
行政院國家科學委員會專題研究計畫 成果報告

虛擬私有網路閘道Layer2/Layer3安全通訊協定之研究與設

計(2/2)

計畫類別：個別型計畫

計畫編號：NSC91-2213-E-009-041-

執行期間：91年08月01日至92年07月31日

執行單位：國立交通大學資訊工程學系

計畫主持人：謝續平

報告類型：完整報告

報告附件：出席國際會議研究心得報告及發表論文

處理方式：本計畫可公開查詢

中 華 民 國 92年10月28日

行政院國家科學委員會專題研究計畫成果報告
虛擬私有網路閘道Layer 2/Layer3安全通訊協定之研究與設計

The Study and Design of VPN Layer2/Layer3 Secure Communication
Protocols(2/2)

計畫編號：NSC 91-2213-E-009 -041-

執行期限： 91年8月1日至92年7月31日

全程計劃： 91年8月1日至92年7月31日

主持人：謝續平 教授 國立交通大學資訊工程學系

中文摘要

隨著網際網路通訊的安全性的日益需求，IPsec
閘道己成為在保護整個子網路上的一個極有

效率的方式，但最為人所垢病的，就在於 IPsec
閘道上的處理速度，這也影響著整個受保護網

路的處理能力，因此，為了加速整個 IPSec閘
道的強度，叢集式的技術是非常有效的方法，

但因為叢集式的關鍵則在於一個於中央控管

分派工作的技術，因此在本年度計劃我們將提

出一個以叢集式架構為基楚的 IPsec閘道機制
來整合虛擬私有網路上－VPN，進而增進其安
全強度，可擴展性及提昇 VPN整體效能。

關鍵詞

虛擬私有網路，叢集式，IPsec，Queuing theory

Abstract

Due to the increasing demand of secure
communications over the Internet, IPsec
gateway becomes one of the popular methods to
provide security services to all clients in a
protected subnet. The processing speed of an
IPsec gateway is critical to the overall network
throughput. To accelerate processing speed
and improve reliability, cluster technology was
inherently applied to the design of a modern
IPsec gateway. Traditional
dispatcher/master-based cluster technique must
have a centralized dispatcher to handle all
incoming and outgoing messages. In this project,
we proposed a clustered-based architecture for
IPsec gateway to integrate VPN, and increase
drastically the overall system strength and
performance.

Keywords:

Security gateway, VPN, IPsec, Cluster, load
balancing

1. Introduction
With the rapid advance in communication

technologies, many emerging Internet
applications have accentuated the need for
security mechanism in the Internet. To relieve
software engineers of developing proprietary
secure protocols, IP security protocol (IPsec)
suites [1] [2] [3] provide security services such
as authentication, integrity and confidentiality.
One of the most popular applications of IPsec is
the construction of Virtual Private Network
(VPN), which allow two subnets to build secure
connections over the public Internet.
However, the traffic handled by the gateway also
becomes heavier than the early period with the
rapid growth of data transmission technologies.
To be capable of dealing out the increasing load,
cluster technologies are adopted on the design of
IPsec gateways.

In a clustered IPsec gateway, packets are
distributed to different devices to achieve load
balance among them. In such an environment,
how to synchronize SA information between
these machines is the most important thing we
concerned.

With the purpose of increasing the
throughput of VPN gateways, some vendors also
implement their VPN gateway products by using
cluster technologies, such as Cisco and
NetScreen [4] [5]. However, most of them use
the session-based load-balancing scheme for
their implementation. To provide better load
balancing for clustered IPsec gateway, we also
apply packet-based traffic dispatching schemes
for clustered IPsec gateway.

To implement a high-speed IPsec gateway,
clustering technology has been adopted to
parallelize the IPsec encryption/decryption
procedures. Traditional cluster technology
means a dispatcher and lots of slave nodes.
Typically, the dispatcher would handle all

incoming and outgoing messages, and it would
dispatch time-consuming operations to slave
nodes. But in IPsec environments, it’s difficult
to design a dispatcher-based cluster using an
existing commercial Load Balancer. Because
IPsec SPI sequence number assigning is an
important issue for IPsec’s anti-replay
mechanism. As a result, design a dispatcher to
fit IPsec environment is needed for clustered
IPsec gateway.

