NSC91-2213-E-009-083-
91 08 01 92 07 31

9 2 10 23

B} . \ H = % i 2
T IR B 7 F Bk REA Y 3
KRR FELE ¢4 LYy éfﬂwﬂ e 47 2

SRBETHER R R FRLL 2 AT ARE S AR

Dynamic Content and Workload Management for Large Scale Information
Retrieval Systems

Fhaae Il RuArE O EEAVE
3% %% NSC 91 —2213—E—009—083
HEPF ARWL L-FEANI - pIARL Lo &E- 1 2L p

FEAFACHIFE R EE

=

VERSAE AR HE2(E L)
R4 E (48 L 7T)

RS ES SICKA S 3 ERS CORN i3 E-ENNNES =

"l*-

AR ERARL e T R 2
EENI LRI Bar el e S

D{J‘F #4 \gPul LE\}EB‘N NN]4,{;—— — 17\
*@@W§W€ﬁ~w$4£%axﬁ?§—@
Oz e PP aRmAFLHE2E -5

/%@/:——;’ JT\“ : K/\ééf
21
P
%

HEEE Wl ~FFn4E %

EFRFRRAEHFRE B FRL RS R ¥R Sl FRRTKE LS
B

BOTRATEOR R TR RN ATEEEF TR A D s é’#vﬁmrﬁ Fom B fE B A 1
BN R R RTHUATOL FRERY F A G L FRLE 0 F kB 2)
%) i B T AT o

oo ipR MRS AOT IR R G LRI AT B RIFFTRT = AR
- hR

i1
ES
i

(inverted file) = A % 31 28 4+ K3 — B7 & B4 o 073
P IR FR (content) {1 it 8 (workload) sl o A Fehvkan

P
BT R L FRE{HND L B9 RIS

Fe R

Keywords: Information Retrieval System, database update, workload management

The rapid growth of the Internet brings new challenges for the designers of an information
retrieval system. First, the system cannot dynamically update database contents according to the
characteristics of data itself or to the demands of Web users. Second, the system resource cannot
be fully utilized among the workload of database updates and the workload of users’ retrieval.
These challenges make the database update a difficult job under the condition that the system

keeps serving on-line users.

We investigate an inverted-file-based information retrieval system which can be dynamically
updated and expanded under the certain guarantee of retrieval-performance. In this system, we
design the content manager and the workload manager with

(1) incremental data structures to store expanded data,

(2) disk placement and refreshing mechanism for the database content,

(3) identification and collection for the stale data, and

(4) dynamic job scheduling.

1. Introduction

The explosive growth in Web uses has brought new challenges for most information retrieval
(IR) systems. One of the challenges is that a large document collection requires a specialized
indexing structure for efficient information retrieval. Equally important is that such an indexing

structure requires an efficient incremental-update mechanism.
1.1 Current methods and problems

An indexing structure used by many IR systems is the inverted file [5]. In an inverted file, for

each distinct word (also known as “term”) ¢ in the text collection, there is a corresponding list

(called the inverted list) of the form <, f,;D9,Dy,D;,....D s >, where identifier D; indicates the

document that contains ¢, and frequency f, indicates the total number of documents in which ¢
appears. When a user sends a request containing some query terms to an IR system, the system
searches for these query terms in the inverted file to see which documents satisfy the request, and
returns these documents’ identifiers to the user. Zobel et al. [5] showed that in terms of the
querying time, used space, and functionality, inverted files perform better than other indexing
structures.

The inverted file, however, does not support efficient incremental updates [2]. When new
documents are added to an existing collection, the inverted lists of the terms appearing in those
documents must be updated, ideally incrementally, by appending the new documents’ identifiers
to the tails of the lists. This update process is difficult for an inverted file because the inverted
lists in the file are typically laid out sequentially and contiguously on disk with no free space
between each other [2]. Any increase in length of an inverted list requires complex storage
relocation and expensive free-space management.

