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中文摘要 

隨著網際網路通訊的安全性的日益需求，IPsec
閘道己成為在保護整個子網路上的一個極有

效率的方式，但最為人所垢病的，就在於 IPsec
閘道上的處理速度，這也影響著整個受保護網

路的處理能力，因此，為了加速整個 IPSec閘
道的強度，叢集式的技術是非常有效的方法，

但因為叢集式的關鍵則在於一個於中央控管

分派工作的技術，因此在本年度計劃我們將提

出一個以叢集式架構為基楚的 IPsec閘道機制
來整合虛擬私有網路上－VPN，進而增進其安
全強度，可擴展性及提昇 VPN整體效能。 
 
關鍵詞 

虛擬私有網路，叢集式，IPsec，Queuing theory 
 
Abstract 

Due to the increasing demand of secure 
communications over the Internet, IPsec 
gateway becomes one of the popular methods to 
provide security services to all clients in a 
protected subnet.  The processing speed of an 
IPsec gateway is critical to the overall network 
throughput.  To accelerate processing speed 
and improve reliability, cluster technology was 
inherently applied to the design of a modern 
IPsec gateway.  Traditional 
dispatcher/master-based cluster technique must 
have a centralized dispatcher to handle all 
incoming and outgoing messages. In this project, 
we proposed a clustered-based architecture for 
IPsec gateway to integrate VPN, and increase 
drastically the overall system strength and 
performance. 
 
Keywords:  

 

Security gateway, VPN, IPsec, Cluster, load 
balancing 
 

1. Introduction 
With the rapid advance in communication 

technologies, many emerging Internet 
applications have accentuated the need for 
security mechanism in the Internet.  To relieve 
software engineers of developing proprietary 
secure protocols, IP security protocol (IPsec) 
suites [1] [2] [3] provide security services such 
as authentication, integrity and confidentiality.  
One of the most popular applications of IPsec is 
the construction of Virtual Private Network 
(VPN), which allow two subnets to build secure 
connections over the public Internet. 
However, the traffic handled by the gateway also 
becomes heavier than the early period with the 
rapid growth of data transmission technologies.  
To be capable of dealing out the increasing load, 
cluster technologies are adopted on the design of 
IPsec gateways. 
 

In a clustered IPsec gateway, packets are 
distributed to different devices to achieve load 
balance among them.  In such an environment, 
how to synchronize SA information between 
these machines is the most important thing we 
concerned. 
 

With the purpose of increasing the 
throughput of VPN gateways, some vendors also 
implement their VPN gateway products by using 
cluster technologies, such as Cisco and 
NetScreen [4] [5].  However, most of them use 
the session-based load-balancing scheme for 
their implementation.  To provide better load 
balancing for clustered IPsec gateway, we also 
apply packet-based traffic dispatching schemes 
for clustered IPsec gateway. 
 

To implement a high-speed IPsec gateway, 
clustering technology has been adopted to 
parallelize the IPsec encryption/decryption 
procedures.  Traditional cluster technology 
means a dispatcher and lots of slave nodes.  
Typically, the dispatcher would handle all 



incoming and outgoing messages, and it would 
dispatch time-consuming operations to slave 
nodes.  But in IPsec environments, it’s difficult 
to design a dispatcher-based cluster using an 
existing commercial Load Balancer.  Because 
IPsec SPI sequence number assigning is an 
important issue for IPsec’s anti-replay 
mechanism.  As a result, design a dispatcher to 
fit IPsec environment is needed for clustered 
IPsec gateway. 
 

Traditional clustering technique provides 
the ability to perform parallel processing of 
CPUs that reside in discrete devices.  In this 
kind of cluster, a dispatcher is responsible for all 
of the operations performed throughout the 
cluster; only time-consuming calculations are 
distributed to other slaves.  This technology 
could cause single point of failure 
straightforwardly if dispatcher was crashed.  
And if computation power of the dispatcher 
cannot be capable to deal all incoming packets, it 
would become the bottleneck. 
 