Traditional clustering technique provides
the ability to perform parallel processing of
CPUs that reside in discrete devices. In this
kind of cluster, a dispatcher is responsible for all
of the operations performed throughout the
cluster; only time-consuming calculations are
distributed to other slaves. This technology
could cause single point of failure
straightforwardly if dispatcher was crashed.
And if computation power of the dispatcher
cannot be capable to deal all incoming packets, it
would become the bottleneck.

New cluster technology, such as [9] and
[10], could offer truly load-balance and
fault-tolerance. It can also have lower latency
for packet transmit. But it could only be
suitable for operations that have no
co-relationship, such as different http request.
While processing related requests, this cluster
technique fails or needs more operation for
synchronization. In other words, it lacks some
mechanisms for operations that need real-time
synchronization, e.g., SPI sequence number
assigning.

 Hierarchical
architecture

Flat
architecture

Synchronizat
ion Easy Hard

Transfer
latency High Low

Fault-toleran
ce Bad Good

Scalability High Medium High

Possible
bottleneck Dispatcher Not obviously

Table 1-1. Comparison for two cluster technologies

Since there is a dispatcher/master in
hierarchical architecture, it may be ease of
control, management, and synchronization, but it
also need some mechanism to inform slaves
some information. And because the existence
of dispatcher, it could become the bottleneck and
could cause single point of failure easily. On
the contrary, synchronization in flat architecture

is more difficult. Since all nodes would receive
all packets, it would cause more CPU overhead
to process them, but it could have better
fault-tolerance, (Microsoft claims their NLB has
(N-1)-way failover in a cluster with N hosts).
More over, filtering unwanted packets is faster
than examining, rewriting, and resending packets,
so, flat architecture would have low latency than
hierarchical one.

We propose a load balancing approach to
implement a high speed IPsec gateway. The
design is simplified by using the new clustering
technology architecture. With layer-two
multicast technique, all cluster nodes received all
packets. To evenly distribute traffic to cluster
nodes, there was a filter driver running on all the
cluster nodes. This driver would also keep
track of all incoming packets and synchronize
IPsec SA SPI.

In the next section, we present a flat
clustered IPsec gateway architecture and
estimate its overhead. Section 3 discusses the
dispatch schemes, session-based vs.
packet-based and round-robin vs.
shortest-queue-first. In Section 4, we present
the performance of this proposed architecture
and some comparison with others. Finally,
Section 5 gives a conclusion and our future
work.

2. Proposed Flat Clustered IPsec Gateway

In the proposed flat architecture, IPsec
protocol is executed in a clustered architecture.
Microsoft suggests using layer-two broadcast or
multicast to simultaneously distribute incoming
network traffic to all cluster nodes in
environment using a switch instead of a hub.
We also try to use layer-2 multicast MAC
address for our IPsec gateway, but thus it causes
other problems.

In Linux, if an interface wants to receive
packets whose destination address is a multicast
MAC address without adding a multicast group,
it should enable the promiscuous mode or
all-multicast mode. Or packets addressed to a
multicast MAC address would be dropped in
Linux kernel. Enable the promiscuous mode or
all-multicast mode would make NIC to receive
all network packets and cause kernel to process
all of them. Since not all of the received
packets are addressed to this cluster, it causes
more overhead for kernel. Packets sent by
cluster nodes would be sent back to all of them if
their destination MAC addresses were multicast
ones. This is the condition we do not want to
expect.

In a clustered IPsec environment, how to
assign the proper SPI sequence number and let
this value synchronized in all nodes are the most
important things we concerned. Sending
messages between cluster nodes for every
incoming packet, such as Nokia IP clustering,
seems cost too many operations and may not
catch up the speed in high speed environment.
In this section, we introduce the overall

architecture and estimate the possible overhead
as well as the operations of its components.

2.1 System Architecture

We adopt de-centralized, clustered
architecture with packet-based load balancing
approach for system architecture. Thus, there
is only one major component, a set of cluster
nodes, in

Figure 2-1. Architecture for Proposed IPsec Gateway

proposed clustered IPsec gateway.

