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Abstract

A concept related to total variation termed H1 condition was recently proposed to characterize the chaotic behavior of an interval
map f by Chen, Huang and Huang [G. Chen, T. Huang, Y. Huang, Chaotic behavior of interval maps and total variations of iterates,
Internat. J. Bifur. Chaos 14 (2004) 2161–2186]. In this paper, we establish connections between H1 condition, sensitivity and
topological entropy for interval maps. First, we introduce a notion of restrictiveness of a piecewise-monotone continuous interval
map. We then prove that H1 condition of a piecewise-monotone continuous map implies the non-restrictiveness of the map. In
addition, we also show that either H1 condition or sensitivity then gives the positivity of the topological entropy of f .
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The study of chaotic phenomena in dynamical systems has been a focus of attention both in mathematics and
applied sciences. Even the chaotic behavior of one-dimensional interval maps turns out to be highly non-trivial and
also extremely interesting, both from a mathematical and an applied point of view (see e.g., [2, Chapter 0]). However,
like the term “chaos,” its mathematical definition is not uniquely defined. Indeed there are many ways of quantitative
measurement of the complex or chaotic nature of the dynamics. Just to name a few, they are sensitive dependence
on initial data, topological entropy, Lyapunov exponents, homoclinic orbits, various concepts of fractal dimensional,
absolutely continuous invariant measures. We will give the explicit definitions for sensitivity and topological entropy
since they are relevant to our discussion here.
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Definition 1.1. (See e.g., [2, Definition 1.8.1].) Let X be a metric space with metric d(·,·), and f : X → X be
continuous. Let us say that f has sensitive dependence on initial data if there exists δ > 0 such that for every x0 ∈ X

and for every open set U containing x0, there exist y ∈ U and n ∈ N
+ such that d(f n(y), f n(x0)) > δ.

For practical purpose, we will use a theorem of Misiurewicz and Szlenk [5] as the definition of the topological
entropy of an interval map. For precise definition, see [2,4,6].

Definition 1.2. Let I be a closed interval and f : I → I be a piecewise-monotone continuous map. This means that
f is continuous and that f has a finite number of turning points, i.e., points in the interior of [0,1] where f has a
local extremum. Such a map is called l-modal if f has precisely l turning points and if f (∂I) ⊂ ∂I .

Definition 1.3. Let f : I → I be a continuous piecewise-monotone map. The lap number of f , denoted by l(f ), is the
number of maximal intervals on which f is monotone. Then the topological entropy of f is defined to be

htop(f ) = lim
n→∞

log(l(f n))

n
.

One other well-known result concerning the topological entropy of f is the following.

Theorem 1.1. (See e.g., [4, Corollary 15.3.6].) If f : I → I is continuous, then htop(f ) = 0 if and only if the period
of every periodic point of f is a power of two.

Recently, Chen, Huang and Huang [1] introduced yet another new concept to characterize the chaotic behavior of
interval maps. Specifically, they introduce the so-called H1 condition as follows.

H1: Let f : I → I be continuous. For any closed subinterval J ⊆ I , limn→∞ VJ (f n) = ∞. Here VJ (g) denotes the
total variation of a function g on an interval J .

We remark that though H1 condition is new, the concept of total variation treated as a characteristic of chaotic maps
is certainly not new. For example, the following result can be found in [4].

Theorem 1.2. (See e.g., [4, Corollary 15.2.14].) If f : I → I is a piecewise-monotone continuous map, then
limn→∞ 1

n
logVI (f

n) = htop(f ), where htop is the topological entropy.

Consequently, for such map f if the total variations of f n on I grow exponential with repeat to n, then the
topological entropy of f is positive. In such case, we shall say that the growth rate for the total variations of f on I is
exponential. Among many results obtained in [1], one of them is as follows.

Theorem 1.3.

(i) Let f : I → I be a continuous map. Then the sensitivity of f on initial data implies the H1 condition.
(ii) If, in addition, f is piecewise-monotone, then the converse of (i) holds true.

In this paper, we wish to establish the connection between H1 condition and other well-known concepts that
characterize the chaotic behavior of f . We begin with defining a horseshoe, or a saddle of a map f .

