WE B (3/3)

NSC91-2213-E-009-074-
91 08 01 92 07 31

9 2 10 29

TR B

s ‘ M 2 % 4 £
. L o 2l
(AN R EEEE S h s S

i3 WEB PR E2 v o2 383548 % %3k 3 (3/3)

)J__ % L}:‘P
L

FTHR

SE TR

B R = RO |

FERFLFURET P FERTER) OFfr: Mg

A KR
[ALRH

M muazd O Fea

- NSC—91—-2213—E—009—074

91 # 08 " 01 p 2 92# 07" 31Pp

i oByde s #hF 2 Y Y

u

g 35T O RER 2N
ARNAY CEEFEL -

I:'é‘,';—’\]‘ #4 ‘FF »ll’E\}/Eﬁﬂas ‘u’ff,'ﬁ‘g:‘:_h.‘ I’F\
Dmﬁ@%gﬁ€ﬁ~§ﬁ4&%a;%v%—w
DWK%A'F/EZT”)‘L?:H P,{;ﬂ"ﬁ; -

fa32 2 3N

AR LRI RAAEREME AR TELY

ﬂ%f%&wﬂ%%ﬁﬂ’@i%?ﬁﬁ%

R

D,ﬁ‘i%’f t!l#féf’%?;jé_v}rg,m ﬁlj 4—12\};}{9&;%

ﬁﬁﬁﬁ:~‘

¢ é;}%_@

BT E o F AP LA E R L (cluster) kiE T < £ hF RIS
HoopaE B AL B BT LTI E 4 Slinformation retrieval) » ¥ L e0F ¢ (1)40F 3]
(search engine) » (2) & + Bl % 4&(Electronics Library) > (3)% + 7 i3(E-Commerce) * (4) &

%"T? (E-News) > ™ % (5)f 7|4~ %’?(Sequence Analysis) % % o fvS g cnbd 5 B o L2
BLATE 0 F R RATHPR D THRE FHR AL SR IR TERYE > 2 4

?“ﬂ%%u&?*ﬂéﬁﬁﬂﬁﬁﬁmo
éﬂ,ﬂmﬁﬂ*%{géfﬁﬁgﬂl@mﬁfﬁ HE R e hw N M
R e ETF S ORI P s e Rl (Fak oo H IR A8 MMPacking %5 - MMPacking

TOUA A AR AL TR B > i R P BT e APl & 4R LT
* bin packing #-~* /| 7 e FORIE enF AL A B R AT -« 4§ & MMPacking #7 A2 e

R o A E LW vk TR fe B % £ asymptotical 1-optimal o § FALIE B ARHS < pE
AR enid S BABIT N B [o
Bk R A Aok F A B 5Y Web

FI* TR AT RREFE 2 AR E
i PR % (clustered web server) o pt 3-8 > 2 0P oo BB F R Bovna f oRATE A R A o
AR jxq,\u._l fTrhenfics » 2 & 301 IFié.h?xéE]T:,cz,‘; [T R SIPE S i
AR é P2 T e A 2 oani 03] 0 143t B throughput £ response time e
KE T

Wﬁﬂa# YWEENT MR G 2

p—a

EIpho

&
LL),L_B

:/2_*

MAET @ E BN Web PURE - 30F 51 F - BE RS - A UL TRk E A8 FRRE

b e

II

Fe R

In recent years, many major search engines on Internet use a large-scale cluster to store a
large database and cope with high query arrival rate. A quantitative method to reduce the
hardware cost is desired. This paper investigates parallel information retrieval on a cluster of
workstations. The research objective is to minimize the hardware cost of the cluster to satisfy a
given throughput requirement. Hardware cost of the cluster depends on the cluster configuration:
the number of workstations and storage capacity per workstation. The primary work to achieve
the research objective is posting file partitioning. The objective of posting file partitioning is to
minimize the storage requirement per workstation subject to a limited difference to ideal mean
query processing time. The partitioning follows the partition-by-document-ID principle such that
a query can be processed in parallel without transferring postings between workstations. Mean
query processing time is estimated according to popularities of keyword terms. The kernel of the
posting file partitioning algorithm is a data allocation algorithm, which maps variable-size items
onto workstations for load and storage balancing. The data allocation algorithm is an integration
of bin packing, MMPacking, and bin splitting procedures. We prove that the data allocation
algorithm satisfies a load balancing constraint with asymptotically 1-optimal storage cost. With
the posting file partitioning algorithm, we show a systematic approach to determine the cluster
configuration. Evaluation with TREC document collection shows the usefulness of the proposed
posting file partitioning algorithm on real-world applications. This research simplifies the effort

to design a large-scale information retrieval system.

Keywords: clustered web server, search engine, posting file, large-scale IRS, data allocation

algorithm

III

Lo INEOAUCHION ..ottt e e 1
2. Background on Information Retrievalcoooiiiiiii i 2
3. Fundamentals of data allocationcooiiiiiiiiiiiii e 3
3.1 Load and storage balanced data allocation modelcooiiiiiiiiiiiiiiiiinins. 3

3.2 Related work on data allocationoiiiiiiii 5
3.2.1 MMPACKING . .voniitii e e e 5

3.2.2 Bin PACKING ..ottt e e 6

4. Load and Storage Balanced Data Allocationocoiviiiiiiiiiiiiniiiniannn, 8
4.1 Bin splitting for load balancingccoiiiiiiiiiii e 9
4.1.1 Design of bin splitting procedureccovtiiriiiiiiiiiiiiieieieieenaens, 10

4.1.2 Analysis of load balancing propertyccoeiviiiiiiiiiiiiiiiiiiieeieeann. 10

4.2 Bin capacity selection for storage balancingcooiiiiiiiiiiiiiiiiiii 13
4.2.1 Case of elementary bin CapaCItyoeuriiriiniitiiti ettt eenn 13

4.2.2 Case of enlarged bin Capacityoouiiiiiriiiiiii i 15

4.3 Summary of proposed algorithm ... 18

5. Parallel Information Retrieval 20
5.1 Theory of parallel qUErY ProCeSSINGiriintintiitt et eeenaeeeennn 21

5.2 Implementation on cluster of Workstationscooiiiiiiiiiiiiiiiiea, 23

6. Posting File Partitioning Algorithm ...t e 24
6.1 Formulating as data allocation problemccooiiiiiiiiiiiiii e, 24
6.2 Generation of partitioned posting filecooiiiiiiiiiiiii 27

7. Application: Quantitative Method for Cluster Designccocoiiiiiiiiiiiiiiiiiiiiin, 27
7.1 Cluster configuration problemoiiiiiiiiiii i i ais 28
7.2 Calculation of cluster configurationoeviiiiiiiiiiiiiiiiiieieieeeennns 30
7.3 Usefulness on real world applicationscooiiiiiiiiiiiiiiiiiiiieieieieanenns 31

T 1) e LT3 T) 33
RETEIENCES ...ttt 34

v

1 Introduction

This paper investigates parallel information retrieval on a cluster of workstations. The
research objective is to minimize the hardware cost of the cluster to satisfy a given
throughput requirement. The cluster consists of a set of identical workstations. The
posting file, data structure for information retrieval, is partitioned onto the workstations.
A query is processed in parallel with the workstations. Hardware cost of the cluster
depends on the cluster configuration: the number of workstations and storage capacity
per workstation. Achieving the research objective lies in posting file partitioning to
efficiently use the processing and storage capabilities of workstations.