Most conventional IR systems update the inverted file by periodically re-indexing the entire
collection or by periodically merging the old, dated inverted file with the new, batched inverted
files for newly arrived documents. However, as the rate of new document arrival grows rapidly in
most applications today, rebuilding or merging the inverted files becomes too expansive and
inefficient.

Sparing free space at the end of each inverted list for future expansion has been proposed
[2][3]. In [2], the sizes of the allocated free space are determined by powers of 2 bytes (e.g.,
24, oo 28), whereas in [3], the sizes of the free space are determined by the multiple of current
list length (e.g., 1.5x, 2x). In case the pre-allocated free space of an inverted list is used up, a
larger space is allocated and the contents of the old list are removed to the new space; the
frequency of relocations can hence be reduced. Both of these approaches, however, result in
much wasted space in an inverted file, and also poor performance in information retrieval.

In fact, the size of the free space allocated for each inverted list cannot be determined easily due
to a complex trade-off between relocation reduction and space utilization. If too much free space
is allocated, the possibly wasted space enlarges the inverted file and slows down the file accesses.
Conversely, if the free space is insufficient, frequent relocations cause high update costs. The best

policy allocates the free space for each inverted list according to the individual space

requirement.

1.2 Research goal

In this report, we propose a statistics-based approach to allocate the free space for an inverted
list when it is relocated. This approach is based on the estimation of the space requirement in a
time window. The time window for an inverted list is defined as the time interval between two
sequential relocations; that is, from the time a free space is allocated to the time the list needs to
be relocated again. Whenever a time window exhausts, a suitable size of the free space for the
next allocation is predicted based on the space usage and update request rate in this time window.
The goal of the prediction is to best guarantee that an inverted list has sufficient reserved space to
amortize relocation frequency, and also to keep space utilization high. Simulation results show
that the proposed space-sparing approach significantly avoids reorganization for an inverted file,
and in the meantime, the wasted space can be well controlled such that the performance of file
accesses would not be affected.

This report is organized as follows. In Section 2, we model the relocation frequency and space
utilization in this inverted file problem, and show how to allocate the spare space for a growing
inverted list. In Section 3, we present the simulation results. Finally, Section 4 presents our

conclusions.

2. Allocating spare space for a growing inverted list

To study the spare space allocation problem for a growing inverted list, we use relocation

frequency and wasted space to model the update cost and space utilization.

2.1 Relocation frequency and wasted space

For a growing inverted list, relocation frequency represents how often the relocation occurs,
and wasted space represents how much allocated space is unused over time. Figure 1 shows an
example of relocation occurrences and space usage in the ith time window for an inverted list. In
Figure 1(a), the horizontal axis represents time, and we assume that the ith time window starts
from # to #,,. A vertical mark represents a relocation occurrence. If RF; denotes the
relocation frequency in the ith time window for an inverted list, we have

1

tiyl — i

RF; =

(1)

In Figure 1(b), horizontal axis represents time, and Az, represents the time between the kth and
the (k+1)th identifier arrivals in the ith time window. The vertical axis represents unused free
space, which starts from »;, down to 0. Without lost of generality, we assume that the unit of #,
is number of slots and each slot stores an identifier. The identifier arriving at ¢ triggers the
relocation, causing »; slots to be allocated for the list growth. At this time, the first identifier is
placed in the first slot, and the free space remained is »; —1 slots until the second identifier

arrives. Each incoming identifier is placed in a slot, causing the free space to be used up after the
n; th arrival. The next relocation occurs at #,; when there is no free space left and the next

relocation

number free space . .
ith time window
n; slots are relocation L+ reeeeeeereenrenennessssssnns >
allocated oceurs n-1
’ [—
ith time window
0 — 7 W \ A > ! 0— \-,,—l+ - > !
t,‘ ti+l tl' Ati’k t,'+1
(a) (b)