Definition 1.4. (See e.g., [4, Definition 15.1.10].) If I ⊂ R is a closed interval, f : I → R is continuous and a <

c < b ∈ I , then we say that [a, b] is a horseshoe or a saddle for f if [a, b] ⊂ f ([a, c]) ∩ f ([c, b]).

If a map has a horseshoe or a saddle, then f has positive topological entropy. In fact, we have the following.

Theorem 1.4. (See e.g., [4, Corollary 15.1.11].) If f : I → R has a horseshoe, then htop(f ) � log 2.
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Definition 1.5. A continuous map f from I to I is said to be non-restrictive if there exist k ∈ N, and two numbers p

and q , 0 � p < q � 1, such that the interval [p,q] is a horseshoe for f k . Otherwise, the map f is said to be restrictive.

We are now in a position to state our main result.

Main Theorem. Let f be a piecewise-monotone continuous map satisfying H1 condition. Then f is non-restrictive.

We conclude this introductory section with the following remarks.

(1) We prove the Main Theorem by contradiction. That is, we assume that f is piecewise-monotone continuous,
restrictive satisfying H1 condition. We then need to construct finitely renormalizable intervals {Ii}ni=1 from an
m-modal map that has the following properties:

(i) Dynamics (under f ) of the intervals {Ii}ni=1 behaves like an adding machine (see Theorem 2.1).
(ii) Along the path of a sequence w = (w1,w2, . . . ,wn, . . .) ∈ Σ2, space of all one sided sequences with symbols

in {1,2}, the length of Iwn is shrinking to zero as n → ∞. Here wn = (w1,w2, . . . ,wn) (see Theorem 2.2).

(2) We have made use of Theorem 1.2 to prove our Main Theorem. In [1], a counterexample is given so as to show that
the converse of Theorem 1.3(i) is not true. This is to say the assumption that f is continuous piecewise-monotone
is needed in proving our Main Theorem.

(3) Combining our Main Theorem, Definition 1.5 and Theorems 1.1–1.4, one readily conclude that the following
results.

Theorem 1.5. Let f be a piecewise-monotone continuous map satisfying H1 condition or sensitivity of f on initial
data. Then the following holds.

(i) htop(f ) > 0.
(ii) f has a periodic point whose period is not a power of 2.

(iii) The growth rate for the total variation of f n on I is exponential.

2. Main results

We need the following hyperbolicity result, which plays an important role in our subsequent analysis.

Lemma 2.1. (See [1, Proposition 4.1(v)].) Let f : I → I be piecewise-monotone continuous and satisfy H1 condition.
Then so does f n for any n ∈ N.

Lemma 2.2. Let f : I → I be piecewise-monotone continuous and satisfy H1 condition. Suppose x0 is a fixed point
of f in I . Then there exists a neighborhood (x0 −ε, x0 +ε) of x0 such that f (x) > x or f (x) < x0 for x ∈ (x0, x0 +ε).
Moreover, for x ∈ (x0 − ε, x0), f (x) > x0 or f (x) < x. This property also holds if x0 is a left or right endpoint of I .

Proof. Since the proof of the lemma lies in the same spirit as that of Proposition 4.1(iv) in [1], we skip the proof. �
Remark 2.1.

(1) Let P = (p,f (p)) be a fixed point, and let Br(P ) be a disk with center at P and radius r . Set

Ip,r = {
(x, y) ∈ R

2: p > y > x
} ∩ Br(P ),

IIp,r = {
(x, y) ∈ R

2: y < x < p
} ∩ Br(P ),

IIIp,r = {
(x, y) ∈ R

2: x > y > p
} ∩ Br(P ),

IVp,r = {
(x, y) ∈ R

2: y > x > p
} ∩ Br(P ),
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(a) (b)

Fig. 1. (a) f is increasing near p. (b) p is also a turning point.

Vp,r = {
(x, y) ∈ R

2: x < p, y > p
} ∩ Br(P ),

VIp,r = {
(x, y) ∈ R

2: x > p, y < p
} ∩ Br(P ).

The assertions of the lemma are then equivalent to saying that the graph of f must only stay in the regions IIp,r ,
IVp,r , Vp,r and VIp,r for some r > 0, and that it can never stay in regions Ip,r and IIIp,r .

(2) For a better visualization of the lemma, see Fig. 1.