New cluster technology, such as [9] and 
[10], could offer truly load-balance and 
fault-tolerance.  It can also have lower latency 
for packet transmit.  But it could only be 
suitable for operations that have no 
co-relationship, such as different http request.  
While processing related requests, this cluster 
technique fails or needs more operation for 
synchronization.  In other words, it lacks some 
mechanisms for operations that need real-time 
synchronization, e.g., SPI sequence number 
assigning. 

 Hierarchical 
architecture 

Flat 
architecture 

Synchronizat
ion Easy Hard 

Transfer 
latency High Low 

Fault-toleran
ce Bad Good 

Scalability High Medium High

Possible 
bottleneck Dispatcher Not obviously

Table 1-1. Comparison for two cluster technologies 
 

Since there is a dispatcher/master in 
hierarchical architecture, it may be ease of 
control, management, and synchronization, but it 
also need some mechanism to inform slaves 
some information.  And because the existence 
of dispatcher, it could become the bottleneck and 
could cause single point of failure easily.  On 
the contrary, synchronization in flat architecture 

is more difficult.  Since all nodes would receive 
all packets, it would cause more CPU overhead 
to process them, but it could have better 
fault-tolerance, (Microsoft claims their NLB has 
(N-1)-way failover in a cluster with N hosts).  
More over, filtering unwanted packets is faster 
than examining, rewriting, and resending packets, 
so, flat architecture would have low latency than 
hierarchical one. 
 

We propose a load balancing approach to 
implement a high speed IPsec gateway.  The 
design is simplified by using the new clustering 
technology architecture.  With layer-two 
multicast technique, all cluster nodes received all 
packets.   To evenly distribute traffic to cluster 
nodes, there was a filter driver running on all the 
cluster nodes.  This driver would also keep 
track of all incoming packets and synchronize 
IPsec SA SPI. 
 

In the next section, we present a flat 
clustered IPsec gateway architecture and 
estimate its overhead.  Section 3 discusses the 
dispatch schemes, session-based vs. 
packet-based and round-robin vs. 
shortest-queue-first.  In Section 4, we present 
the performance of this proposed architecture 
and some comparison with others.  Finally, 
Section 5 gives a conclusion and our future 
work. 
 
2. Proposed Flat Clustered IPsec Gateway 

In the proposed flat architecture, IPsec 
protocol is executed in a clustered architecture.  
Microsoft suggests using layer-two broadcast or 
multicast to simultaneously distribute incoming 
network traffic to all cluster nodes in 
environment using a switch instead of a hub.  
We also try to use layer-2 multicast MAC 
address for our IPsec gateway, but thus it causes 
other problems. 
 

In Linux, if an interface wants to receive 
packets whose destination address is a multicast 
MAC address without adding a multicast group, 
it should enable the promiscuous mode or 
all-multicast mode.  Or packets addressed to a 
multicast MAC address would be dropped in 
Linux kernel.  Enable the promiscuous mode or 
all-multicast mode would make NIC to receive 
all network packets and cause kernel to process 
all of them.  Since not all of the received 
packets are addressed to this cluster, it causes 
more overhead for kernel.  Packets sent by 
cluster nodes would be sent back to all of them if 
their destination MAC addresses were multicast 
ones.  This is the condition we do not want to 
expect. 
 



In a clustered IPsec environment, how to 
assign the proper SPI sequence number and let 
this value synchronized in all nodes are the most 
important things we concerned.  Sending 
messages between cluster nodes for every 
incoming packet, such as Nokia IP clustering, 
seems cost too many operations and may not 
catch up the speed in high speed environment.  
In this section, we introduce the overall 

architecture and estimate the possible overhead 
as well as the operations of its components. 
 
2.1 System Architecture 

We adopt de-centralized, clustered 
architecture with packet-based load balancing 
approach for system architecture.  Thus, there 
is only one major component, a set of cluster 
nodes, in  

Figure 2-1. Architecture for Proposed IPsec Gateway 

proposed clustered IPsec gateway. 
 