Information retrieval on parallel and distributed systems has been widely studied but
none fully considered the requirements of contemporary major search engines. Previous
researchers [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12] investigate data allocation
for high performance information retrieval. In these work, storage efficiency is not
considered and complex simulation is required for performance evaluation. In recent
years, many major search engines use a large-scale cluster to store huge amount of data
and face high query arrival rate. Reducing storage cost is important and quantitative
method to design a cluster is desired. This paper tackles these requirements.

This primary work is load and storage balanced posting file partitioning. The objec-
tive of the partitioning is to minimize storage requirement per workstation subject to a
limited difference to ideal mean query processing time. Mean query processing time is
estimated with popularities of keyword terms. Issues to be dealt with are

(1) load and storage balanced data allocation, and
(2) popularity-based posting file partitioning model.

The first issue is to allocate a set of items, each item is associated with a load and a
data size, onto a set of workstations. The objective of the data allocation is storage
balancing subject to a load balancing constraint. The second issue is to reduce posting
file partitioning to load and storage balanced data allocation. Storage balancing reduces
the storage requirement and load balancing reduces mean query processing time. In
the partitioning model, item loads are defined in terms of popularities of keyword terms.
With the posting file partitioning algorithm, we show a systematic approach to determine
the cluster configuration for the research objective. Contributions of this work are

(1) an asymptotically 1-optimal algorithm for load and storage balanced data alloca-
tion dealing with variable-size items,

(2) a posting file partitioning model such that a query is processed in parallel without
transferring postings between workstations, and

(3) a quantitative method to design a clustered search engine without complex simu-
lations.

Usefulness of the posting file partitioning on real-world application is evaluated with
TREC [13] document collection.

This paper is organized as follows. Section 2 describes basic knowledge of informa-
tion retrieval. Section 3 defines the concerned data allocation problem and describes
related work on data allocation. Section 4 describes the proposed data allocation algo-
rithm. Section 5 describes how a query is processed in parallel. Section 6 describes how
the proposed data allocation algorithm is applied for posting file partitioning. Section
7 describes a quantitative method to design a cluster with the proposed posting file
partitioning algorithm. Finally, a conclusion is given in Section 8.

2 Background on Information Retrieval

The section describes concepts of information retrieval and analyzes the complexity to
address research issues. An information retrieval system receives users queries and re-
sponses with a set of matched documents for each query. A query is a Boolean expression
in which each operand is a keyword term. A document either matches or unmatches a
query in binary fashion. For each query, set operations (N, U, etc.) is performed to com-
pute the answer list, which is the set of all document IDs of matched documents. The
notation ANS, denotes the answer list of query ¢ and the notation L; denotes the set of
all document IDs referring to documents containing term ¢. For the query g=(processor
<AND> text), the answer list is

ANS; = Lprocessor N Liext,

which indicates the set of all documents containing both the term “processor” and the
term “text”.

The answer list of a query is computed using the inverted file [14], [15]. An example
of the inverted file is depicted in Figure 1. An inverted file consists of an index file and
a posting file. The index file is a set of records, each containing a keyword term ¢ and a
pointer to the posting list of term ¢ in the posting file. The posting list of term ¢ is the
sorted list of L;. An entry in the posting list is called a posting. To process a query, the
system first searches the index file and then perform set operations on the posting lists
of queried terms. For sorted list, the set operation result can be obtained by merging
posting lists according to Boolean operators [16].

Time complexity of query processing is as follows. Time to search for the index file
is no more than O(m *logn) [14] where m is the number of queried terms and n is the
number of all indexed terms. Zipf’s law [17] [16] states that 95% of words in documents
fall in a vocabulary with no more than 8000 distinct terms. A query is typed by an user
and hence m is usually small. Complexity on index file side is not critical. Let f;, be
the length of the posting list of the queried term ¢;. The time to retrieve and merge the
posting lists is O(fy, + fi, + ... + f1,,). The length of a posting list increases with the
size of document collection. Adding a document into the collection is to add one posting
to each posting list of the terms appearing in the document. The challenge is to attack
the complexity on the posting file side. We tackle this problem by proposing posting file
partitioning algorithm for parallel query processing.

document collections

inverted file fmmmm e ;
TTTTTTTTTTTTTTTToooTmooommooomooooo doc. 1 |
| index file posting file o ...pTOCESSOT... | |
| | |
: processor 1, 2, 5, 10, 12, 14,... L - bext... :
| [|
: . 1 doc. 2 !
| [|
: | ...processor... | ,
| |
| text 1,3,7, 10,11, 12, 15,...| 1 |
| [|
| L doc. 3 |
| |
I o ...text... |
| L |
_____________________________________ | |
| |
answer list of ”processor <AND> text”: 1, 10, 12,n7-~~~~~~~~----~ ’

Figure 1: Inverted file

3 Fundamentals of Data Allocation

Development of posting file partitioning algorithm starts from this section. This section
defines the concerned data allocation problem and surveys related work. Remaining
sections propose a data allocation algorithm and describe how posting file partitioning
is reduced to the data allocation problem.

3.1 Load and storage balanced data allocation model

The concerned data allocation problem is as follows. The input to the data allocation
algorithm is a set of data items I = {Iy, [1,..., Iy 1} and a set of workstations WS =
{WSy, WSi,....,WSn_1}. Each item I; is associated with a load, denoted Load(I;),
and a size s;. We normalize the size such that 0 < s; < 1.00 for each I; and the size
of the largest item is 1.00. The output is an allocation X that allocates items in [
onto workstations in W.S. Replicating an item to multiple workstations is not allowed.
The objective is to minimize storage requirement per workstation subject to a limited
difference to ideal load balancing. We formally specify an allocation to formulate the
optimization problem.

An allocation without replication is specified as follows. Figure 2 depicts an
example of such an allocation. An allocation is a matrix X in which

e cach entry is either 0 or 1, and
e there exists an unique 1 in each row of X.

Each row corresponds to an item and each column corresponds to a workstation. The
entry at row ¢ and column k, denoted Xj;, is set to 1 to indicate that item I; is allocated

on workstation W.S;. Note that each item is allocated on an unique workstation. Load
of WS, is the total load of all items allocated on W Sj.

N-1
Loadx(WSk) = > Xk * Load(l;) = > Load(I;) (1)

Data size allocated on WSy, is the total size of all items allocated on W .S;.

N-1
DSX(WSk) = Z Xilc * §; = z S; (2)
i=0 [X =1
items:
e WSy WS WS,
Iy 1 0 0
load: Iy I, I I, I, I 0 1 0
I 0 1 0
Iy 0 0 1
sive: | T | | L) | L | L[L fo 1 o0
(a) Items to be allocated (b) Matrix representation of the allocation
LOCde(WSk) DSX(WSk)
I
I, 2 I
1y
I() Il Ig IO -[1 13
WSy, WS WS, WSy, WS, WS,
(c) Load allocated on workstations (d) Data size allocated on workstations

Figure 2: Example of an allocation without item replication

The objective of the allocation is storage balancing subject to a load balancing con-
straint. Storage balancing is to minimize the maximum amount of data allocated on a
single workstation. That is, to minimize

max{DSx(WS)}. (3)

The constraint is that the difference to ideal load balancing is within the load of some
item. That is,

L
Loadx (W Sk) < i + mIaX{Load(Ii)} for any WS, (4)

where M is the number of workstations and L is the total load of all items.