Each node in this cluster is capable of
processing all incoming packets, either
forwarding them or encapsulating/extracting
them in/out IPsec tunnel. Figure 2-1 shows a
pair of proposed clustered IPsec gateways and
the traffic flows. All of the cluster nodes are
connected via gigabit Ethernet switch. And
they must share two IP addresses in order to
deliver packets directly to the destination node
(one for outgoing traffic and one for incoming).
To improve performance, each cluster node has
two network interface cards. Two Ethernet
switches are used to separate the connections
between the router and local intranet, so that the
distributed IPsec gateway can act as a virtual
router to the local network. By intercepting
ARP request to router, this IPsec gateway can
act as a default router of the subnet transparently
to control all the traffic across it.

To illustrate how packets flow through the
clustered IPsec gateway, we assume that the
packet is originated from the left subnet and its
destination is on the right one. First, packet
coming from the left side local network is
delivered to the IPsec gateway using layer-two
multicast. All of the cluster nodes would
receive this packet and locate the correspondent

SA first.

SA specifies sequence number information
as well as the algorithm and key used to generate
or validate the integrity check value (ICV).
Since every node in this cluster would receive all
and the same count of packets, all of them would
assign the same value of sequence number for
the current packet. Then some dispatching
scheme would be calculated and find only one
node of them to continue processing it. Other
cluster nodes would update IPsec SA database
only and then drop current packet. The
encrypted-packet would then directly forward to
the router of local area network by the node
processing it. The router forwards this packet
to the right side IPsec gateway according to its
routing table.

Upon receipt of this packet, this
encrypted-packet would also be received by all
the cluster nodes in the right side IPsec gateway.
All of them would check its IPsec ICV value and
update the IPsec anti-replay windows. But
only one of them would decrypt this packet and
forwards it to the ultimate destination by
deploying dispatching schemes. Other nodes
would drop it after anti-replay window updates.
Since all of the cluster nodes, either in sender
side or receiver side, would receive all the

Cipher Text
Plain Text

packets, the problem of run-time assigning of
IPsec sequence number is preserved.

Figure 2-2 shows some processing steps
for an original IPsec Gateway; and Figure 2-3
shows the modified processing steps for our
IPsec Gateway, which after adding a filter driver
to filter out unwanted packets within IPsec
processing step.

In the proposed architecture, the
computation power of the IPsec gateway scales
up with the number of cluster nodes increasing
in the system. Adding a new node can be
achieved by setting the same IP addresses with
other nodes. And other nodes would know
there is new node added by the heartbeat
messages sending by the new node. Then the
default host would organize new dispatching
scheme and deploy it the all the nodes by adding
some options of heartbeat messages. Moreover,
since there is no modification to the standard
IPsec protocol, compatibility with other IPsec
systems is preserved.

2.2 Synchronization Between Cluster Nodes

Each node in this cluster would have its
own unique host-identity. They would elect
one node as default host to interact ARP with
clients and handle other interactive operations.
This default host must communicate with other
IPsec hosts/gateways/devices to perform key
exchange protocols, e.g., IKE [8]. It is also
responsible for sending heartbeat messages to all
of the cluster nodes and then receiving all
acknowledgements from them. Other cluster
nodes would expect receiving heartbeat
messages from default host and then trying to
reply them. If they did not receiving any
heartbeat messages from default host in a period
of time. They would assume that the default

host was down, and would try to re-elect one
node as a new default host

There are some problems while
performing encryption/authentication key
exchange. For instance, how to reduce packet
lost while key renewing and prevent lost of
synchronization between two end devices.
Some solutions have been propounded to solve
these problems in IETF IPsec working group.
Our goals are trying to ease our proposed IPsec
gateway as a simple IPsec device, not cluster
ones.

We propose a simple scheme to reduce our
proposed IPsec gateway as a simple IPsec device.
For IKE packets which directly addressed to the
IPsec gateway itself, all the cluster nodes would
accept them, but only the default host would try
to response them. As a result, the entire cluster
nodes would have the new
encryption/authentication key at the same time.
Thus, problems of key renewing are reduced as a
simple IPsec device would face up.

2.3 Overhead Estimate and Service Rate Prediction

Since the entire cluster nodes would
receive all the packets through the IPsec gateway,
but only one of them would really process them.
It obviously causes some overhead for nodes that
are not responsible for processing them.
Take IPsec outbound traffic as example, Figure
2-4 shows some steps for a machine to process
IPsec tunneling packets.