Definition 2.1. Let p be a periodic point of period n. If f n is decreasing on a neighborhood of p, then p is said to be
of A type.

Proposition 2.1. (See [1, Theorem 5.1].) Let f : I → I be a piecewise-monotone continuous map satisfying H1
condition. Then f has an interior period two point which is of A type. Consequently, f has interior period 2n point
which is of A type for any n ∈ N.

Proof. We first prove that f has an interior fixed point which is of A type. Since the graph of f near 0 cannot stay
in region III0,r , f (0+) > 0. Thus, the first interior fixed point must be either of type A or a local minimum point. If
all the interior fixed points are local minimum points, then 1 must be a fixed point and the graph of f near 1 stays in
region I1,r for some r > 0, a contradiction. Hence, f must have an interior fixed point which is of A type. Let p be
the first such fixed point. Consider the graph of f 2 near p, we see that it must stay in region IIp,r for some r > 0.
Hence, all the fixed points of f 2 on (0,p) must be of type A or local maximum points. If all such points are local
maximum points, then f 2(0) = 0, and the graph of f 2 near 0 stays in region III0,r for some r > 0, a contradiction.
Hence, f 2 must have a fixed point of A type on (0,p). The proof of the proposition is thus complete. �
Lemma 2.3. Let f : I → I be a piecewise-monotone continuous map satisfying H1 condition. Let x0 and x1, x0 < x1,
be two consecutive fixed points of f 2n

for some n. Then there exists one turning point c ∈ (x0, x1). Moreover, let cmin
and cmax be the smallest and largest turning points in (x0, x1), respectively. Then

f 2n

(cmax) > x1 if f 2n
(x) > x for x ∈ (x0, x1),

and

f 2n

(cmin) < x0 if f 2n
(x) < x for x ∈ (x0, x1).

Proof. Suppose to the contrary that there is no turning point in (x0, x1). Then f 2n
must be monotonically increasing

on (x0, x1), a contradiction to Lemma 2.2. By the assumption that x0 and x1 are two consecutive fixed points of f 2n
,

we then have two possibilities: (i) f 2n
(x) > x for all x ∈ (x0, x1), (ii) f 2n

(x) < x for all x ∈ (x0, x1). For case (i),
since the graph of f 2n

near x1 cannot stay in region Ix1,r for some r > 0, we thus conclude that cmax exists and
f 2n

(cmax) > x1. The case (ii) can be treated similarly. �
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Lemma 2.4. Let f : I → I be a piecewise-monotone continuous map that satisfies H1 condition. Then the following
holds true.

(i) The map f 2 must have a fixed point of A type.
(ii) There exists a subinterval J ⊂ I such that f 2 : J → J is an l-modal map or f 2 has a horseshoe on J .

Proof. Let g = f 2. It follows from Proposition 2.1 that there are at least two interior fixed points of g. We next show
that g must be decreasing on a neighborhood Np of a certain fixed point p of g. To see this, let {p1,p2, . . . , pl} be
the set of all interior fixed points of g. Here, we suppose that p1 < p2 < · · · < pl . Note that the graph of g on (0,p1)

cannot stay in regions III0,r and Ip1,r for some r > 0. Hence, g is decreasing on (p1 − δ1,p1) for some δ1 > 0.
Suppose p1 is not a turning point. Then we are done. If p1 is a turning point, then g must also be decreasing on
(p2 − δ2,p2) for some δ2 > 0. Now, suppose that all pi , 1 � i � l, are turning points. Then the graph of g on (pl,1)

must stay above the line y = x and g(1) = 1. This means that the graph of g on (pl,1) is in region I1,r for some r > 0,
which is not possible. Thus, g must be decreasing on some neighborhood of a certain interior fixed point. Without
loss of generality, we shall assume p1 be such fixed point. Then the graph of g on (p1,p2) stays below the line y = x.
It then follows from Lemma 2.3 that there is one point q1 ∈ (p1,p2) such that g(q1) = g(p1) = p1. Let J = [p1, q1].
Then g = f 2 : J → J is as claimed. We thus complete the proof of the lemma. �
Lemma 2.5. Let f : I → I be a piecewise-monotone continuous map satisfying H1 condition. Suppose p is an interior
period 2n point which is of A type. Set pk = f k(p), 1 � k � 2n, p0 = p. Then pk is also of type A for any 1 � k � 2n.

