行政院國家科學委員會專題研究計畫 成果報告

總計畫及子計劃六:粉土細砂之動態行為研究(III)

計畫類別: 整合型計畫

計畫編號: NSC91-2211-E-009-023-

執行期間: 91年08月01日至92年07月31日

執行單位: 國立交通大學土木工程學系

計畫主持人:黃安斌

共同主持人: 陳景文, 蔡錦松

報告類型: 精簡報告

處理方式:本計畫可公開查詢

中華民國93年2月5日

集集地震土壤液化總評估研究 - 總計畫

Evaluation of Soil Liquefaction during Chi-Chi Earthquake

計畫編號:91-2211-E-009-023

執行期限:91年08月至92年07月

主持人:黃安斌 國立交通大學土木工程系 教授

一、中文摘要(砂土液化、現地試驗、冰凍取樣、動態試驗、殘餘強度)

台灣中西部地區之部分砂土在集集地震期間有明顯液化之跡象,並導致附近結構物之破壞。本研究已進入第二年,整合國內六所大學,七個相關系所之學者,分成十個子題,對台灣地區顆粒性土壤液化之行為與潛能做一綜合評估研究,並對現有分析之方法提出必要改進之建議。為建立長期觀察與研究所需之資料庫,計畫中將選定三處試驗站並進行一系列之現地試驗、取樣及室內試驗,透過這些試驗來確立試驗站址之大地工程性質。在其中之一試驗站也將安裝強震儀以及孔隙水壓監測系統以便未來土壤液化之觀察。

本計畫之工作內容共分成:集集地震大地 工程探勘資料彙整與分析、試驗站現地試驗、 試驗站取樣及室內試驗、試驗站監測系統之安 裝與地質背景調查、液化潛能分析方法之改進 等五大項,十個子計畫。這些子計畫之名稱如 下:

- 1. 地震土壤液化區之地質背景特徵調查研究
- 2. 機率式液化潛能分析
- 3. 礫石性砂土液化潛能分析
- 4. 液化地區標準貫入試驗打擊能量檢測
- 5. CPT 應用於地層調查與液化潛能評估之研究.
- 6. 現場土層內液化監測儀之安裝與監測
- 7. 台灣地區剪力波速公式與液化潛能分析方

法之研究

- 8. 粉土細砂之動態行為研究
- 台灣西部粉土質砂液化行為及評估準則之研究
- 10. TDR 在液化潛能分析上之應用

英文摘要 (sand liquefaction, in situ test, frozen sampling, dynamic test, residual strength)

Soil deposits in the central western regions of Taiwan showed evidence of liquefaction during the Chi-Chi earthquake. Scholars assembled for this endeavor came from seven universities, have been conducting research under ten sub-projects. The objectives of this research are to perform an overall evaluation on the liquefaction behavior of granular materials in Taiwan and to make necessary modifications in our current practice in assessing the potential of sand liquefaction. In order to facilitate long-term observation and accumulate a database for future studies, a number of test sites will be established. A series of in situ testing, field sampling and laboratory testing will be conducted to determine the geotechnical characterization of the test sites. An array of strong motion and pore water pressure measuring systems will be installed at a test site to monitor any future events of sand liquefaction.

The ten sub-projects are grouped into five

tasks: compilation and analysis of records associated with the Chi-Chi earthquake, in situ tests at the test sites, sampling at the test sites and laboratory experiments, geological background investigation for the test sites and installation of the strong motion monitoring system, and modification of the analytical procedures in assessing the potential of sand liquefaction.

Titles of the sub-projects are:

- Geological background investigation for sand 1. liquefaction sites.
- 2. A probabilistic approach in assessing the liquefaction potential.
- 3. Liquefaction potential assessment of gravely sand.
- 4. Calibration of hammer energy for SPT at liquefaction sites.
- 5. Use of CPT in ground exploration and assessing the liquefaction potential.
- The installation and monitoring of in situ 6. liquefaction in the soil deposit.
- 7. A research on shear wave velocity regression equations and liquefaction potential analysis methods for Taiwan areas.
- Dynamic behavior of silty fine sand. 8.
- 9. A study on the liquefaction behavior of the silty sand in western Taiwan and principles in assessing the liquefaction potential.
- 10. Use of TDR in assessing the liquefaction potential.