Assume it would take Q(s) units of time
for one machine from receiving a s-byte packet,
passing it to Physical layer, MAC layer, IP layer,
updating IPsec SA database, and finally our
filter driver, which decide drop this packet or not
(as darker region in Figure 2-4). Assume the
following steps — encapsulate and encrypt the
current packet, and pass it back to physical
medium – would take another R(s) unit of time.
As a result, processing one s-byte packet would
take R(s)+Q(s) unit of time.

If each cluster node can process P units
per second, the maximum number of s-byte
packets one node can process within one second,
C1,s, is P/(R(s)+Q(s)). Therefore, while
feeding s-byte packets, the maximum number for
units one node can process within one second,

C1,s, is
)()(sQsR

P
+

 and the maximum

service rate measured in bytes/second is

IPsec ProcessingIPsec Processing

Physical layer

MAC layer

IP layer

Physical layer

MAC layer

IP layer

Physical layer

MAC layer

IP layer

Physical layer

MAC layer

IP layer

Physical layer

MAC layer

IP layer

Physical layer

MAC layer

IP layer

Figure 2-2. Processing steps for an IPsec Gateway

Physical layer

MAC layer

IP layer

Physical layer

MAC layer

IP layer

Physical layer

MAC layer

IP layer

Physical layer

MAC layer

IP layer

Physical layer

MAC layer

IP layer

Physical layer

MAC layer

IP layer
IPsec ProcessingIPsec ProcessingIPsec Processing

filter

Figure 2-3 Processing steps for our IPsec Gateway

)()(,1 sQsR
sP

s +
×=µ

Assume we have n cluster nodes(s) and

use round-robin filtering algorithm. While
receiving n s-byte packets, each node would
receiving all of them but processing only one of
them. We can just simplify it to that it would
take R(s)+nQ(s) unit of time to process one
packet. As a result, while feeding s-byte
packets, the maximum number of units a cluster
node can process within one second, Cn,s, is

)()(snQsR
P
+

.

Then we have the maximum service rate of n
cluster nodes(s) measured in bytes/second is

)()(, snQsR
sPn

sn +
××=µ

2.4 Modeling by Queuing theory

Since our architecture is several parallel
servers sharing a single limited queue. And
while incoming packets have Poisson (i.e.
``random'') arrivals and exponential service
times, we can model our service queue as a
(M/M/c):(GD/K/∞) queuing model [12] [13] [14]
[15].

Thus, whatever how many cluster nodes
we have, the arrival rate λn equals λ. Because
each node would get more overhead while more
packets coming, we have service rate µµ cn = ,
where c < n. And we have the traffic intensity
ρ = [(λ)/(µ)]; the proportion of time the system

is idle 0!
P

cc
P cn

n

n −= ρ
, where

()
11

1

0
0

1!

1

!

−+−

−

=

 −

−

+= ∑
c

c

c
n

P

cK
c

c

n

n

ρ

ρρ
ρ

.

Finally, we have the effective arrival rate into
the system ()neff P−= 1λλ .

3. Dispatch Schemes
This section discussed the dispatch

schemes we used in the filter driver; we simply
divide them to two kinds – session-based vs.
packet-based and round-robin vs.
shortest-queue-first. Session-based and
packet-based dispatching schemes are used to
locate which cluster node should process the
coming packets according to which session it
belongs or just ignoring session information.
While new session or new packet comes,
round-robin and shortest-queue-first dispatch
schemes are used to find which cluster node
should responsible for it.

3.1 Session-based versus Packet-based

The granularity used for load balancing
will dominate the performance of the clustered
system. Current load balancing systems can be
divided into two classes: session-based and
packet-based. In session-based load balancing,
it will result in unbalanced load sharing if the
loads of sessions are lopsided. In this case, the
cluster nodes serving heavy-load sessions may
be overwhelmed while other nodes remain idle.
Moreover, throughput of any single session is
limited by the computation power of a cluster
node.