Proof. We first prove that pk cannot be a turning point of f 2n
. If so, then pl with l � k must also be a turning point

of f 2n
, which contradicts with the fact that p0 = p = p2n . It then suffices to show that p1 is of A type for f 2n

. We
first assume that f is decreasing on a neighborhood U of p, say U = [p − ε,p + ε] for some ε > 0. We may also let
f 2n

be also decreasing on U . Thus

f (x) < f (y) whenever x > y, x, y ∈ U, (2.1a)

and

f 2n

(x) < f 2n

(y) whenever x > y, x, y ∈ U. (2.1b)

Note that f i(U) is a neighborhood of pi , since each pi , 1 � i � 2n, is not a turning point. If necessary, we can make ε

so small that f is still decreasing on f 2n
(U). Letting a, b ∈ f (U) with a > b, we have that there exist x and y, x < y,

such that f (x) = a and f (y) = b. Upon using (2.1), we see that

f
(
f 2n

(x)
) = f 2n(

f (x)
) = f 2n

(a) > f 2n(
f (y)

) = f 2n

(b) whenever a < b.

Thus p1 is a fixed point of A type for f 2n
. The case that f is increasing on a neighborhood of p can be similarly

treated. �
Remark 2.2. If f is smooth, then the proof of the lemma can be done by noting that(

f 2n)′
(pk) = (

f 2n)′
(p0).

We next turn our attention to the notion of restrictiveness.

Remark 2.3. If f is restrictive then so is f 2n
.

Let f : I → I be a map satisfying the following:

(i) f is restrictive and satisfies H1 condition, (2.2a)

(ii) f (0) = f (1) = 0. (2.2b)
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Fig. 2.

Let

F(n) = {
0 < p < 1

∣∣ p is a period 2n point of f and is also of A type
}
. (2.3)

For fixed n, let p ∈ F(n). We define q(p), r1(p) and r2(p) as follows (see Fig. 2):

q(p) = max
{
x < p

∣∣ f 2n

(x) = p
}
, (2.4a)

r1(p) = {
x > p

∣∣ f 2n

(x) = p
}
, (2.4b)

and

r2(p) = {
x > p

∣∣ f 2n

(x) = q(p)
}
. (2.4c)

We then set the following notations:

In
1 (p) = [

p,min
{
r1(p), r2(p)

}] := [
p, r(p)

]
, (2.5)

Fp = the set of fixed points of f 2n+1
on In

1 (p) = {p = p1 < p2 < · · · < pm}, (2.6a)

Fix
(
f 2n+1) = the set of fixed points of f 2n+1

on [0,1]. (2.6b)

Remark 2.4. Since f satisfies (2.2), the existence of q(p) and r2(p) is guaranteed. However, r1(p) might not exist.
Moreover, it is clear that f 2n+1

(x) > p for x ∈ (p, r(p)).

In the following lemmas, we shall establish that the graphs of f k on In
1 (p), 1 � k < 2n+1, are pretty much similar.

Lemma 2.6. Let f satisfy (2.2) and p ∈ F(n), where F(n) is given in (2.3). For any 1 � k < 2n+1, f k(p) =
maxf k(Fp) or f k(p) = minf k(Fp).

Proof. Assume that m > 2, where m is the cardinality of F . If m = 2, then we are done. Let p̃i = f k(pi). Suppose the
assertion of the lemma is not true. Then, for some 1 � i � m−1, we have p̃i < p̃1 = p̃ < p̃i+1 or p̃i+1 < p̃1 = p̃ < p̃i .
Hence, there exists x ∈ (pi,pi+1) such that f k(x) = f k(p). Thus,

f 2n+1
(x) = f 2n+1

(p) = p.

Hence, either f 2n
(x) = p or f 2n

(x) = q(p). However, x < pi+1 � r(x) � r1(p), a contradiction. �
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Lemma 2.7. Let f satisfy (2.2) and n ∈ N be fixed. Then the following assertions hold for any 1 � k � 2n+1.

(i) [minf k(Fp),maxf k(Fp)] ∩ Fix(f 2n+1
) = f k(Fp).