Each node in this cluster is capable of 
processing all incoming packets, either 
forwarding them or encapsulating/extracting 
them in/out IPsec tunnel.  Figure 2-1 shows a 
pair of proposed clustered IPsec gateways and 
the traffic flows.  All of the cluster nodes are 
connected via gigabit Ethernet switch.  And 
they must share two IP addresses in order to 
deliver packets directly to the destination node 
(one for outgoing traffic and one for incoming).  
To improve performance, each cluster node has 
two network interface cards.  Two Ethernet 
switches are used to separate the connections 
between the router and local intranet, so that the 
distributed IPsec gateway can act as a virtual 
router to the local network.  By intercepting 
ARP request to router, this IPsec gateway can 
act as a default router of the subnet transparently 
to control all the traffic across it. 
 

To illustrate how packets flow through the 
clustered IPsec gateway, we assume that the 
packet is originated from the left subnet and its 
destination is on the right one.  First, packet 
coming from the left side local network is 
delivered to the IPsec gateway using layer-two 
multicast.  All of the cluster nodes would 
receive this packet and locate the correspondent 

SA first. 
 

SA specifies sequence number information 
as well as the algorithm and key used to generate 
or validate the integrity check value (ICV).  
Since every node in this cluster would receive all 
and the same count of packets, all of them would 
assign the same value of sequence number for 
the current packet.  Then some dispatching 
scheme would be calculated and find only one 
node of them to continue processing it.  Other 
cluster nodes would update IPsec SA database 
only and then drop current packet.  The 
encrypted-packet would then directly forward to 
the router of local area network by the node 
processing it.  The router forwards this packet 
to the right side IPsec gateway according to its 
routing table. 
 

Upon receipt of this packet, this 
encrypted-packet would also be received by all 
the cluster nodes in the right side IPsec gateway.  
All of them would check its IPsec ICV value and 
update the IPsec anti-replay windows.  But 
only one of them would decrypt this packet and 
forwards it to the ultimate destination by 
deploying dispatching schemes.  Other nodes 
would drop it after anti-replay window updates.  
Since all of the cluster nodes, either in sender 
side or receiver side, would receive all the 
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packets, the problem of run-time assigning of 
IPsec sequence number is preserved. 
 

Figure 2-2 shows some processing steps 
for an original IPsec Gateway; and Figure 2-3 
shows the modified processing steps for our 
IPsec Gateway, which after adding a filter driver 
to filter out unwanted packets within IPsec 
processing step. 
 

 

 
 

In the proposed architecture, the 
computation power of the IPsec gateway scales 
up with the number of cluster nodes increasing 
in the system.  Adding a new node can be 
achieved by setting the same IP addresses with 
other nodes.  And other nodes would know 
there is new node added by the heartbeat 
messages sending by the new node.  Then the 
default host would organize new dispatching 
scheme and deploy it the all the nodes by adding 
some options of heartbeat messages.  Moreover, 
since there is no modification to the standard 
IPsec protocol, compatibility with other IPsec 
systems is preserved. 
 
2.2 Synchronization Between Cluster Nodes 

Each node in this cluster would have its 
own unique host-identity.  They would elect 
one node as default host to interact ARP with 
clients and handle other interactive operations.  
This default host must communicate with other 
IPsec hosts/gateways/devices to perform key 
exchange protocols, e.g., IKE [8].  It is also 
responsible for sending heartbeat messages to all 
of the cluster nodes and then receiving all 
acknowledgements from them.  Other cluster 
nodes would expect receiving heartbeat 
messages from default host and then trying to 
reply them.  If they did not receiving any 
heartbeat messages from default host in a period 
of time.  They would assume that the default 

host was down, and would try to re-elect one 
node as a new default host 
 

There are some problems while 
performing encryption/authentication key 
exchange.  For instance, how to reduce packet 
lost while key renewing and prevent lost of 
synchronization between two end devices.  
Some solutions have been propounded to solve 
these problems in IETF IPsec working group.  
Our goals are trying to ease our proposed IPsec 
gateway as a simple IPsec device, not cluster 
ones. 
 