L =>" Load(I)

I;

The objective is to generate an allocation X to minimize Eq.(3) subject to Eq.(4).

3.2 Related work on data allocation

Data allocation has been widely studied but none fully considered the requirements
of our research objective on posting file partitioning. Our survey is as follows. In
early 1970’s, researchers investigated data allocation for minimizing the storage cost
[18]. From 1980’s, needs in high performance database systems has turned the research
focus to improve the data retrieval performance [19], [20], [21], [22], [23], [24], [25],
[26]. Starting in late 1990’s, information explosion brought by the Internet raises new
challenges in designing storage systems—both performance and storage cost have to be
taken into consideration. Serpanos et. al [27] proposed the MMPacking algorithm, which
distributes and replicates identical-size data items onto workstations for both load and
storage balancing. MMPacking [27] is the most closely related work but still not suitable
for posting file partitioning. Requirements to achieve our research objective on posting
file partitioning are

(1) optimizing for both load balancing and reducing storage cost,
(2) capable to deal with variable-size items, and
(3) not allowing item replication.

All related work except for MMPacking fail to satisfy the first requirement. MMPacking
satisfies the first requirement but not satisfy the second and the third requirement.

We propose a data allocation algorithm satisfies all these requirements. The key idea
of the proposed algorithm is problem reduction to MMPacking with bin packing. We
introduce MMPacking [27] and bin packing [28] in detail.

3.2.1 MMPacking

MMPacking [27] deals with the following optimization problem. The input is a set of
n objects B = {By, By, ..., B,—1} with identical data sizes, and a set of M workstations
WS ={WSy,,WSi,..., WSy_1}. Each object B; is associated with a load to access B,
denoted Load(B;). The output is an allocation with replication that allocates objects
in B onto workstations in W.S. The objective is to minimize the maximum number of
objects allocated on a single workstation subject to the ideal load balancing constraint.

An allocation with replication is formulated as follows. An allocation with repli-
cation is an n *x M matrix Y similar to the allocation matrix X defined in Section 3.1.
The differences are that

e cach entry in Y is a real number between 0 and 1, and

e there may be multiple non-zero entries in a row of Y.

The entry at row j and column k, denoted Yjy, represents the ratio of Load(B;) shared
by workstation W Sj. The following equation holds:

M-1
> Yj, =1 for any row j. (5)
k=0

The load allocated on a workstation WS, by allocation Y is as follows.

n—1
Loady (W Sy) =Y Y * Load(B;) (6)

§=0

A row j with multiple non-zero entries means that load of accessing B; is shared by
multiple workstations. The load sharing is realized by replicating the object to multiple
workstations. A copy of object B; has to be stored in WSy if Yj; > 0. The number of
objects allocated on WSy, by the allocation Y is 7= [Vj,].

Figure 3 illustrates how MMPacking works. Objects are sorted in increasing order
of load and then assigned to workstations in round-robin. Once the accumulated load
of a workstation exceeds the balanced load, the load of the object is split to the next
workstation in round-robin. Splitting the load of an object is to replicate the object to
multiple workstations. In this example, the object B; (with load 0.2) is replicated to
W S5 and W .Sy. Replication of the object Bg starts at W Sy, which is the last workstation
to share partial load of B;. For this example, the result matrix Y is shown in Figure 4.

The following properties of MMPacking are used to analyze our proposed algorithm.
Let L be the total load of all objects. Serpanos et.al [27] have proved the following
properties for MMPacking.

Property 1 The MMPacking algorithm generates an allocation Y in which
Loady (WSy) = L/M
for any workstation W Sy.

Property 2 The MMPacking algorithm allocates at least |[n/M | and at most [n/M]+1
objects on an workstation.

Property 3 In the result of MMPacking, each workstation contains at most two repli-
cated bins. If a workstation contains two replicated bins, one of the bins is in the last
workstation to share the load of the bin.

3.2.2 Bin packing

The bin packing problem [28] is as follows. The input is a set of items I = {Iy, I, ..., Iy_1}
and a bin capacity z. Each item I; is associated with a size s; of it. The objective is
to pack the set of items I into minimum number of bins B = {By, By, ..., B,—1} with

Lo

BO Bl B2 B3 B4 B5 B6 B7 B8
load of objects: 0.01, 0.02, 0.05, 0.07, 0.09, 0.12, 0.18, 0.2, 0.26

\\\\\\\\&i
W

0.09

0.01

0.12

0.02

0.18

0.05

\I

0.07

777025

WSO WS1I WS2 WS3

A

(a) Load of each workstation

(b) Data size stored in each workstation

7ﬁize

)

NN

+ =0.26

WSO WS1 WS2 WS3

Figure 3: Example of MMPacking

BO
Bl
B2
B3
B4
BS
B6
B7
B8

WSO

1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.10
0.50

WS1

0.00
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.42

WS2

0.00
0.00
1.00
0.00
0.00
0.00
1.00
0.00
0.08

WS3

0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.90
0.00

Figure 4: Result Matrix of MMPacking

’—‘:l:.:.

1.00 0.8 0.75 0.6 0.35 0.15 0.1 0.05
(a) Items to be packed

size

e L TR 1.00

1.00 0.84-0.15+0.05 0.754+0.1 0.640.35
(b) Packing items with capacity=1.00

Figure 5: Example of bin packing

capacity x. Figure 5 depicts an example of packing items with size not exceeding 1.00
to a set of bins with capacity = = 1.00.

Our proposed algorithm uses the best-fit algorithm [28] to perform bin packing. This
algorithm iteratively places an item to a bin with the smallest room left. Property of
the algorithm for analyzing our proposed algorithm is as follows.

Property 4 During the best-fit bin-packing, a new bin is initialized only when the cur-
rent item to be packed cannot fit into any existing bin.

4 Load and Storage Balanced Data Allocation

This section proposes an approximate algorithm for the data allocation problem defined
in Section 3.1. The proposed algorithm is outlined as follows.

Phase 1: Perform bin packing to pack items in I into bins B = {By, By, ..., B,_1} with
capacity .

Phase 2: Perform MMPacking to obtain allocation Y which allocates load of bins in B
onto workstations W.S. The load of a bin B, is set as follows:

Load(B;) = Y Load(I;).