(ii) If f k(p) = minf k(Fp) (respectively f k(p) = maxf k(Fp)), then f 2n+1
(x) > f k(p) (respectively f 2n+1

(x) <

f k(p)) for x ∈ (f k(p),maxf k(Fp)) (respectively x ∈ (minf k(Fp), f k(p))).

Proof. Set A = [minf k(Fp),maxf k(Fp)] ∩ Fix(f 2n+1
). Then A must contain f k(Fp). If A 
= f k(Fp), then there

exists a fixed point q of f 2n+1
for which q /∈ f k(Fp) and minf k(Fp) < q < maxf k(Fp). Thus, there exists

x ∈ (p1,pm) such that f k(x) = q . Hence, f 2n+1
(x) = f 2n+1−k(q) /∈ f 2n+1−k(f k(Fp)) = f 2n+1

(Fp) = Fp . Since

f 2n+1−k(q) is also a fixed point of f 2n+1
, we have that f 2n+1

(x) /∈ In
1 (p). Upon using Remark 2.4, we then conclude

that f 2n+1
(x) > r(p). This implies that f 2n+1

has a horseshoe on In
1 (p), a contradiction to our assumption that f

is restrictive. For the second part of the lemma, we only illustrate the case that f k(p) = minf k(Fp). Assume there

is an x ∈ (f k(p),maxf k(Fp)) for which f 2n+1
(x) = f k(p). It then follows that there exists x′ ∈ (p1,pn) such that

f k(x′) = x. And so,

p = f 2n+1−k
(
f k(p)

) = f 2n+1−k
(
f 2n+1

(x)
) = f 2n+2

(x′).

However, this is not possible unless f 2n+1
has a horseshoe on In

1 (p). We have just completed the proof of the
lemma. �
Lemma 2.8. Let f satisfy (2.2) and p ∈ F(n). For any 1 � k < 2n+1, if f k(p) = maxf k(Fp) (respectively f k(p) =
minf k(Fp)), and let minf k(Fp) = f k(fp) =: p̃i (respectively maxf k(Fp) = f k(fp) =: p̃i ) for some i, then p̃i is

either a fixed point of A type for f 2n+1
or f 2n+1

(p̃i) is a local minimum (respectively local maximum).

Proof. Let F1(p) = {x ∈ Fp | f 2n+1
is increasing on a neighborhood of x}, F2(p) = {x ∈ Fp | x is of A type

for f 2n+1 }, and F3(p) = {x ∈ Fp | x is a turning point of f 2n+1}. Since f 2n+1
(p) = f 2n+1

(r(p)) = p, Card(F1(p)) =
Card(F2(p)). Using Lemmas 2.5–2.7, we see that, for all 1 � k � 2n+1,

Card
(
F1

(
f k(p)

)) = Card
(
F2

(
f k(p)

)) = Card
(
F1(p)

)
(2.7a)

and

Card
(
F3(p)

) = Card
(
F3

(
f k(p)

))
. (2.7b)

Since f k(p) is a fixed point of A type for f 2n
,

f k(p) ∈ F1
(
f k(p)

)
. (2.8)

Let f k(p) = maxf k(Fp). Now, suppose p̃i ∈ F1(p). Upon using (2.7) and (2.8), we then conclude that there exist
p̃j = f k(pj ), p̃l = f k(pl), 1 � j, l � m, for which p̃j , p̃l ∈ F2(p) and (p̃j , p̃l) ∩ F1(p) = ∅, see Fig. 3.

However, to connect the graph of f 2n+1
between p̃j and p̃l , it must cross the line y = x. Hence, there must exist

p̃k ∈ F1(p), a contradiction. Suppose p̃i ∈ F3(p) and p̃i is a local maximum point. It then follows from (2.7) and (2.8)
that there exists p̃i′ ∈ F2(p), where p̃i′ ∈ f k(Fp) and p̃i′ − p̃i < p̃j − p̃i for all j 
= i′, see Fig. 4. Here p̃j = f k(pj ).

This is not possible since no other fixed points of f 2n+1
exists in between p̃i and p̃i′ . Hence, either p̃i ∈ F2(f

k(p))

or f 2n+1
(p̃i) is a local maximum point. The other part of the lemma can be similarly obtained. �

Proposition 2.2. Assume f : I → I satisfies (2.2). Let 1 � k < 2n+1.