Figure 1. For a growing inverted list: (a) the relocation occurrences in the ith time
window, (b) the space usage in the ith time window.

incoming identifier is arrived. Let wS; denote the accumulated free space (i.e., wasted space)

over the ith time window, we have
n;-1
WSi = z (n,- _k) XAti,k . (2)
k=1
Assume that identifier arrivals in a time window follow a Poisson distribution pattern. Then the
expected relocation frequency 1s

E[RF =L, 3)

i
where ,; (arrivals/second) denotes the rate of identifiers being added to an inverted list over the
ith time window. Similarly, the expected wasted space in the ith time window can be expressed as
s)= 1) L @
2 Ai

by taking expected values on both sides of Equation (2). From Equations (3) and (4), if we can
predict ,,; and assign reasonable values to E[RF;] and E[WS;] at the start of the ith time
window, then the value of »; can be determined at the same time.

To give reasonable values to 1;, E[RF;] and E[WS;], we collect the statistics from last two
time windows for prediction. The statistics include the identifier arrival rates, relocation
frequency and wasted space over the (i-2)th and (i-1)th time windows.

For 2;,we assign a predicted value, ;;, to it by
» {/11'—1 FAy i 1 A+ AL ;2 >0
i

Aiq otherwise

; ()

where A4y ; ,=4_1-4_. In (5), if the identifier arrival rate is increasing (or decreasing)
between the last two time windows, i.e., A4;;;, >0 (or <0), it is assumed that the arrival rate
will continue to increase (or decrease) by the same amount. This is the case for 4, +A4_;; , >0 .

Or when the arrival rate drops to 4, +A4;_; ;, <0, the arrival rate is assumed unchanged in the

next time window.

For E[RF;] and E[WS;], we assign predicted values, E[RF;], and E[WS;], respectively, to

them by

E[RF;], = min(RF;_y,RF;_;), and (6)

E[WS[]p = min(WSi—I:WS[—2) . (7)

Note that E[RF;] is inversely proportional to n; (see Equation (3)). If the identifier arrival rate
tends to increase in the ith time window, assigning a smaller value to E[RF;] (as shown in
Equation (6)) will result in either »; >n;,_; or n; >n;,_,. This makes RF; likely to be reduced in
the future. On the other hand, E[WS;] is proportional to (n?-5;) (see Equation (4)). If the

identifier arrival rate tends to decrease in the ith time window, assigning a smaller value to
E[WS;] (as shown in Equation (7)) will result in either »; <n;_; or n; <n;_,. This makes Ws;

likely to be reduced in the future.

There are two reasons to predict 2,, E[RF;], and E[WS;] based on statistics collected in last
two time windows. First, collecting more recent data can help to measure the space requirement
more accurately. In fact, the identifier arrival behavior fluctuates in the real world; using dated
information is harmful for prediction. Second, using statistics from more time windows requires

more storage for each inverted list. This makes the space usage inefficient. In the next section, we
will present how #; can be determined by using these predicted values.

2.2 Determining n;

By applying Equations (5), (6), and (7) to Equations (3) and (4), we have two candidate values

of n;,say n; and n;), respectively. The first candidate is derived from the consideration of

reducing relocation frequency, and the latter from the consideration of reducing wasted space. To
determine n;, we define a weighted function

np=a-n; 3+ pf-n; 4 3
where a+p=1, and (a,) can be determined adaptively by system demands. For the systems

which have intensive arrivals of database updates, we suggest %21 to favor larger n; for

reducing the frequency of updating inverted lists. Contrarily, for the systems which have

intensive arrivals of information retrieval, we suggest %< 1 to favor smaller »; for reducing the

time of retrieving inverted lists.

To support the approach described above, new fields are added into an inverted list as shown in
Table 1. These new fields are used to store the statistical data from the (i-1)th and (i-2)th time
windows. By these data and with a run-time clock ¢y, , all variables in Equations (3)-(8) can be

derived. (Due to space limit, we omit the details.)

