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copula model, . ;
Cox proportional hazard model, location-shift-model, accelerated failure time model.

transformation mode!.

Summary

In the project, we consider two-sample comparison based on semi-competing risks
data. By imposing a copula model on the dependence structure between the
competing risks, we propose a unified estimating procedure to estimate the group
difference parameters under three models, namely Cox PH model, the location-shift
model, and the accelerated failure time model. Some results have been presented in
the thesis of Hsieh (2002). Further results, including sensitivity analysis and model
extension to transformation models, have also been obtained and will be submitted for
publication soon.
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(I Introduction, Motivation and Literature Review

Many interesting biomedical applicationsinvolve analysis of multiple endpoints.
In the project, we consider a simple multistate model, also called as a “disability
model” or an “illness-death” model. Here we refer state 1 astheinitial state; state 2 as
the state of disease progression (i.e. occurrence, recurrence, complications,
metastases, ...,etc.) and state 3 as the absorbing state such as death. A patient may
follow two different paths: initial state = progression - desath or, alternatively, initial
state > death. Our main objective is to compare progression of the patients in two
samples.

Let X be thetimeto progression, Y be the time to death. Notice that X is
not observable if X >Y and therefore its distribution is not identifiable without
further assumption. Hence statistical inference is complicated and controversial due to
the problem of non-identifiability. In this project, we consider two sample comparison
based on X in the identifiable region, X <Y . External censoring may occur due to
patient’s withdraw, loss to follow-up or the end of study. Let C be the censoring
variable. In our analysis, X and Y may be correlated but it is assumed that C is
independent of ( X,Y). Under right censoring, one observes the following variables:

X = XAYAC, Y=YAC, 6*=1(X<YAC) and J" =I(Y<C),

where 1(.) denotes the indicator function. The above data structure is called
semi-competing risks data by Fine et a. (2001) since death is a dependent competing
risk for disease progression but not vice versa.

Two-sample comparison based on X, when X isonly identifiable in the half
quardrant X <Y, has been considered by Lin, Robins and Wei (1996) and Chang
(2000). The former uses a location-shift model to describe the group effect. The latter
assumes an accelerated failure time model. However both models make an implicit
assumption that the dependence structure is the same for the two groups and both
inference procedures produce artificia censoring. However, we feel that such an
assumption sometimes may not be reasonable. In our paper we alow the dependent
relationship to be different in the two groups by imposing a flexible dependence
structure. The model considered here is called copula models which have attracted
substantial attention in recent years due to their wide applications. One can refer to
Oakes (1989) and Genest and Rivest (1993) for more thorough review of such
models.

(I1). Models and Proposed Methods
Because X issubject to dependent censoring, existing nonparametric inference
procedures, such as the log-rank test, are not applicable. Recall that Z denotes the



group indicator taking values O or 1. We will consider three model alternatives for
measuring the group effects. The following three models will be considered:

Model 1 - the Cox model: h, (X]|Z) =h,(x)exp(6,Z);

Model 2 - the location shift model: F, (x|Z) =F, (x-6,Z);

Model 3 - the accelerated failure time model: log(X)=-6,Z+¢

where ¢ isan error distribution.

Under model 1, h, (x|Z =1) =exp(8,)h, (x| Z =0) which implies that the hazard of
progression in different groups are proportional. Under model 2, P(X=x|Z=0)=F, (X
and P(X 2x|Z =1)=F,(x-6,). Under model 3, log(X)=¢ for Z=0
and log(X)=-6,+& for Z=1. The main objective is to estimate the group

difference parameters “ 8, " under the jth model assumption (j=1,2,3).

Because we allow the association between X and Y to be different for the
two groups, we need to specify the underlying dependent structure. Define the upper
wedge P={(X,y):0<x<y<o} as the region of interest. Assume that (X,Y)
follow a copula model in the region of P. Specifically their joint survival function
can be expressed as

F(xy) =C{Fx(x), R (¥)} (xy)UP,

where C,(..):[04° - [0]] , F(x,y)=Pr(X=xY=y), F,(X)=Pr(X=x)

and F,(y)=Pr(Y=y). The copula class has a useful subfamily caled the
Archimedean copulas (AC) family. Specifically, the joint survival function of an AC
model is of the form

F(x,y) = C{Fx (X),F, (V)} = PP [F (W] + P, [F, (W]} (xy)OP,

where ®_(.):[0]] - [0,]. The AC family contains several useful models including
those proposed by Clayton, Frank, Gumbel and the log-copula model. For a copula
model, the parameter @ measures the level of global association and is related to
Kendall’stau. Please refer to the paper by Genest and Mackay (1986) for areview.
The proposed inference procedure is summarized as follows:
a. Estimate nuisance parameters, includingG(y) = Pr(C = y),F(X,y) (x<y),
F,(y) and a, separately. Semiparametric estimation of a has been considered
by Day et a. (1997), Fine et a. (2001) and Wang (2003).
b. Estimate F,(x|Z =j) under theimposed model. Specifically straightforward
calculation gives

Fo(X1Z= 1) =00, [F(xyI1Z = )]-9, [F,(yIZ= )} .