(i) If f k(p) = maxf k(Fp), and let p̃i = minf k(Fp), then there exists

x ∈ [
max

{
Fix

(
f 2n+1) ∩ [0, p̃i)

}
, p̃i

] := J1 (2.9)

such that f 2n+1
(x) = f k(p).
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Fig. 3.

Fig. 4.

(ii) If f k(p) = minf k(Fp), and let p̃i = maxf k(Fp), then there exists

x ∈ [
p̃i ,min

{
Fix

(
f 2n+1) ∩ (p̃i ,1]}] := J2 (2.10)

such that f 2n+1
(x) = f k(p).

Proof. We only illustrate (i). Let y = max(Fix(f 2n+1
) ∩ [0, p̃i)), we note that y is the fixed point of f 2n+1

that
is immediate to the left of p̃i . The existence of such y is ensured by the assumption (2.2b) and the assertion in
Lemma 2.8. It follows from Lemma 2.7(i) that either

f 2n+1−k(y) < p (2.11a)

or

f 2n+1−k(y) > r(p), (2.11b)

where r(p) is defined in (2.5). Now, f 2n+1−k(p̃i) = pi > p. If (2.11a) holds, then there exists x ∈ [y, p̃i] such
that f 2n+1−k(x) = p. If (2.11b) holds, then there exists x ∈ [y, p̃i] such that f 2n+1−k(x) = r(p). Thus, f 2n+1

(x) =
f k(r(p)), and so,

f 2n+2
(x) = f 2·2n+1

(x) = f k
(
f 2n+1(

r(p)
)) = f k(p). (2.12)
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We have used (2.4) to justify the last equality of (2.12). It follows from Lemma 2.8 that the graph of f 2n+1
on (y, p̃i)

stays above the line y = x. Upon using (2.12), we conclude that f 2n+1
(x) = f k(p). �

We are now in a position to define the following notations. If f k(p) = maxf k(Fp) (respectively f k(p) =
minf k(Fp)), we denote by

rk(p) the largest x ∈ J1 (respectively the smallest x ∈ J2) so that f 2n+1
(x) = f k(p). (2.13)

Here J1 and J2 are given in (2.9) and (2.10), respectively. For fixed n, we let 1 � k � 2n, and set

In
k (p) =

{ [rk(p), f k(p)] if rk(p) < f k(p),

[f k(p), rk(p)] if rk(p) > f k(p).
(2.14)

Remark 2.5. We note that for fixed n, In
k = In

k+2n+1 , for all 1 � k � 2n+1.

Theorem 2.1. Let f : I → I be a map satisfying (2.2). For fixed n, f (In
k ) ⊂ In

k+1 for all 1 � k � 2n+1.

Proof. Assume In
k = [f k(p), rk(p)] and In

k+1 = [f k+1(p), rk+1(p)]. The other three possibilities for the pair In
k and

In
k+1 can be treated similarly. If the assertion of the proposition were false, then there would exist x̃ ∈ (f k(p), rk(p))

such that either f (x̃) = f k+1(p) or f (x̃) = rk+1(p). If f (x̃) = f k+1(p), then f 2n+1
(x̃) = f 2n+1

(f k(p)) = f k(p),
a contradiction. Suppose f (x̃) = rk+1(p). Then f 2n+1+1(x̃) = f k+1(p), and hence

f 2·2n+1
(x̃) = f 2n+1−1(f k+1(p)

) = f 2n+1(
f k(p)

) = f k(p),

a contradiction. We thus complete the proof of the theorem. �
Remark 2.6.

(1) We will introduce the notation

I1 → I2 if f (I1) ⊂ I2. (2.15a)

So far, we have shown that for each n ∈ N, and each fixed point of A type for f 2n
, we may generate a sequence

of 2n+1 intervals In
k , 1 � k � 2n+1, for which

In
1 (p) → In

2 (p) → ·· · → In
k (p) → In

k+1(p) → ·· · → In
2n+1(p) → In

1 (p). (2.15b)

(2) From the construction of In
1 (p), we see that there must exist a fixed point of A type, say q , for f 2n+1 |In

1 (p).