3. Simulation and evaluation

Simulation is used to generate performance data. In performance evaluation, factors to be

examined include relocation occurrences, storage space, and retrieval time for an inverted file.

Table 1. New fields to be added into an inverted list

fields Description
L Starting time of the current time window
ng Size of spare space allocated at ¢,
ny Size of spare space remained
WS, Accumulated waste space until now
Ap Arrival rate at the previous time window
RE, Relocation frequency at the previous time window
WSy Accumulated waste space at the previous time window
Si Spare space

3.1 Simulation environment

We use parts of WT10g, about 460,000 documents, to be our test collection. (WT10g is a
widely distributed collection and has been included in TREC Web Test Collections [6].) We
implement a Poisson arrival model to simulate the behavior of those documents being
incrementally added into the depository. Then the proposed statistics-based space sparing
approach is applied in constructing the inverted file for indexing those documents. The relocation

occurrences and unused free space are monitored over time for performance evaluation.

3.2 Simulation results

Figure 2 shows the relocation counts and space utilization in constructing the inverted files by
three approaches. The relocation count denotes the number of relocations occurred in related
inverted lists when adding new documents, whereas the space utilization denotes the ratio of
actual used space size to total inverted file size (containing those unused spare space and
statistical data). To examine that the spare space affects the time of retrieving an inverted list, we
compare our statistics-based approach within («,8)=(1/4,3/4) against the approach proposed in

[2] (denoted as “2x” in the figure), and the approach within 1.5 times of current list length as

500 100
Za00 - £ 80
2 " 5
§3OO r e g= 60
=1 ,5===5==== - 5
g 200 AR =
8 —— 1.5x 3 —— 1.5x
;3100 ——2.0x § 20 r +—9— 2.0x
0 ® —— proposed(1/4,3/4) N 0 ‘ ‘p rop‘osed(‘l/4,3‘/4) ‘
1 6 11 16 21 26 31 36 41 46 1 6 11 16 21 26 31 36 41 46
Number of documents (x10% Number of documents (x10%)
(@) (b)

Figure 2. Simulation results in constructing the inverted file for indexing parts of WT10g: (a)
relocation count, (b) space utilization.

spare-space size proposed in [3] (denoted as “1.5x” in the figure).

Figure 2(a) shows that the relocation counts of our proposed approach with (a,B)=(3/4,1/4)
approximate those of the “2.0x” approach, but smaller than those of the “1.5x” approach. In
Figure 2(b), however, the space utilization of the statistics-based approach is better than that of
the “2.0x” approach by about 16%, and also better than that of the “1.5x™ approach by about 10%.
According to our simulation, the decrease in space utilization for the “2.0x approach causes the
average time of retrieving an inverted list to be increased by about 42% compared with the
inverted file without spare space, and for the “1.5x” approach by about 34%. (The average
retrieving time for our proposed approach increases only about 10%).

We examine the simulation data, and determine if the proposed statistics-based space
allocation approach has its advantages. Simulation data say that the statistics-based approach
requires about 10% more relocations than the “2.0x™ approach does. Although more relocations
look like a disadvantage, this is really transparent to the user. What the user really cares are: the
inverted file constructing time, the inverted file look-up time, and the storage space required. The
proposed statistics-based approach outperforms the “1.5x and “2.0x” approaches in these three
metrics: For the overall time of constructing an inverted file (assume the documents are processed
one by one), the increasing ratios of the statistics-based approach versus the other two approaches
are
Time suaistics-based * Timey.sy : Times, ox
=54.22 hrs : 62.54 hrs : 61.67 hrs=1:1.15:1.14.

While for the average time of retrieving an inverted list, the speed ratios of the statistics-based
approach versus the other two approaches are

Speed statistics-based - Speed 1.5x ¢ SpeedZ.Ox

_ 11 1
561 ms 6.79 ms 7.18 ms

=1.28:1.06: 1.