We propose a simple scheme to reduce our 
proposed IPsec gateway as a simple IPsec device.  
For IKE packets which directly addressed to the 
IPsec gateway itself, all the cluster nodes would 
accept them, but only the default host would try 
to response them.  As a result, the entire cluster 
nodes would have the new 
encryption/authentication key at the same time.  
Thus, problems of key renewing are reduced as a 
simple IPsec device would face up. 
 
2.3 Overhead Estimate and Service Rate Prediction 
 

Since the entire cluster nodes would 
receive all the packets through the IPsec gateway, 
but only one of them would really process them.  
It obviously causes some overhead for nodes that 
are not responsible for processing them. 
Take IPsec outbound traffic as example, Figure 
2-4 shows some steps for a machine to process 
IPsec tunneling packets. 
 

Assume it would take Q(s) units of time 
for one machine from receiving a s-byte packet, 
passing it to Physical layer, MAC layer, IP layer, 
updating IPsec SA database, and finally our 
filter driver, which decide drop this packet or not 
(as darker region in Figure 2-4).  Assume the 
following steps — encapsulate and encrypt the 
current packet, and pass it back to physical 
medium – would take another R(s) unit of time.  
As a result, processing one s-byte packet would 
take R(s)+Q(s) unit of time. 
 

If each cluster node can process P units 
per second, the maximum number of s-byte 
packets one node can process within one second, 
C1,s, is P/( R(s)+Q(s) ).  Therefore, while 
feeding s-byte packets, the maximum number for 
units one node can process within one second, 

C1,s, is 
)()( sQsR

P
+

 and the maximum 

service rate measured in bytes/second is 
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Assume we have n cluster nodes(s) and 

use round-robin filtering algorithm.  While 
receiving n s-byte packets, each node would 
receiving all of them but processing only one of 
them.  We can just simplify it to that it would 
take R(s)+nQ(s) unit of time to process one 
packet.  As a result, while feeding s-byte 
packets, the maximum number of units a cluster 
node can process within one second, Cn,s, is  

 

)()( snQsR
P
+

.   

 
Then we have the maximum service rate of n 
cluster nodes(s) measured in bytes/second is 
 

)()(, snQsR
sPn

sn +
××=µ  

 
2.4 Modeling by Queuing theory 

Since our architecture is several parallel 
servers sharing a single limited queue.  And 
while incoming packets have Poisson (i.e. 
``random'') arrivals and exponential service 
times, we can model our service queue as a 
(M/M/c):(GD/K/∞) queuing model [12] [13] [14] 
[15]. 
 

Thus, whatever how many cluster nodes 
we have, the arrival rate λn equals λ.  Because 
each node would get more overhead while more 
packets coming, we have service rate µµ cn = , 
where c < n.  And we have the traffic intensity 
ρ = [(λ)/(µ)];  the proportion of time the system 

is idle 0!
P
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Finally, we have the effective arrival rate into 
the system ( )neff P−= 1λλ . 

3. Dispatch Schemes 
This section discussed the dispatch 

schemes we used in the filter driver; we simply 
divide them to two kinds – session-based vs. 
packet-based and round-robin vs. 
shortest-queue-first.  Session-based and 
packet-based dispatching schemes are used to 
locate which cluster node should process the 
coming packets according to which session it 
belongs or just ignoring session information.  
While new session or new packet comes, 
round-robin and shortest-queue-first dispatch 
schemes are used to find which cluster node 
should responsible for it. 
 
3.1 Session-based versus Packet-based 

The granularity used for load balancing 
will dominate the performance of the clustered 
system.  Current load balancing systems can be 
divided into two classes: session-based and 
packet-based.  In session-based load balancing, 
it will result in unbalanced load sharing if the 
loads of sessions are lopsided.  In this case, the 
cluster nodes serving heavy-load sessions may 
be overwhelmed while other nodes remain idle.  
Moreover, throughput of any single session is 
limited by the computation power of a cluster 
node. 
 

The granularity used for load balancing 
will dominate the performance of the clustered 
system.  Current load balancing systems can be 
divided into two classes: session-based and 
packet-based.  In session-based load balancing, 
it will result in unbalanced load sharing if the 
loads of sessions are lopsided.  In this case, the 
cluster nodes serving heavy-load sessions may 
be overwhelmed while other nodes remain idle.  
Moreover, throughput of any single session is 
limited by the computation power of a cluster 
node. 
 