The granularity used for load balancing
will dominate the performance of the clustered
system. Current load balancing systems can be
divided into two classes: session-based and
packet-based. In session-based load balancing,
it will result in unbalanced load sharing if the
loads of sessions are lopsided. In this case, the
cluster nodes serving heavy-load sessions may
be overwhelmed while other nodes remain idle.
Moreover, throughput of any single session is
limited by the computation power of a cluster
node.

In contrast, packet-based load balancing
systems can distribute packets to any one of the
cluster nodes that is capable of processing it.
Thus, packet-based load balancing share load

Steps for all incoming packets

Other steps for packets the current

node is responsible for

Physical layer

MAC layer

IP layer

Physical layer

MAC layer

IP layer

Physical layer

MAC layer

IP layer

Physical layer

MAC layer

IP layer

Physical layer

MAC layer

IP layer

Physical layer

MAC layer

IP layer
IPsec ProcessingIPsec ProcessingIPsec Processing

filter

Figure 2-4. Processing overhead for packet of size S

more evenly than session-based systems. In the
worse case, the clustered system will still be
fully utilized even there is only a single network
session. According to RFC2451 [16], each
IPsec packet can be encrypted/decrypted
independently. This flexibility enables the
cluster nodes to processing packets
autonomously without considering the chaining
relationships.

Another serious problem in session-based
systems is that no one knows which session an
encrypted packet belongs before decrypt it in
IPsec inbound gateway. In receiver side, find a
node using other schemes rather than
session-based scheme is needed. This denotes
that session-based schemes can only be adopted
in IPsec outbound traffic. Table 3-1 lists some
comparisons between these two schemes.
Since packet-based schemes have more pros,
thus, we prefer to use packet-based scheme to
dispatch traffic. But session-based scheme is
also tested in our experiments.

 Session-based
schemes

Packet-based
schemes

State
keeping Yes No

Extra
storage
overhead

Yes No

Extra time
overhead Yes No

Concurrent
sessions limited Unlimited

Bursty
session
utilization
limit

One node All nodes

Table 3-1. Comparison between session-based and
packet-based schemes

3.2 Round-Robin versus Shortest-Queue-First

In both packet-based and session-based
schemes, while new packet or new session
comes, what fashion to deploy is another point.
Round-Robin (RR) scheme is the simplest one,
but when different size packets come, another
sort of unbalance would come into sight.
Shortest-Queue-First (SQF) scheme is the best
schemes in some way. Since every cluster
node in our architecture will receive all coming
packets, so how to get the load or queue length
of every other node is not the issue. But SQF
would cause more overhead to calculate which
the shortest queue is then RR fashion. We’ve
tested both RR and SQF fashions in our
experiments.

4. Performance Measurement

Since the performance of many single
machines and products can catch up the wire
speed of Fast Ethernet. And migrating to
high-speed environment is the trend in few years.
It’s meaningless and out of fashion to test cluster
technologies in 100 Mbps environment this time.
Consequently, we choose Gigabit Ethernet as
our testing environment [17] [18] [19].
Although Princeton University has proved that
compression improves performance when
encryption is employed in high-speed
environment [20], but our main purpose is to test
the scalability and try to prove it. So, IPComp
[21] is not used in our testing.

The test bed is six machines with 1 AMD
XP1800+ CPU, 256 MB RAM, 2 Intel
PRO/1000 XT Gigabit NIC running on 66
MHz/64-bit PCI bus, and 1 SafeNet SafeXcel
140-PCI encryption acceleration card. One
3Com SuperStack 3 4900 12-port Gigabit
Switch with one 4-port 1000BASE-TX module
is configured as 2 or 4 VLANs for testing. The
operating system of these machines is Red Hat
Linux 7.2 with 2.4.18 kernel. FreeS/WAN 1.97
is used as implementation of IPsec on this
clustered IPsec gateway. And Smartbits-200 of
Spirent Communications with 2 GX-1420B
Gigabit modules acts as the Traffic Analyzer.

4.1 Fixed-Size Traffic

The larger packet sizes, the less overhead
caused by IP stack. Thus, the overhead would
be different by feeding packets with different
size. So, we first generate a set of fixed-size
streams from Smartbits-200 to test our IPsec
gateway in this ideal testing environment.
Because we only have six machines for testing,
three of them must act as sender side gateway
and the other three machines must act as receiver
side gateway.
After testing from one node to three nodes, we
found that the performance of this testing was
bounded by the sender side. It denotes that the
performance was bounded by encryption
operations; the speed of decryption can always
catch up encryption. So we change our settings
to that our entire six machines act as sender side
IPsec gateway. We test its performance after
they encrypt the packets then deliver they to the
router.