Hence, we may inductively generate a sequence {In+1
k (q)}2n+2

k=1 of intervals. Moreover, each In
k (p), 1 � k � 2n+1,

contains two intervals, In+1
i (q) and In+1

j (q), 1 � i 
= j � 2n+2.

(3) We may renumber those nested intervals in a better way. To do this, we begin with n = 1. Let I1 = I 1
1 (p) and

I2 = I 1
2 (p). Let q be a fixed point of A type for f 2 in I1. Set I11 = I 2

1 (q), I21 = I 2
2 (q), I12 = I 2

3 (q), and I22 =
I 2

4 (q). Clearly, I11 ∪ I12 ⊂ I1 and I21 ∪ I22 ⊂ I2. Moreover,

I11 → I21 → I12 → I22.

Inductively, for n = k, we may generate 2k+1 intervals which satisfy the following:

Iωk → Iα(ωk) (2.16a)

where ωk = (ωk
1,ω

k
2, . . . ,ω

k
k), and ωk

i = 1 or 2, 1 � i � k. Given ωk , let j be the first index such that ωk
j = 1.

Then α(ωk) = ((α(ωk))1, . . . , (α(ωk))k) is defined to be as follows:

(
α
(
ωk

))
i
=

{
3 − ωk

i for 1 � i � j,

ωk otherwise.
(2.16b)
i
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Fig. 5.

Furthermore,

Iωk ⊆ Iωk−1 if ωk
i = ωk−1

i for all 1 � i � k − 1. (2.16c)

We shall denote by

Σn
2 = {

(i1, i2, . . . , in)
∣∣ ik = 1 or 2 for 1 � k � n

}
. (2.16d)

(4) The map α in (2.16b) defined on Σ2, the space of all (one-side) sequences with symbols in {1,2}, is called the
dyadic adding machine (see e.g., [3,5]).

For any ω = (ω1,ω2, . . . ,ωn, . . .) ∈ Σ2, let ωn = (ω1,ω2, . . . ,ωn), we will show that limn→∞ |Iωn | = 0 where
|Iωn | denotes the length of Iωn . To do so, we need to introduce some definitions and notations. Let Iωn = [aωn, bωn],
we first give the following notations, see Fig. 5. Define �ωn,�H

ωn,�
V
ωn and Gωn

as follows:

�ωn = ([aωn, bωn ] × [aωn, bωn]) ∖ ([aωn+1 , bωn+1] × [aωn+1 , bωn+1]),
�H

ωn = [aωn+1 , bωn+1 ] × ([aωn, aωn+1 ] ∪ [bωn+1 , bωn]),
�V

ωn = ([aωn, aωn+1 ] ∪ [bωn+1 , bωn]) × [aωn+1 , bωn+1],
and

Gωn = {[aωn, aωn+1] × [aωn+1 , aωn+2]} ∪ {([bωn+2 , bωn+1 ] ∪ [bωn, bωn+1]) × ([aωn+1 , aωn+2] ∪ [bωn+2 , bωn+1])}.
Proposition 2.3. Let f satisfy (2.2), then the graph of f 2n+1 |[aωn ,bωn ] is contained in �ωn .

Remark 2.7. We note that the graph of f 2n+1 |[aωn ,bωn ] has the following 4 possibilities (see Fig. 6).

(a) aωn and bωn+1 are fixed points of f 2n+1
, and bωn+1 is of A type.

(b) bωn and aωn+1 are fixed points of f 2n+1
, and aωn+1 is of A type.

(c) aωn and aωn+1 are fixed points of f 2n+1
, and aωn+1 is of A type.

(d) bωn and bωn+1 are fixed points of f 2n+1
, and bωn+1 is of A type.

Definition 2.2. Let p = (xp, yp) and q = (xq, yq) be turning points of f 2n |[aωn ,bωn ] and f 2n+1 |[a
ωn+1 ,b

ωn+1 ], respec-

tively for some n ∈ N. We say that p generates q (see Fig. 7) if either of the following conditions (i) and (ii) holds.
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(i) xp = xq and yq = f 2n+1
(xp).

(ii) f 2n
(xq) = xp and yp = yq .

We will also call p and q the nth generation and the (n + 1)th generation turning points, respectively.