In contrast, packet-based load balancing 
systems can distribute packets to any one of the 
cluster nodes that is capable of processing it.  
Thus, packet-based load balancing share load 
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more evenly than session-based systems.  In the 
worse case, the clustered system will still be 
fully utilized even there is only a single network 
session.  According to RFC2451 [16], each 
IPsec packet can be encrypted/decrypted 
independently.  This flexibility enables the 
cluster nodes to processing packets 
autonomously without considering the chaining 
relationships. 
 

Another serious problem in session-based 
systems is that no one knows which session an 
encrypted packet belongs before decrypt it in 
IPsec inbound gateway.  In receiver side, find a 
node using other schemes rather than 
session-based scheme is needed.  This denotes 
that session-based schemes can only be adopted 
in IPsec outbound traffic.  Table 3-1 lists some 
comparisons between these two schemes.  
Since packet-based schemes have more pros, 
thus, we prefer to use packet-based scheme to 
dispatch traffic.  But session-based scheme is 
also tested in our experiments. 
 

 Session-based 
schemes 

Packet-based 
schemes 

State 
keeping Yes No 

Extra 
storage 
overhead 

Yes No 

Extra time 
overhead Yes No 

Concurrent 
sessions limited Unlimited 

Bursty 
session 
utilization 
limit 

One node All nodes 

Table 3-1. Comparison between session-based and 
packet-based schemes 

 
3.2 Round-Robin versus Shortest-Queue-First 

In both packet-based and session-based 
schemes, while new packet or new session 
comes, what fashion to deploy is another point.  
Round-Robin (RR) scheme is the simplest one, 
but when different size packets come, another 
sort of unbalance would come into sight.  
Shortest-Queue-First (SQF) scheme is the best 
schemes in some way.  Since every cluster 
node in our architecture will receive all coming 
packets, so how to get the load or queue length 
of every other node is not the issue.  But SQF 
would cause more overhead to calculate which 
the shortest queue is then RR fashion.  We’ve 
tested both RR and SQF fashions in our 
experiments. 
 
4. Performance Measurement 

Since the performance of many single 
machines and products can catch up the wire 
speed of Fast Ethernet.  And migrating to 
high-speed environment is the trend in few years.  
It’s meaningless and out of fashion to test cluster 
technologies in 100 Mbps environment this time.  
Consequently, we choose Gigabit Ethernet as 
our testing environment [17] [18] [19].  
Although Princeton University has proved that 
compression improves performance when 
encryption is employed in high-speed 
environment [20], but our main purpose is to test 
the scalability and try to prove it.  So, IPComp 
[21] is not used in our testing. 
 

The test bed is six machines with 1 AMD 
XP1800+ CPU, 256 MB RAM, 2 Intel 
PRO/1000 XT Gigabit NIC running on 66 
MHz/64-bit PCI bus, and 1 SafeNet SafeXcel 
140-PCI encryption acceleration card.  One 
3Com SuperStack 3 4900 12-port Gigabit 
Switch with one 4-port 1000BASE-TX module 
is configured as 2 or 4 VLANs for testing.  The 
operating system of these machines is Red Hat 
Linux 7.2 with 2.4.18 kernel.  FreeS/WAN 1.97 
is used as implementation of IPsec on this 
clustered IPsec gateway.  And Smartbits-200 of 
Spirent Communications with 2 GX-1420B 
Gigabit modules acts as the Traffic Analyzer. 
 
4.1 Fixed-Size Traffic 
 

The larger packet sizes, the less overhead 
caused by IP stack.  Thus, the overhead would 
be different by feeding packets with different 
size.  So, we first generate a set of fixed-size 
streams from Smartbits-200 to test our IPsec 
gateway in this ideal testing environment.  
Because we only have six machines for testing, 
three of them must act as sender side gateway 
and the other three machines must act as receiver 
side gateway. 
After testing from one node to three nodes, we 
found that the performance of this testing was 
bounded by the sender side.  It denotes that the 
performance was bounded by encryption 
operations; the speed of decryption can always 
catch up encryption.  So we change our settings 
to that our entire six machines act as sender side 
IPsec gateway.  We test its performance after 
they encrypt the packets then deliver they to the 
router. 