Table 4-1 shows performance results using
simple round-robin dispatching scheme. We
gained these results by setting Smartbits-200 to
send timed-burst packets in specified
Databits/sec for 30 seconds. If no packet lost,
we assume our IPsec gateway can handle such
traffic. The performance was measured by the
Databits/sec, which we configured in

SmartWindows, after subtracting 14-byte
Ethernet header.

4.2 Real Traffic

In the following experiments, throughput
of packet-based scheme and session-based
scheme are evaluated respectively using real
traffic which collected from campus backbone
router. The characteristic of the traffic figured
as follows: Total 1,328,780,468 bytes in
1,118,665 packets, 18,229 sessions. Average
1187.8 bytes per packet (standard division =
524.623). Average 72615.0 bytes per session
(standard division = 460311.287). We only
collect the IP header of these packets and then
regenerate them using SmartBits-200 as the data
rate we want. In both session-based and
packet-based schemes, sessions and packets are
assigned to cluster nodes in RR fashion and SQF
fashion. The throughput of each dispatching
scheme is presented in Table 4-2

5. Conclusion

In this project, we proposed a flat clustered
scheme for implementing a high speed IPsec
gateway and conclude a formula to estimate
overhead in this architecture. According to our
methods, the performance of IPsec gateway can

be easily scaled up by increasing number of
cluster nodes. In our analysis, while the
overhead is significant small compared with a
machines computation power, it can scale up
almost linearly.

Two companion traffic-dispatch schemes
are also presented in this report. As experiment
results show, packet-based dispatching scheme
provides better load balancing capability. On
the other hand, session-based dispatching
schemes are not effective to implement an IPsec
gateway using cluster architecture. Moreover,
total experiment equipments cost less than 5% of
Cisco VPN 5008, which is a Cisco VPN gateway
product that can achieve to 760 Mbps. Table
5-1shows some comparison with commercial
products.

At this moment, our flat architecture
would be bounded by the Gigabit Ethernet wire
speed (AH mode). Since the processing time of
2*s-size packet would not probably take two
times than S-size packet, we would try to reduce
the granularity to “load-based”. We believe
that trying to figure out Q(s) and R(s) for
different-size packets would be helpful for more
balanced dispatch.

6. Reference
[1] S. Kent and R. Atkinson, “Security

Architecture for the Internet Protocol,” RFC
2401, Nov. 1998.

[2] S. Kent and R. Atkinson, “IP Authentication
Header,” RFC 2402, Nov. 1998.

[3] S. Kent and R. Atkinson, “IP Encapsulating
Security Payload (ESP),” RFC 2406, Nov.
1998.

[4] Cisco Systems, Inc., “Cisco VPN 5000
Series Concentrators,”
http://www.cisco.com/univercd/cc/td/doc/pc
at/vp5000.htm

[5] NetScreen Technologies, Inc.,
“NetScreen-1000,”

Number of
cluster
nodes

Packet-based
Round-Robin

(Mbps)

Packet-based
SQF

(Mbps)

Session-based
Round-Robin

(Mbps)

Session-based
SQF

(Mbps)

1 83.4 83.4 83.4 83.4

2 161.7 161.7 154.5 161.6

3 235.3 235.3 185.9 230.3

4 304.7 304.6 220.0 284.0

5 370.1 370.1 253.4 323.1

6 431.8 432.0 311.0 362.2

Table 4-2. Throughput using real traffic

ESP/3DES-MD5 ESP/DES-MD5 AH/MD5Number of
cluster
nodes 512

bytes/frame
(Mbps)

1024
bytes/frame

(Mbps)

1446
bytes/frame

(Mbps)

1446 bytes/frame
(Mbps)

1446
bytes/frame

(Mbps)