And, finally, for the storage space, the space requirement ratios of the statistics-based approach

versus the other two approaches are

Space saistics-based * SPACE2.0x SPACE | 5¢
=135 MB : 152MB : 166 MB=1: 1.13 : 1.23.

All of these advantages come from the fact that while the “2.0x” or “1.5x” approach suggests a
simple way of increasing the storage space for an expanding full inverted list, this simplicity may
result in too generous allocations for slow growing inverted lists, but too short-sighted allocations
for other lists of the fashion terms. The experiment data show that most allocations are too
generous performed. With this improperly wasted storage space, its side effect is even most
devastating.

The statistics-based approach provides not only flexibility, but also stability, in spare space
allocation. The flexibility is due to that each and every inverted list, upon its running out of
expansion space, can be allocated new spare space tailored all for its specific needs. And the
stability comes from the fact that:

1. The newly allocated spare space is determined by both the previous allocation amount, and
how soon this amount was consumed. With these considerations, we are able to control the

amount of allocated spare space (or space utilization in turn) and how soon we expect the next

allocation to occur (or relocation frequency).

2. This space is also determined based on the size of two previous allocations. Referencing back
to two time windows has the following characteristics. It gives more accurate allocation log
data. It also reveals the tendency of change in allocation space requirements. While more
trace-back data may be difficult to analyze and even confusing, two sets of data are very
suggestive. And finally, the incurred calculation in making decisions is so simple that the
overhead is negligible.

4. Conclusion

We propose a run-time, statistics-based approach to allocate spare space in an inverted file for
future updates. The approach determines the size of spare space according to the trade-offs
between space efficiency and space utilization. By adaptively balancing the trade-offs, the
proposed approach can incrementally update an inverted file as new documents arrive, and in the
meantime, the size of unused free space can be well controlled such that the performance of file
access would not be affected. The extractive of the proposed approach is to use simple statistical
data to meet the space requirements for an inverted file. This is particularly suitable for in-place
updating the indexing structure of all kinds of modern large-scale IR systems, e.g., search engines,

or in real-time information systems, €.g., news servers.
5. References

[1] T. King, Dynamic Data Structure, Academic Press, Inc. 1992.

[2] E. W. Brown, J. P. Callan, W. B. Croft, “Fast Incremental Indexing for Full-Text Information
Retrieval,” Proc. of the 20™ International Conference of Very Large Databases, Sep. 1994, pp.
192-202.

[3] A. Tomasic, H. Garcia-Molina, K. Shoens, “Incremental Updates of Inverted Lists for Test
Document Retrieval,” In R. T Snodgrass and M. Winslett, editors, Proceedings of the 1994.

[4] K. Shoens, A. Tomasic, H. Garcia-Molina, “Synthetic workload performance analysis of
incremental updates,” Proc. of the 17th Inter. ACM SIGIR Conf. on Research and
Development in Information Retrieval, July 1994, pp. 329-338.

[5] J. Zobel, A. Moffat, K. Ramamohanarao, “Inverted Files Versus Signature Files for Text
Indexing,” ACM Transactions on Database Systems. Vol. 23, No. 4, 1998, pp. 453-490.

[6] TREC Web Test Collections, http://trec.nist.gov/data.html

[7] S. Ross, Stochastic Processes, John Wiley & Sons, Inc. 1996.

[8] Witten, I. H., Moftat, A., and Bell, T.C., Managing Gigabytes - Compressing and Indexing

Documents and Images. 2" Ed., Morgan Kaufmann Publishers, Inc. 1999.

[9] M. Ester, J. Kohlhammer, H.-P. Kriegel, “The DC-Tree: A Fully Dynamic Index Structure for
Data Warehouses,” Proceeding of the 16™ International Conference on Data Engineering,
2000, pp. 379-388.