L;EBJ'

Phase 3: for each B; do /* allocate I; € B; to workstations */

o if MMPacking allocates all load of B; to W.Sy: allocate all I; € B; to WSy
in the final result X

o if MMPacking replicates B;: invoke bin splitting procedure to generate a
partition PB; = {B§k)|ij > 0} where Bj(k) is the subset of B; allocated on
WS, in the final result X

The idea behind the algorithm is as follows. Phase 1 packs variable-size items into
bins with approximately equal size. Phase 2 performs MMPacking to determine the
ideal load allocation and (approximately) balance amount of bins allocated on work-
stations. Phase 3 generates the final result X in which each item is allocated to an
unique workstation. Figure 6 depicts the final result X generated from the MMPacking
result Y shown in Figure 3. For a bin B; not replicated by MMPacking, the whole bin
is allocated to the workstation that MMPacking allocates B;. For a bin B; replicated
by MMPacking, a bin splitting procedure is invoked to spread items in B; to multiple
workstations. Workstation WSy, is allocated a subset of B;, denoted Bj(k), if MMPacking
allocates partial load of B; on WSy, (Y, > 0). This algorithm approximates storage
balancing (when number of bins is large) since

e most of the bins are of approximately equal size, and
e cach workstation contains approximately equal number of bins.

We use the notation Load(B](k)) to denote total load of all items in B](-k).

Load(BJ(-k)): > Load(I)

k
IieB](.)

Load balancing is approximated if the bin splitting procedure in Phase 3 approximates
the load sharing determined by MMPacking:

Load(B{®) x Yji Load(B;) for WSy, : Yy, > 0. (7)
Remaining part of this section formalizes this idea. Issues to realize the idea are

(1) design of bin splitting procedure to approximate the load sharing determined by
MMPacking, and

2) selection of bin capacity r to minimize the worst-case storage requirement of a
g
workstation.

Section 4.1 deals with the first issue and Section 4.2 deals with the second issue. Section

4.3 summarizes the discussion to form a complete algorithm.

4.1 Bin splitting for load balancing

This sub-section designs the bin splitting procedure and proves that the load balancing
constraint (Eq.(4)) is satisfied.

Loadx (W Sk) Data Size

- DSx(WSk)
B
B;(;O) Bél) 8 By
B B BV | [BY

BY 0.18

0.12 B Bs Bs By’
0.09

0.05 0.07 By B, By B
0011 |0.02 WS, WS, WS, WS
WSy, WS WSy WSs
(a) Load allocation (b) Storage allocation

Figure 6: Example of final result generated from MMPacking result

4.1.1 Design of bin splitting procedure

The bin splitting procedure, named SplitBin, is in Figure 7. The objective of bin
splitting is to approximate the load sharing determined by MMPacking (Eq.(7)). The
procedure generates a partitioning PB; of bin B; according to the MMPacking result
Y. The procedure examines each item I; € B; and makes slicing to generate B(k)s in
the order that MMPacking replicates B,. A slicing is made whenever Load(By >
Yjr * Load(B;). An example is shown in Flgure 8, which depicts how the bin B7 (with
load 0.2) is spht to approximate the MMPacking result shown in Figure 3. The procedure

Split Bin first generates BS’) and then generates Béo).

4.1.2 Analysis on load balancing property

We prove that the load balancing constraint (Eq.(4)) is satisfied. The key idea is to
compare the load allocation between the final result X and the MMPacking result Y.
The load of a workstation is rewritten for the comparison (Corollary 1). Let W S be a
workstation sharing partial load of the bin B; in the result of MMPacking. Load of B(k)
is compared to Yy * Load(B;), the load sharlng determined by MMPacking (Corollary
2 and 3). The load balancing property can then be derived (Theorem 1).

By observing Figure 6, the load of a workstation is rewritten as follows.

Corollary 1 The proposed algorithm generates an allocation X in which the load of a
workstation W Sy, is as follows.

Loadx(WS) = Y. Vi Load(B;)+ Y Load(B{) (8)

B;:Yjp=1 B;:0<Y;,<1

Load partitioning property is as follows. Let WSy be a workstation sharing par-
tial load of bin B; in the result of MMPacking. The bin splitting procedure makes a

10

Algorithm SplitBin(B;,Y, PB;)
e Input:

— Bj: the bin to be split
— Y result of MMPacking

e Output: PB; = {B; ") c B, i|Yj > 0}, the partition of B;

— BJ(-k): the subset of B; allocated on W Sj.

e Method:

(1) k' the last workstation in MMPacking to share load of B;
(2) k < the first workstation in MMPacking to share load of B;

(3) repeat the following until & = &’
(3.1) B « ¢ and Load(B{") + 0

(3.2) while Load(B{") < Y}, * Load(B;) and B; # ¢ do

(3.2.1) remove an item I; from B,

(3.2.2) B « B® U {1}

(3.2.3) Load(B](-)) « Load(B%™) + Load(I;)
(3.3) k<« (k+1) mod M

Figure 7: Bin splitting procedure

item load:| 0025 0.006 0.04 0.07 0.015 0.03

Load(BY) = 0.185
Y73 * Load(B7) = 0.18

W Ss

Figure 8: Example of bin splitting

Load(B") = 0.015
Y70 * Load(B7) = 0.02

WS

slicing at the first place that the accumulated load is greater than or equal to the load

11

sharing determined by MMPacking (cf. Step (3.2) in Figure 7). The difference between
Load(B](-k)) and Y, * Load(B;) is thus at most the load of some item (stated by Corollary

2). If WSy is not the last workstation to share load of B, Load(Bj(-k)) exceeds (if not
equal to) Y *x Load(Bj). Total load of all portions is fixed:

> Load(B](-k)) = Load(B;) = Y _ Yjx * Load(B;).
B® W Sk

Hence (stated in Corollary 3), for the last workstation sharing the load of Bj, the
allocated load is less than (if not equal to) the load sharing determined by MMPacking.

Corollary 2 Let WSy be a workstation sharing partial load of bin B; in the result

of MMPacking. The bin splitting procedure generates a Bj(-k) satisfying the following
equation.

Load(B{") < Y, * Load(B;) + max{Load(L;)} (9)

Corollary 3 Let WSy, be the last workstation in MMPacking to share the load of bin
B;. The bin splitting procedure generates a BJ(-k) satisfying the following equation.

Load(B") < Yy, ¥ Load(B;) (10)

Load balancing property of the proposed algorithm is as follows (where L is the total
load of all items and M is the number of workstations).

Theorem 1 (Load balancing property) The proposed algorithm generates an allo-
cation X in which

L
Loadx (W S) < i + mIaX{Load(Ii)} (11)
for any workstation W S.

Proof. The theorem is proved by rewriting Eq.(8) for various cases. In the result of
MMPacking, a workstation may contain 0, 1, or 2 replicated bins (Property 3). We
consider the case that a workstation contains two replicated bins. The remaining cases
are similar and omitted.

We rewrite Eq.(8) for a workstation WSy in which MMPacking allocates two repli-
cated bins B;, and Bj,.

Loadx(WSk) = > Y Load(B;) + Load(B](-f)) + Load(B](f))

Bj:Yjp=1

Property 3 states that one of the replicated bins, say B,,, is in the last workstation to
share its partial load. According to Corollary 2 and 3, we have:

Load(B](-f)) < Y}, * Load(Bj,) + mIax{Load(Ii)}

12

Load(B%¥) < Yj; * Load(B;,)
Load allocated on W Sy satisfy the following equation.

Loadx(WSk) < > Yj,* Load(B;) + InIaX{Load(Ii)}

B;:Y;>0

MMPacking achieves exact load balancing (Property 1).