Clearly, for each fixed ω ∈ Σ2, {aωn} is an increasing sequence and {bωn} is a decreasing sequence. Moreover,
aωn < bωm for any n,m ∈ N. Let

lim
n→∞an = α and lim

n→∞bn = β, (2.17)

and so α � β . We wish to show that α = β . Suppose not, i.e., α < β . Then we need the following terminology. Let

p = (xp, yp) be a turning point of f 2n
with xp /∈ (α,β), and q = (xq, yq) be a turning point of f 2n+1

with xq ∈ (α,β). If p generates q, then p is said to be a “generating turning point” (see Fig. 7(c)). (2.18)

Remark 2.8.

(i) If p is a generating turning point, then p generates some q .
(ii) If p is a generating turning point, then p ∈ Gωn ⊂ �V

ωn .
(iii) If p generates q and q generates r , then we say that p,q and r belong to the same “family tree.”

Set

GTωn = the set of generating turning points of the nth generation. (2.19)

We are now in a position to prove the following proposition.

Proposition 2.4. Let f satisfy (2.2) and suppose that α 
= β . If p ∈ GTωn and q ∈ GTωm for some n,m ∈ N, then p

and q belong to the same family tree if and only if n = m.
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(a) (b)

(c)

Fig. 7. (a) p generates q . (b) p generates q . (c) p is a generating turning point.

Proof. Using Remark 2.8(ii), Fig. 5, Definition 2.2(i), (ii), and (2.18) we see immediately that the assertion of the
proposition holds true. �
Theorem 2.2. Let f satisfy (2.2). For any ω = (ω1,ω2, . . . ,ωn, . . .) ∈ Σ2, let ωn = (ω1,ω2, . . . ,ωn), we have that
limn→∞ |Iωn | = 0.

Proof. Since Iωn ⊃ Iωn+1 , if limn→∞ |Iωn | 
= 0, then limn→∞ an = α 
= β = limn→∞ bn. Set I∞ = [α,β]. We denote
by Cn the set of turning points of f 2n

in (α,β). The cardinality of Cn is denoted by αn. If αn � M , for all n, then
VI∞(f 2n

) < ∞ as n → ∞. This contradicts to H1 condition. Suppose there exists a strictly increasing sequence {αnk
}

such that limk→∞ αnk
= ∞. Then there exists a subsequence {nkj

} of {nk} for which the cardinality of GT
ω

nkj goes to

infinity as j → ∞. For each pnkj
∈ GT

ω
nkj , there is qnk1

(j) ∈ GT
ω

nk1 for which pnkj
and qnk1

(j) belong to the same
family tree. It then follows from Proposition 2.4 that qnk1

(j) are distinct for all j . This contradicts to the assumption
that f has a finitely many number of turning points. �

We are now ready to prove our Main Theorem.

Proof of the Main Theorem. Suppose f is restrictive. From Lemma 2.1, Remark 2.3 and Proposition 2.1, we then
may assume, without loss of generality, that f satisfies (2.2). Using Theorems 2.1 and 2.2, we see that for any ε > 0,
we may choose n sufficiently large that In

k (p) < ε for all 1 � k � 2n and that |f m(In
1 (p))| < ε for all m. Hence,

f does not have sensitive dependence on initial conditions, a contradiction to Theorem 1.3. We thus complete the
proof of the theorem. �



J. Juang, S.-F. Shieh / J. Math. Anal. Appl. 341 (2008) 1055–1067 1067
References

[1] G. Chen, T. Huang, Y. Huang, Chaotic behavior of interval maps and total variations of iterates, Internat. J. Bifur. Chaos 14 (2004) 2161–2186.
[2] W. de Melo, S. van Strien, One Dimensional Dynamics, Springer-Verlag, New York, 1991.
[3] R. Devany, An Introduction To Chaotic Dynamical Systems, Addison–Wesley, New York, 1989.
[4] A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge Univ. Press, 1995.
[5] M. Misiurewicz, W. Szlenk, Entropy of piecewise monotone mappings, Studia Math. 67 (1980) 45–63.
[6] C. Robinson, Dynamical Systems, Stability, Symbolic Dynamics, and Chaos, CRC Press, London, 1993.