The estimates obtained in step (1) can be plugged in the above equation to derive an



estimator of F, (X).

Notice that the right-hand side of F, (x|Z =) actually depends on y. We
study two methods to remove such dependence. Method 1, called as the* diagona
approach”, was proposed by Fine, Jiang and Chappell (2001), which only considers
points with x =y . Method 2 considers taking average of F, (x|Z =) at different
levelsof y.Insimulationswe found that the first method yields better results.

Now we describe the proposed method for estimating the group difference. First

of all, we pool the observed times X in the two groups and let t, <t, <..<t, be

the observed ordered times in the pooled sample, where n=n, +n,. And let t, =0.

The proposed estimating equation is motivated by the following test statistic:

W, =,/”1—:2 TW(X)[Ex(X|Z=O)—Ex(X|Z =1)]dx,

nCD51(x) CD':vz (X)

n, G1(x) +n, Gz2(X)
Moeschberger (p.216). The statistic W,,, can also be written as

where W(X) = IS a weight function derived in Klein and

nn, @ g o
W, = %IW(X)[Fx(x|Z=O)—Fx(XIZ=1)]dX,
0

nCD51(x) CD':vz (X)

n, G1(x) +n, G2(X)
Moeschberger (p.216). Equivalently W,,,, can also be written as

where W(X) = IS a weight function derived in Klein and

nn, < = =
Whn = 1722['[0) iy W) IF x (t) [ 2 =0) = F x (t, [ 2 =D].
i=1
The parameter of group difference can be incorporated in the equation as follows.
(A). Under the Cox Model: Recall that under the Cox proportional hazard model
h(x|Z)=h,(X)exp(6,Z) , Z=0or 1.
When &, equalsitstruevalue él, it follows that

FX (XlZ :1) :[FX (X|Z 20)]exp(51).

O m]
Define g,(x,6,) =F x (x| Z =0)*™® —F x (x| Z =1) . Hence we have



S@)= nl:z g[t(i) Lo ]W(t(i))gl(t(i) ,6,)

n. & O o U
- nln2 D [te ~ta Wt IF x (t, 1Z =0)*"® —Fx (t;) |2 =1)].
i=1

m]
The proposed estimator of &, isthesolutionto S (6,) =0, denoted as 6. .

(B). Under the Location-Shift Modél: It follows that
F,(x|Z2)=F,(x=-6,Z) , Z= Oor L.

Let 8, bethe true value of g,, it follows that
F (X|Z=1)=F, (x-8.|Z =0).
therefore define

m] O
0,(X,8,)=Fx(x-6,|Z=0)-Fx(x|Z=1).

We can construct the following estimating function:

S,(6,)= %g[t(i) ~tiyW(t) 9 (). 6,)

:V nl:z i[t(i) _t(i—l)]W(t(i))[Ex (ty —6,12=0) _Ex(t(i) |Z=1],

O O
where Fx(x-6,|Z2=0) is the estimator Fx(x|Z=0) based on data
{(>~(i+02,\~(i+92,5ix,5iy):i=J,2 ..... n} . The proposed estimator of &, is the

O
solutionto S,(8,) =0, denoted as G-.

(C). Under the Accelerated failure time model: It follows that
log(X)=-6,Z2+& Z= Oorl
where & istheerror distribution. Because X =e % [&° it follows that
F. (X|Z)=Pr(X 2 x|Z) =Pr(e™** [&° > x|Z) =Pr(ef 2e*x|Z),

Let &5 bethetrue value of ;. Itiseasy to see that
F, (X|Z=1) = F, (6*X|Z=0).
Let &5 bethetrue value of ;. Itiseasy to see that

F (x|Z=1)=F, (e”x]|Z=0).



Define
] g O
0,(x,6,) =Fx(e*x|Z2=0)-Fx(x|Z =1).
It is natural to consider the following estimating equation:

S,(6;) = nl:z iZ:,[t(i) —tiy ]W(t(i))gs(t(i) ,05)

nln2 n O o O
= n Z[t(i) —tiy W(t,))[F x (€t [Z2=0)-Fx(t; |2 =1)],
=

O O
where Fx(e*x|Z=0) is the estimator Fx(x|Z=0) based on data

O
to S,(6,) =0, denoted as Gs.

(IV) Senditivity Analysis. The objective is to assess the effect of model
mis-specification for AC models. For an Archimedean copula model, we have
F(xy) =g {dF, (] +dF, (N},
Fi () =@ {dF (% V)] -dF, (N},
F(xy) =Pr(X2xY 2y) ={{F (X, R ()} -
Define
Fy () = g {AE(F (0, F ()] -dF, (V]

Fy (X)) =0 H{BIE(F (0, F, (YD - IR, (V)]

where ¢(.) isthecorrect functionand ¢(.) isthewrong function. In our paper, we
compute max|F, (x) — F, (x) | for selected modelsof ¢(.) and ¢(.).
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