Table 4-1 shows performance results using 
simple round-robin dispatching scheme.  We 
gained these results by setting Smartbits-200 to 
send timed-burst packets in specified 
Databits/sec for 30 seconds.  If no packet lost, 
we assume our IPsec gateway can handle such 
traffic.  The performance was measured by the 
Databits/sec, which we configured in 



SmartWindows, after subtracting 14-byte 
Ethernet header. 

 
4.2 Real Traffic 

In the following experiments, throughput 
of packet-based scheme and session-based 
scheme are evaluated respectively using real 
traffic which collected from campus backbone 
router.  The characteristic of the traffic figured 
as follows:  Total 1,328,780,468 bytes in 
1,118,665 packets, 18,229 sessions.  Average 
1187.8 bytes per packet (standard division = 
524.623).  Average 72615.0 bytes per session 
(standard division = 460311.287).  We only 
collect the IP header of these packets and then 
regenerate them using SmartBits-200 as the data 
rate we want.  In both session-based and 
packet-based schemes, sessions and packets are 
assigned to cluster nodes in RR fashion and SQF 
fashion.  The throughput of each dispatching 
scheme is presented in Table 4-2 
 

 
 
5. Conclusion 

In this project, we proposed a flat clustered 
scheme for implementing a high speed IPsec 
gateway and conclude a formula to estimate 
overhead in this architecture.  According to our 
methods, the performance of IPsec gateway can 

be easily scaled up by increasing number of 
cluster nodes.  In our analysis, while the 
overhead is significant small compared with a 
machines computation power, it can scale up 
almost linearly. 
 

 
 

Two companion traffic-dispatch schemes 
are also presented in this report.  As experiment 
results show, packet-based dispatching scheme 
provides better load balancing capability.  On 
the other hand, session-based dispatching 
schemes are not effective to implement an IPsec 
gateway using cluster architecture.  Moreover, 
total experiment equipments cost less than 5% of 
Cisco VPN 5008, which is a Cisco VPN gateway 
product that can achieve to 760 Mbps.  Table 
5-1shows some comparison with commercial 
products. 
 

At this moment, our flat architecture 
would be bounded by the Gigabit Ethernet wire 
speed (AH mode).  Since the processing time of 
2*s-size packet would not probably take two 
times than S-size packet, we would try to reduce 
the granularity to “load-based”.  We believe 
that trying to figure out Q(s) and R(s) for 
different-size packets would be helpful for more 
balanced dispatch. 
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Number of 
cluster 
nodes 

Packet-based 
Round-Robin 

(Mbps) 

Packet-based 
SQF 

(Mbps) 

Session-based 
Round-Robin 

(Mbps) 

Session-based
SQF 

(Mbps) 

1 83.4 83.4 83.4 83.4 

2 161.7 161.7 154.5 161.6 

3 235.3 235.3 185.9 230.3 

4 304.7 304.6 220.0 284.0 

5 370.1 370.1 253.4 323.1 

6 431.8 432.0 311.0 362.2 

Table 4-2. Throughput using real traffic

ESP/3DES-MD5 ESP/DES-MD5 AH/MD5Number of 
cluster 
nodes 512 

bytes/frame 
(Mbps) 

1024 
bytes/frame

(Mbps) 

1446 
bytes/frame 

(Mbps) 

1446 bytes/frame
(Mbps) 

1446 
bytes/frame

(Mbps)

1 47.2 72.4 87.2 265.2 366.6

2 93.3 141.3 172.1 503.5 686.8

3 138.1 207.1 253.7 716.3 969.9
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6 265.5 387.9 480.1 974.4 974.4

Table 4-1. Throughput for fixed-size traffic 
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Our Approach Yes 
6 nodes for 480Mbps 

Would be bounded by wire 
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