L
> Y, * Load(B;) = —
B;:Y;p>0 M

Eq.(11) is thus obtained. Q.E.D.

4.2 Bin capacity selection for storage balancing

We derive equations to select the bin capacity and indicate an upper bound on the
allocated data size for any workstation. Two cases are analyzed: (i) setting bin capacity
to the size of the largest item, (ii) setting bin capacity to be larger than the largest item.

4.2.1 Case of elementary bin capacity

We first consider the case of setting bin capacity z = 1, the size of the largest item, for
bin packing. Bin packing generates a set of bins with sizes exceeding 1/2 except for the
smallest bin (Lemma 1). The number of bins generated are bounded (Lemma 2), and
the upper bound on allocated data size is obtained (Theorem 2).

Lemma 1 With bin capacity x = 1, there is at most one bin filled with size less than
1/2 in the output of the bin packing.

Proof. Thislemma is proved by induction on the number of items packed. The induc-
tion hypothesis is the lemma itself. The basis, after packing item I, is trivial. Suppose
the lemma holds after packing I;. The lemma holds again after the packing of I;;, if
no new bin is initialized for I, ;. Consider the case that a new bin is initialized to pack
I; ;1. If size of each bin is at least 1/2 after the packing of I; (see Figure 9(a)), the new
bin is the only possible one with size not exceeding 1/2 after the packing of I;;;. In
case that there is a unique bin B; with size less than 1/2 after the packing of I; (see
Figure 9(b)), according to Property 4, each of the initialized bin has no room for I;,;
and hence size s;;1 > 1/2. The size of the new bin will exceed 1/2 and B; is still the
only one with size not exceeding 1/2 after the packing of I;,;. The lemma holds again
after the packing of I, for all possible cases. Q.E.D.

With Lemma 1, upper bound on the number of bins generated can be derived. Let
S be the total data size of all items,

N
S=>"s, (12)
i=1

where s; is the size of item I;. Number of bins generated is bounded as follows.

13

m-
N
@

netxt item to be Sjze

packed
______________ -1
netxt item to be
N| packed
- —d-4- 12
bins bins
(a) all bins exceeding 1/2 (b) one bin not exceeding 1/2

Figure 9: Packing an item into bins with capacity one

Lemma 2 With bin capacity x = 1, the number of bins n generated by the bin packing
is bounded as follows.
n<2xS+1 (13)

Proof. According to Lemma 1, the total size of all items is at least the total data size
packed in the (n — 1) bins with size exceeding 1/2.

SZ%*M—D

Equation (13) is thus obtained. Q.E.D.
Let M be the number of workstations. We derive the storage requirement of a
workstation as follows.

Theorem 2 (Storage requirement of setting elementary bin capacity) With bin
capacity x = 1, the proposed algorithm generates an allocation X in which

DSx(WSy) < 2% % +3 (14)

for any workstation W Sy.

Proof. The theorem is obtained by calculating number of bins allocated on a work-
station WS;. MMPacking allocates at most [n/M] + 1 bins in a workstation (Property
2) and the data size of a bin is at most 1.00. Hence we have the upper bound on the
data size allocated on W Sj;:

Total number of bins n is bounded from above as stated in Eq.(13). Eq.(14) is thus
obtained. Q.E.D.

14

4.2.2 Case of enlarged bin capacity

We improve storage balancing by enlarging bin capacity. Figure 10 depicts an example
of no items being packed together if bin capacity is set to be 1. (Recall that size is
normalized such that the size of the largest item is 1.00 and size s; < 1 for any item I;.)
In this example, some items are with size 1.00 and some are with size slightly greater
than 1/2. In the worst case, the allocated data size of the workstation containing most
data approaches twice the data size allocated on the workstation containing least data.
However, the worst case can easily be improved by enlarging bin capacity. The key
issue is to select the bin capacity to minimize the (worst-case) storage requirement of a
workstation.

si‘ze

Bl

Figure 10: Worst case of setting elementary bin capacity

Selecting bin capacity encounters a tradeoff. Suppose the bin capacity is set to be
x > 1.00. Let n be the number of bins generated and M be the number of workstations.
Figure 11 depicts maximum difference on allocated data size between workstations.
MMPacking [27] allocates |n/M | to |n/M| + 2 bins on each workstation. Except for
the smallest bin, the size of a bin lies between x—1 and z (Lemma 3). Data size allocated
on a workstation is bounded from above as follows.

n
Iv%%ic{DSX(WSk)} < QMJ + 2) * T
In a workstation, there are at most three bins with size not exceeding z — 1: one bin
resulted from bin packing and two bins resulted from bin splitting. Data size allocated
on a workstation is bounded from below as follows.

n

N (L R

Difference on allocated data size between workstations is as follows.

n

max{DSx(WSy)} — min{ DSx(WSi)} = O (M) +0(2) (15)

Selecting a large x reduces number of bins n generated and hence reduces O(:) in
Eq.(15). However, selecting a large x increases O(z) in Eq.(15). The tradeoft is resolved
analytically.

The analysis is outlined as follows. Lemma 3 states packed bin sizes. Lemma 4
bounds number of generated bins according to packed bin sizes. With the bound on

15

upper bound on maxyg, {DSx (W Sk)}
|

B T lower bound on miny g, {DSx (W Sk)}
DSx (WS 1525 I
E=l._] I
— | |n/M]| bins
<z | |i>z-1.
W Sk, W Sy,

Figure 11: Effects of bin capacity selection on storage balancing

number of generated bins, Lemma 5 relates storage requirement to selected bin capacity
and defines the capacity function (Eq.(18)). The bin capacity z is selected to minimize
the capacity function. The storage requirement for a workstation can also be derived
(Theorem 3).

Lemma 3 With bin capacity x > 1, there is at most one bin filled with size less than
x — 1 in the output of the bin packing.

Proof. This lemma is proved by induction on the number of items packed. The in-
duction hypothesis is the lemma itself. The basis, status after packing item Iy, is trivial.
Suppose the lemma holds after the packing of I;. There are two cases for the status after
packing I;: (i) size of each bin exceeds z — 1 (Figure 12(a)), and (ii) there is a unique bin
B; with size not exceeding z — 1 (Figure 12(b)). For case (i), the new bin (if initialized)
is the only possible one with size less than x — 1 after packing I; ;. For case (ii), no new
bin will be initialized (Property 4) since size s;11 < 1 and at least B, has room for I; ;.
B; is the only possible bin with size not exceeding x — 1 after packing I;;;. The lemma
holds again after the packing of ;. Q.E.D.

Similar to Lemma 2, we derive the upper bound on the number of bins generated.
(S is the total size of all items.)

Lemma 4 With bin capacity x > 1, the number of bins n generated by bin packing is
bounded as follows.

n <

S
1 1
— (16)

Proof. According to Lemma 3, there are at least n — 1 bins with sizes exceeding « — 1,
and the total data size S exceeds the total size of these n — 1 bins,

S>x—1)x(n—1)

16

size size
______________ T F——=—========= - T
T — __—Dnext item to be packed
bins bins
(a) all bins exceeding = — 1 (b) one bin not exceeding z — 1

Figure 12: Packing an item to bins with enlarged bin capacity

Eq. (16) is obtained immediately. Q.E.D.
The storage requirement of a workstation can then be written as a function of bin
capacity x, stated as follows. (M is the number of workstations.)