二、計畫緣由與目的

台灣中西部地區之部分砂土,包括礫石與 粉土細砂,在集集地震期間有明顯液化之跡 象,並導致附近結構物之破壞。美國與日本於 60年代即對砂土液化相關之議題從地質與大地 工程之角度進行密集之研究。大地工程方面之 研究基本上可以分成兩個方向。其一是採用取 樣與室內動態剪力試驗來決定砂土在液化潛能

與行為分析中所需之參數。重要之動態參數包 括抗液化強度、阻泥係數、彈性模數遞減特性、 以及殘餘強度等。研究指出這些砂土之參數受 砂土顆粒之結構、粒徑分佈、礦物含量與年歲 等因素之影響非常明顯 (Ishihara, 1993)。因此 若要使用室內試驗之方法對現地砂土液化之行 為做評估,必須採用非擾動性之試體才有意 義。傳統使用冰凍法在地下水位以下為砂土做 非擾動性取樣非常昂貴,所以至今非擾動砂土 試樣之試驗數據非常有限。因為砂土礦物含量 之差異與沈積環境之不同,國外所報導之試驗 數據對國內砂土之適用性必須加以確認。

大地工程中對砂土液化行為之另一種研究 方法是採用現地試驗,如此可以避免使用昂貴 之冰凍取樣。最常用的現地試驗方法包括標準 貫入試驗(SPT)圓錐貫入試驗(CPT)等(Seed and De Alba, 1986; Olsen, 1994) 採用經驗的法 則根據SPT之貫入打擊數N值或CPT之貫入阻抗

q_c 來決定砂土抗液化強度或殘餘強度

(Marcuson et al., 1990)。其他之現地試驗方法 如剪力波速 平板膨脹儀(DMT) 傍壓儀(PMT) 也有被嘗試使用於砂土液化行為之研究

(Jamiolkowski et al., 1995) 這些經驗法則之建 立大多是根據現有試驗結果與液化行為資料庫 做標定與歸納之後提出,因此其適用性常受限 於試驗設備、程序與土壤行為之區域性。現有 國外所報導之試驗數據大部份是在低細料含量 或乾淨之石英砂內所得之結果。Huang et al. (1999) 針對台灣西海岸非常具有代表性之雲林 麥寮粉土細砂所做一系列之試驗指出,麥寮細 砂含有雲母與黏土性礦物,其壓縮性遠高於乾 淨之石英砂,因此在砂土行為與現地試驗結果 分析上必須考慮這些差異性之存在才能得到適 當之結果。SPT可能是國際間最常用之現地試驗 方法,但是國內SPT所使用之夯錘屬於甜甜圈 式,效率低且不穩定,因此在歐美與日本已不 再使用。國內機具試驗所得SPT之N值是否能直 接適用於國際文獻中所提之經驗法則也需要評估。

關於礫石性砂土之動態行為,在國際學術界之報導比較有限。礫石性砂土之液化行為也大多採用室內動態剪力試驗(Evans and Zhou,1995)以及現地大型之 Becker Penetration Test (BPT)(Harder and Seed, 1986)來評估。受到顆粒尺寸的影響,礫石性砂土試驗必須使用大型試體。同時因為礫石顆粒間孔隙很大,試驗時包在試體外之橡皮膜容易鉗入孔隙內而影響試驗結果。台灣中部常見之礫石比較接近卵石,其粒徑比前述所報導之礫石為大。國內關於礫石性砂土之動態剪力試驗數據非常有限,尤其是使用非擾動性試體所做之試驗。BPT則尚未有在國內使用之經驗。

本研究之目的包括:

- 1. 集集地震大地工程探勘資料彙整與分析
- 建立適用於台灣西部砂土,使用 SPT 與 CPT 試驗結果評估其液化潛能之方法
- 3. 評估使用其他現地試驗,包括 DMT、PMT、TDR 與剪力波速評估其液化潛能之方法
- 4. 嘗試使用不同之方法於地下水位以下取得 非擾動性之砂土試體
- 對非擾動性試體進行一系列之室內試驗以 決定其動態參數
- 6. 經由室內試驗與現地試驗結果之比較,建立台灣西部砂土動態參數與現地試驗間之經驗關係。
- 7. 在礫石層內進行一系列之 BPT,建立使用 BPT 評估其液化潛能之方法

三、計畫執行狀況

按照計畫書之規劃,所有參與本整合型計畫之主持人分別於九十一年十二月二十七日與九十二年九月二十五日舉辦研討會發表各子計畫之

研究成果,並發行論文集。九十一年十二月二十七日所發表之論文題目如下:

- A. CPT 資料在國內液化潛能評估之應用 (陳景文)
- B. 接頭對標準貫入試驗打擊能量之影響 (蔡錦松)
- C. 地震競士壤南化區之地質條件分析(溫紹炳)
- D. 以 N 值分析液化潛能之 BPN 法類神經網路研究(李咸亨)
- E. 表面波震測影像技術在液化潛能評估之應用 林志平)
- F. 以 BPT 評估礫石土液化潛能之研究 (林森)
- G. 台灣中部區域液化機率評估方法與分布特性之研究(紀雲曜)
- H. 現場土層內液化監測儀之設計安裝與監測 (倪勝火)
- I. 現地冰凍取樣砂土試體之動態性質 (陳堯中)
- J. 地震波形與土壤液化行為之探討(黃安斌).

六月十二日所發表之論文題目如下:

- A. 集集地震之 CPT 資料收集與應用 (陳景文)
- B. 礫石層 BPT 動態量測(林麻森)
- C. 土壤液化區測站之地質場址之地質條件分析(溫級內)
- D. 機率式液化潛能分析與傳統式分析之比較 (李咸亨)
- E. 介電貫入器之研發及其在液化調查之應用(林志平)
- F. 剪力波速應用於樂石土壤夜化智能分析之研究(林炳森)
- G. 機率式液化潛能分析方法(紀雲曜)
- H. 接頭對標準貫入試驗打擊能量之影響(蔡錦 松)
- I. 現場土層內液化監資料等取與分析之探討(倪勝 火)
- J. 現地土層內冰東双樣少土試體之動態性質 (陳堯

中)

K. 細料含量對砂土動態行為之影響(黃安斌)

各子計畫已完成其既定之目標,總計畫已完成 三個試驗站之現場試驗與監測儀器之安裝,此 三個試驗站分別為:

- 1. 彰化縣員林鎮崙雅里崙雅巷 2 號,民安宮 前空地。試驗項目包括砂土試體冰凍取 樣 現場剪力波速量測 CPT 與 SPT 試驗。
- 2. 台中縣福田橋邊河床地。礫石層內 BPT 試驗。
- 3. 台南縣後壁鄉菁寮村稻田內。現場土層內 液化監測儀器之安裝。

研究團隊於 92 年 11 月 3 至 4 日在國科會國際合作處與美國國科會贊助之下於交通大學舉辦台每土壤液化研討會。與會代表有 17 位來自美國 3 位來自日本,在研討會中報告之論文大部分投稿至 Soil Dynamics and Earthquake Engineering 期刊,將以特刊方式發表。圖一展示與會人員之團體照片。

四、參考文獻

Evans, M.D., and Zhou, S., 1995, "Liquefaction Behavior of Sand-Gravel Composites," Journal of Geotechnical and Geoenvironmental Engineering, Vol.121, No.3.

Harder, L.F., Jr., and Seed, H.B., 1986, "Determination of Penetration Resistance for Coarse-Grained Soils Using the Becker Hammer Drill," Earthquake Research Center, University of California, Berkeley, Report UCB/EERC-86/06.

Huang, A.B., Hsu, H.H., Chang, J.W., 1999 "The Behavior of a Compressible Silty Fine Sand," Canadian Geotechnical Journal, Vol.36, No.1, pp.88-101.

Ishihara, K., 1993, "Liquefaction and Flow Failure

during Earthquakes," Geotechnique, Vol.43, No.3, pp.351-415.

Jamiolkowski, M., Lo Presti, D.C.F., and Pallara, O., 1995, "Role of In Situ Testing in Geotechnical Earthquake Engineering," Proceedings, Third International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Missouri, April 2-7.

Marcuson, W.F., Hynes, M.E., and Franklin, A.G., 1990, "Evaluation and Use of Residual Strength in Seismic Safety Analysis of Embankments," Earthquake Spectra, Vol.6, No.3, pp.529-572.

Olsen, R.S., 1994, "Normalization and Prediction of Geotechnical Properties Using the Cone Penetration Test," Technical Report GL-94-29, U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, 322pp.

Seed, H.B., and De Alba, P., 1986, "Use of SPT and CPT Tests for Evaluating the Liquefaction Resistance of Sands," Proceedings, In Situ '86, ASCE, pp.281-302.

五、圖表

圖一 與會人員之團體照片