1 47.2 72.4 87.2 265.2 366.6

2 93.3 141.3 172.1 503.5 686.8

3 138.1 207.1 253.7 716.3 969.9

4 182.3 269.2 333.2 913.9 974.4

5 223.7 329.6 405.3 974.4 974.4

6 265.5 387.9 480.1 974.4 974.4

Table 4-1. Throughput for fixed-size traffic

Manufacturer/Model Scalable Throughput
ESP/3DES-MD5

Our Approach Yes
6 nodes for 480Mbps

Would be bounded by wire
speed if adding more nodes

Cisco VPN 5008 Yes Up to 760 Mbps

NetScreen 1000SP Yes Up to 1000 Mbps(wire speed)

SonicWALL GX-650 285

Intel 3130 VPN 95

Lucent VPN-FB1000 90

Alcatel 7137 70

Table 5-1. Comparison with commercial products

http://www.netscreen.com/products/systems.
html#ns1000

[6] K. Hamzeh, G. Pall, W. Verthein, J. Taarud,
W. Little, and G. Zorn, “Point-to-Point
Tunneling Protocol (PPTP),” RFC 2637,
July 1999.

[7] W. Townsley, A. Valencia, A. Rubens, G.
Pall, G. Zorn, and B. Palter, ”Layer-Two
Tunneling Protocol (L2TP),” RFC 2661,
Aug. 1999.

[8] D. Harkins and D. Carrel, “The Internet Key
Exchange (IKE),” RFC 2409, Nov. 1998

[9] Microsoft Corporation, “Network Load
Balancing Technical Overview”,
http://www.microsoft.com/windows2000/tec
hinfo/howitworks/cluster/nlb.asp, Jan. 2000.

[10] Nokia Corporation, IP Clustering
Technology white paper,
http://www.nokia.com/vpn/pdf/ip_clustering
.pdf, Feb. 2000.

[11] Joo-Kok Ng, “A Packet-based Load
Balancing Approach for High-speed
Clustered IPsec Gateway,” M.S. Thesis,
NCTU, June 2001.

[12] Robert B. Cooper, Introduction to Queueing
Theory, Macmillan, 1972.

[13] F. S. Hillier and G. J. Lieberman,
Introduction to Operations Research,
McGraw-Hill, 5th edition, 1990.

[14] H. A. Taha, Operations Research: An
Introduction, Macmillan, 5th edition, 1992.

[15] W. L. Winston, Operations Research,
Applications and Algorithms, Duxbury Press,
3rd edition, 1994.

[16] R. Pereira and R. Adams, “The ESP
CBC-Mode Cipher Algorithms,” RFC 2451,
Nov. 1998.

[17] Mitchell Loeb, Andrew Rindos, William
Holland, and Steven Woolet, “Gigabit
Ethernet PCI Adapter Performance," IEEE
Network Magazine, vol. 15, No. 2, pp.
42-47, March/April 2001.

[18] Paul A. Farrell and Hong Ong,
“Communication Performance over a
Gigabit Ethernet Network,” Proceedings the
IEEE 2000 International Performance,
Computing, and Communications
Conference, pp. 181-189, Feb. 2000.

[19] Aamir Shaikh and Kenneth J. Christensen,
“Traffic Characteristics of Bulk Data
Transfer using TCP/IP over Gigabit
Ethernet,” Proceedings the IEEE 2001
International Performance, Computing, and
Communications Conference, pp. 103-111,
April 2001.

[20] John P. McGregor and Ruby B. Lee,
“Performance Impact of Data Compression
on Virtual Private Network Transactions,”
Proceedings of the 25th IEEE Conference on
Local Computer Networks, pp. 500-510,

Nov. 2000.
[21] A. Shacham, R. Monsour, R. Pereira and M.

Thomas, “IP Payload Compression Protocol
(IPComp),” RFC 2393, Dec. 1998.

[22] L. Aversa and A. Bestavros, “Load
Balancing a Cluster of Web Servers Using
Distributed Packet Rewriting,” Proceedings
the IEEE 2000 International Performance,
Computing, and Communications
Conference, pp. 24-29, Feb. 2000.

[23] Z. Cao, Z. Wang, E.Zegura, “Performance of
Hashing-Based Schemes for Internet Load
Balancing,” IEEE INFOCOM 2000, vol. 1,
pp. 332-341, March 2000.