Lemma 5 With bin capacity x > 1, the proposed algorithm generates an allocation X
in which

S |
DSx(WSy) < - (1 + 1) + 32 (17)

l‘ —
for any workstation W S.

Proof. In the output of the proposed algorithm, each workstation W .Sy contains at
most [n/M] + 1 bins with the sizes of all bins not exceeding z.

DSx(WSk) < ([n/M]+1)xx

Lemma 4 gives an upper bound on n and Eq. (17) is obtained immediately. Q.E.D.

The bin capacity is selected to minimize the capacity function. The capacity func-
tion f(z) indicates the required storage capacity of a workstation if bin capacity is set
to be x.

f(x)z%*(l%—xlj)%—?)x (18)

The curve of the capacity function on the x-y plane is depicted in Figure 13, which reflects
the tradeoff on selecting the bin capacity. Taking differential on f(z) and solving the
equation f’(z) = 0, we obtain the optimal bin capacity zy to minimize f(z):

S
x0:1+,/3 7 (19)

And the required storage capacity for a workstation is obtained.

f(:co):%+2\/§*\/%+3 (20)

17

storage requirement

= - capacity function

f(x0) |- -

x0 —= hin capacity

Figure 13: Capacity function for selecting bin capacity

Theorem 3 (Storage requirement of enlarged bin capacity) By selecting bin ca-

pacity x =1+ 4/ 3fM, the proposed algorithm generates an allocation X in which

S /S
< — —
DSx(WS) < — +2v3 % +3 (21)

for any workstation W Sy.

Proof. This is the conclusion of previous discussion. Q.E.D.

The theorem indicates the optimization quality of the proposed algorithm. The ideal
data size allocated on a workstation is S/M. Eq.(21) indicates the relation between the
optimal solution and the solution found by the proposed algorithm.

4.3 Summary of Proposed Algorithm

We summarize previous discussion to form a complete algorithm and analyze the com-
plexity and asymptotic behavior of the algorithm.

The proposed data allocation algorithm, LSB_Alloc (Load and Storage Balanced
Allocation), is in Figure 14. The algorithm determines the bin capacity according to
Section 4.2. By comparing Eq.(14) and Eq.(21), whether to enlarge the bin capacity or
not can be determined according to the problem parameter S/M, where S is the total
data size and M is the number of workstations. (The two equations Eq.(14) and Eq.(21)
equal at S/M = 12.) Properties of the output are proved in previous sections.

The complexity of the data allocation algorithm is as follows. Let N be the number
of items and M be the number of workstations. The time complexity of best-fit bin
packing is O(N?) [28]. The time complexity for the MMPacking to allocate n (< N)
bins is O(n + M) [27]. Hence the time complexity of the proposed algorithm is O(N? +
M +n). To implement the algorithm, an O(nx* M) space is required to store the result of
MMPacking Y. The final result X can be implemented as a mapping table with O (V)
space. Hence the space complexity of the algorithm is O(n x M + N).

18

Algorithm LSB_Alloc(I, WS, X)
e Input:
— a set of data items I = {ly, I,...,Iy_1}, each item I; is associated with

Load(I;) and data size s;
— a set of M workstations WS = {WS,, WSy, ... WSy_1}

e Output: an allocation X of I onto WS with the following properties:

— Load balancing: Loadx (W Sy) < (L/M) + maxy,{Load(I;)} for any WSy
(where L is the total load of all items)
— Storage balancing;:
x if S/M <12, DSx(WSy) < 2% (S/M) + 3 for any WSy
% if S/M > 12, DSx (W Si) < (S/M) + 2/3 % /(S/M) + 3 for any W S},
(where S is the total data size)

e Method:

(1) /* bin-packing phase */

(1.1) S« X s

(1.2) if S/M <12 thenz < lelsexz <« 1+ /S/(3%x M)

(1.3) perform bin packing to pack I into a set of bins B with capacity z
(2) /* MMPacking phase */

(2.1) Load(B;) < X 1,ep; Load(l;) for each bin B; € B

(2.2) perform MMPacking to obtain allocation ¥ which allocates B on WS
(3) for each B; € B do

— if W S;; such that Y;;, = 1 then setting X: allocating all I; € B; to
W Sy,

— else
(3.1) perform SplitBin(B;,Y, PB,)
(3.2) for each B € PB; do setting X: allocating all I; € B{"” to WSy

Figure 14: Proposed data allocation algorithm

The algorithm is asymptotically 1-optimal on storage balancing. Let J be an instance
(a pair of items I and workstations WS) for the optimization problem. Eq.(3) defines
the cost of a solution for J. The notation OPT(J) denotes the cost of the optimal
solution and F'(J) denotes the cost of the solution found by the proposed algorithm. It
is clear that OPT(J) > S/M. According to Theorem 3, the ratio to optimal is bounded

19

as follows.

F(J) <1+ 2v/3 + 5 (22)

OPT(]) = " \/sjm ' S/M

Figure 15 depicts the curve of Eq.(22). The ratio F'(J)/OPT(J) approaches one, optimal
storage balancing, when S/M exceeds certain threshold. Section 7 shows that almost
optimal storage balancing is achieved for real-world applications.

F(J)/OPT(J)

2.2 T T T T T T T
2 -
18 b
16 b
14 r 7
121 7

1 | | | | | | |
200 400 600 800 1000 1200 1400

Balanced data size (S'M)

Figure 15: Storage balancing property of proposed algorithm

5 Parallel Information Retrieval

We turn back to information retrieval. Previous sections propose the data allocation al-
gorithm. Remaining work is to apply the data allocation algorithm for posting file parti-
tioning. An issue is to specify what an item is. We follow the partition-by-document-ID
principle to partition the posting file. The principle states that an item for data alloca-
tion is the set of all postings referring to the same document ID. This section describes
how a query is processed in parallel following the principle. With the principle, a query is
processed in parallel without transferring postings between workstations. Time complex-
ity of parallel query processing is analyzed. Based on the analysis, Section 6 formulates
posting file partitioning as the data allocation problem and proposes the posting file
partitioning algorithm.

The partition-by-document-ID principle is explained in Figure 16. The principle is
that all postings referring to the same document ID has to be allocated on the same
workstation. Each workstation covers a set of document IDs. In parallel query process-
ing, workstation W Sy, is responsible for picking out answers from document IDs covered
by it. For example, for the query (term 1 <AND> term 2), W S; has to pick out {4, 8}
from {1,4,7,8}. Checking whether a document ID d matches a query or not requires
only postings referring to document ID d. For the above example, checking whether
document 4 contains both term 1 and term 2 requires only the local data in W S;.
Following the principle, a query is processed in parallel without transferring postings
between workstations.

