Pa then v: = 0 
  elseif  D[1] ≥ Pa then v: = 1 
  fi; 
 
  /* King’s Broadcast*/ 
  if i = K then FTVC(v) to all processors fi;
  W := value received from processor K; 
  if  (v = 2 ∨  D[v] ≤ Pa ∨  D[2] > Pa ) 
     then v := min(1,W) 
  fi; 
od; 
“final value” := v 
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phase K of the resilient-optimal algorithm 
consists of 3 rounds of communication. In 
the first round, each processor executes the 
MakeUnique protocol. Then, each processor 
communicates with one another by the FTVC 
protocol. In the third round, only the phase 
king sends messages to all processors. 
According to Lemma 2, the resilient-optimal 
algorithm satisfies the agreement condition. 

 
 
We assume that our model is 

synchronous round-based message-passing 
model and assume that a processor can 
communicate with each processor by using 
FTVC once during a period of one round. 
The resilient-optimal algorithm consists of 
(Pa+Pd) + 1 phases, and each phase consists 
of 3 rounds of communication. The time 
complexity of the algorithm is 3(Pa+Pd+1) 
rounds.  
 

四、計畫成果自評 

 

 本計畫首先指出 Siu 等人所提出具
有最大容錯能力的一致性演算法有錯誤。

這也指出一致性問題的容錯能力極限必須

再重新探討。此部分成果已經投稿至 IEEE 
Transactions on Parallel and Distributed 
Systems. 
 其次，我們改進 Garay 與 Perry 所提
出的演算法確認 Siu 等人所提容錯能力的
必要條件的確也是充分條件。因此，Siu　 
等人追求最大容錯能力的方向是非常正確

的。然而，此演算法主要依循 Garay 與
Perry所提出的演算法再加上 Siu等人所提
的溝通機制（FTVC protocol），因此尚不具
太多學術價值。可以再突破的地方為目前

尚無關於多重錯誤模式下時間複雜度的下

限。 
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Figure 4: The states of nonfaulty processors after each round. 