20

Posting file

temO —»|,0! 1! ;' 43! L5l 9
term 1l —» :OI : | :2| : | :4| :5| : | :7| :8| :91<—--—|tem
term2 |0, 1, 12, | 4y o 6, 0 81
teem3 | l0r o g o g b :9|
term4 | 101 1. 1 4 131 0 4 15, v, a7y a8y
L T T T L e e | L
N
term0—>.0:. :I : term0+.1:. :|7:| : term 0 :|5:|9:
term1 > 00 ! v term1 ! 0 4T 8 em |20 15019
term2—>.0:. :|6: term2—4>.1:. :I :|8: term 2 —>|2:| :I :
tem3 50! |3! (6! |term3 4, ! | ! '} | tem3 s '] 19
tem4 01 131 1 1 | temd4 11! ;7: ;8: trm4 > 510
WS0 WS1 WSs2

Figure 16: Partition-by-document-ID principle

Remaining part of this section describes how a query is processed in parallel. Section
5.1 deals with the set-theoretic foundation to derive the time complexity of parallel query
processing. Section 5.2 deals with implementation issues on cluster of workstations.

5.1 Theory of parallel query processing

The partitioned posting file is formalized as follows. To partition a posting file is to map
document IDs to workstations. Let L; be the posting list of term ¢ and Dj, be the set
of document IDs mapped to WSy. The notation L;(WWSy) denotes the set of document
IDs in L; and mapped to W S;.

The local posting list of term ¢ in WSy, is the set of document IDs in L;(WSy) stored
in increasing order. The local posting file in WSy, is the set of local posting lists for all
term t. For the example in Figure 16, local posting files for all workstations are depicted
in Figure 17.

WS, WS, WS,
term6— 0,3 term0— 1,7 termO— 5,9
termi— 0 termi—4,7.8 termi— 2,5,9
term2— 0,6 term2—~ 1,4,8 term2— 2
term3— 0,3,6 term3— term3— 9
term4— 0,3 term4— 1,7,8 term4— 5

Figure 17: Example of local posting files

21

Parallel query processing works as follows. For a given query ¢, the parallel query
processing is to compute the answer list ANS, in parallel. Each workstation WSy is
responsible for computing its own partial answer list ANS, (W Sj):

ANS,(WSy) = ANS, N Dy. (24)

The set ANS,(WS) is the set of all document IDs matching query ¢ and mapped to
W Sk. The union of all partial answer lists of all workstations is hence the complete
answer list.
Ansy = | Ansy(WSy) (25)
WS

The following theorem states the set operation to compute a partial answer list.

Theorem 4 (Computation of partial answer list) The partial answer list, ANS,(W Sy),
can be written as set operations on local posting lists of queried terms in W Sy.

Proof. We prove this theorem by induction on the number of Boolean operators in
the given query ¢. The induction hypothesis is the theorem itself.

The basis, when ¢ contains only one Boolean operator, is as follows. Query g is either
“term ¢ <AND> term j” or “term i <OR> term j”. Consider the case that ¢ is “term
1 <AND> term j”. The partial answer list at W Sy, is

ANSq(WSk) = (Lz N Lj) N Dy = (Lz N Dk) N (Lj N Dk) = LZ(WS]C) N LJ(WS}C)

This rewrites ANS, (W Sy) with set operations on local posting lists in W.Si. The case
that ¢ is “term ¢ <OR> term j” is similar and omitted.

Suppose the theorem holds when the number of Boolean operators in ¢ is less than
n and we prove that the theorem also holds when ¢ contains n Boolean operators. The
query ¢ is either “(¢;) <AND> (¢2)” or “(¢1) <OR> (g2)” where ¢; and ¢, are queries
containing no more than n — 1 Boolean operators. Consider the case that ¢ is “(¢1)
<AND> (g2)”. The partial answer list at WSy, is

ANS,(WSg) = (ANS,, N ANS,,) N Dy, = (ANS,, N Dy) N (ANS,, N Dy,).
The above equation can be written as
ANS,(WSg) = ANS,, (WS,) N ANS,, (W Sy).

The induction hypothesis states that ANS,, (WSi) and ANS,, (WSi) can be writ-
ten as set operations on local posting lists of queried terms in WSy, and hence so is
ANS,(WSk). The case that ¢ is “(¢1) <OR> (¢2)” is similar and omitted. This theo-
rem is proved by induction. Q.E.D.

Theorem 4 states an efficient way to compute a partial answer list. To compute
ANS, (W Sk), WS has only to perform ordinary set operations on its local posting lists of
queried terms. The list ANS,(WSj) can be computed without examining all document
IDs mapped to W S,. An example is as follows. Consider the partitioned posting file in
Figure 16. The given query ¢ is “(term0 <AND> term3) <OR> term4”. Local posting

22

lists of term0, term3, and term4 in WS, are {5,9}, {9}, and {5}, respectively. The
series of set operations to compute the partial answer list at W.S, is as follows.

ANS (W S2) = ({5,9} N {9}) U {5} = {5,9}

Note that no postings referring to document ID 2 is examined.

The time complexity of computing a partial answer list is as follows. Any set opera-
tion algorithm operating on sorted lists can be used. We use the list merging algorithm
[16] to perform set operations. Let ft(ik) be the length of the local posting list of the i-th
queried term t¢; in WS, and m be the number of queried terms. The following corollary
states the time complexity.

Corollary 4 With list merging [16], the time complezity to compute ANS, (W Sy) is
OUR + 15+ + 1),

5.2 Implementation on cluster of workstations

This subsection describes the flow of processing a query on a network of workstations,
starting from receiving a user query to the reply of the answer list. Boolean query
processing is the major concern. With parallel sorting, the proposed scheme can also be
extended for ranking.

The flow to compute the answer list of a query is as follows. A specific workstation,
called the gateway, is responsible for receiving user queries and performing the index
file search. The gateway searches the index file shown in Figure 18(a), and substitutes
a term ID for each term in the query. Records of frequently used terms are often stored
in the random access memory such that the average index search time will not scale
with the size of the document collection. The query is then broadcasted to all back-end
workstations to compute the answer list in parallel. Each workstation stores an index
array of pointers to local posting lists, as shown in Figure 18(b). While receiving a
broadcasted query, a workstation to retrieve local posting lists and computes its own
partial answer list. The partial answer list is buffered locally, and number of answers
found is sent back to the gateway.

The remaining work is to reply answers to the user page by page. A page contains
the number of answers to the query, and a few titles of matched documents. The number
of answers is useful for a user to determine whether to browse further matches. When
the number of answers is large, a user may decide to discard the query results and give a
more specific query. The gateway accumulates number of answers found by each back-
end workstation to obtain total number of answers. The first page is then generated and
delivered to the user. Parallelization of query processing reduces the time to deliver the
first page, in which the total number of answers must be contained. Remaining pages
are generated and delivered upon user demands. To generate a page, the gateway polls
some back-end workstation(s) to get answers just enough to fill a page. Since a user may
not request all of the results to a query, the answers distributed on multiple workstations
need not be collected at once.

Recent progress on parallel sorting provides efficient ways to rank answers on mul-
tiple workstations. Let r be the number of answers to be presented in a page. Each

23

(keyword) (term ID) (term ID) pointer array local posting file

rancn | 0 S e
index 1 1 ——2,4,9,13, ... I
processor| 2 2 ——i—> 1, 3, 7, 10,... i
retrieval | 3 3 ———— 5,9, 12, 21,...
text 4 4 — A T R

L oo _._ |
(a) Index file in the gateway (b) Local posting file in back-end workstation

Figure 18: Partitioned inverted file in cluster of workstations

workstation scores and selects the top r answers within its partial answer list indepen-
dently. The top r answers in the complete answer list is obtained by parallel sort [29]
of all workstations’ top r answers. With architectural support, Patterson’s group shows
that more than 1 Giga integers can be sorted in 2.41 seconds using 64 workstations [30],
[31]. The time to rank answers for a page is small since r is small and will not scale with
the collection size.

6 Posting File Partitioning Algorithm

We are now ready to complete the posting file partitioning algorithm. The input includes
e posting file PF,, for sequential processing,
e popularities of keyword terms p; for each term ¢, and
e a set of workstations WS = {W Sy, WSi,..., WSy 1}

The output is a partitioned posting file of PF,, to be distributed on WS, following the
partition-by-document-ID principle. Mean query processing time of parallel processing
with the partitioned posting file is estimated according to popularities of keyword terms.
The objective is to minimize the storage requirement per workstation subject to the
constraint: the mean query processing time of a workstation is at most the ideal value
plus the effect of an document. We first formulate posting file partitioning as the data
allocation problem defined in Section 3.1. The proposed algorithm LSB_Alloc is then
applied to generate a partitioned posting file.

6.1 Formulating as data allocation problem

Posting file partitioning is formulated as the data allocation problem defined in Section
3.1. Three rules are given to specify (1) what an item is, (2) size of an item, and (3)
the load of an item. The key issue is to define item loads such that the mean query

24

processing time of a workstation can be calculated by accumulating loads of allocated
items. We establish a probability model to define item loads.

The following rule specifies what an item is. This rule is the partition-by-document-
ID principle described in Section 5.

Rule 1 The item I; is the set of all postings referring to doc. ID i.

With the rule, a partitioned posting file is generated as follows. The data allocation
algorithm generates an allocation matrix X. For the allocation X, local posting list of
term ¢ at workstation WSy, denoted L;(W Sy), is as follows.

The local posting file at WSy is the set of local posting lists for all term ¢.
The following rule specifies the size of an item.

Rule 2 Data size s; of item I; is as follows:

number of postings referring to doc. ID i (27)
8; = .
' maxj,. 1D j{number of postings referring to doc. ID j}

Storage requirement of a workstation is calculated as follows. The size s; indicates
the number of postings in item I; and is normalized such that 0 < s; < 1.00. Size of
the largest item, the item containing most postings, is 1.00. The data size allocated on
workstation WSk, denoted DSx (W Sy) defined in Eq.(2), indicates (normalized) amount
of postings allocated on W S. The space, in bytes, occupied by an item I; is [(bytes per
posting)*(number of postings in I;)]. For workstation W Sy, the required storage space
in bytes is [DSx (W Sk)*(space occupied by the largest item)].

Mean query processing time is estimated by the following probability model. Let T'Q);
be a random Boolean variable representing whether term ¢ appears in a query: 7Q; =1
if term ¢ appears in a query and T'Q); = 0 otherwise. The term popularity p; of a term
t is the probability that a query contains the term ¢. That is, p; = Pr{TQ; = 1}. The
expected value of T'Q); is thus

E[TQ] = 1 Pr{TQ, = 1} + 0 Pr{TQ, = 0} = p. (28)

Let ft(k) be the length of the local posting list of term ¢ in workstation W.S,. Time
quantity is normalized such that one unit of time is the average time to process a
posting. Corollary 4 states that the query processing time is proportional to amount
of postings to be processed. With allocation X, the query processing time at WSy,
denoted QPTx (W Sy), is as follows.

QPTx(WSy) = S TQ,* f¥ (29)

term ¢

The mean query processing time of WSy is the expected value of QPTx (W Sy).
MQPTx(WSy) = E[QPTx (W5} (30)

25

Similarly, the sequential query processing time, denoted () PT},,, and the mean sequential

query processing time, denoted MQPT,,,, are as follows.

QPTseq = Z TQt * ft (31)
term ¢
MQPT,.q = E[QPT;,] (32)

(Notation f; stands for the length of the posting list of term ¢.)

Item loads are defined to indicate mean query processing time, as stated in the
following rule and theorems. Let L; be the posting list of term ¢. The rule to define
item loads is as follows.

Rule 3 The load of the item I; is as follows:
Load(I;)= > E[TQ)= > b (33)

term t:icLy term ticLy

The load of an item I; can be calculated by accumulating corresponding term popularities
for all postings in I;. Consider Figure 16 as an example. There are three postings in
the item corresponding to document ID 7: postings corresponds to term 0, term 1, and
term 4. The load is thus Load(I7) = py + p1 + ps. The load of I; is the quantity in mean
query processing time imposed by I;. This is stated in the following theorems.

Theorem 5 (Mean query processing time of parallel processing) Mean query pro-
cessing time of a workstation W Sy, is the total load of all items allocated on W Sk.

MQPTx(WSy) = . Load(I;) = Loadx (W S}) (34)

I;: X;,=1

Proof. Eq.(34) is derived by rewriting Q PTx (W Sy) as accumulating T'Q;s correspond-
ing to postings. Consider Figure 16 for the imagination. QPTx (W Si) can be calculated
by scanning the local posting file row by row. Each time a posting is found, the corre-
sponding T'Q); is accumulated. This rewrites Eq.(29) to be

QPTx(WSy) = 3 > TQ,

term ¢ \ 1;:x;,=1 and L,

(where L, is the posting list of term ¢.) Scanning the local posting file column by column
also yields the same result and the above equation is equivalent to:

QPTx(WS) = 3 (> TQt>.

I;: X;,=1 \term t:icL;

The mean query processing time is thus:

MQPTX(WSk): Z (Z E[TQt])-

I;i: Xi,=1 \term t:icL,

By observing Eq.(33) and the above equation, Eq.(34) is obtained. Q.E.D.

26

Theorem 6 (Mean query processing time of sequential processing) Mean query
processing time of sequential processing is the total load of all items.

MQPT,, = Z Load(I;) = L (35)
I;
Proof. This is similar to the proof of Theorem 5. Q.E.D.

With these three rules, Algorithm LSB_Alloc is applied to generate a partitioned
posting file with the following properties. The three rules specify input to Algorithm
LSB_Alloc. Algorithm LS B_Alloc generates an allocation X and the partitioned posting
file is generated from X according to Eq.(26). The objective of posting file partitioning
is to balance amount of postings allocated on workstations subject to a limited difference
to ideal mean query processing time. Storage requirement is indicated by Theorem 2 and
3. Mean query processing time of parallel processing is stated in the following Corollary,
which is a direct consequence of Theorem 1, 5, and 6.

Corollary 5 Applying Algorithm LSB_Alloc generates a partitioned posting file such

that
MQPTy,,

MQPTx(WSy) € ——

- mIaX{Load(Ii)} (36)
for any workstation W Sy.

Corollary 5 states that the mean query processing time of a workstation is at most the
ideal value, %, plus the effect of a document.

6.2 Generation of partitioned posting file

Figure 19 describes the algorithm to generate the partitioned posting file. The first phase
scans the input posting file to set parameters of items. The proposed data allocation
algorithm is then invoked to obtain allocation matrix X. Finally, the input posting file
is scanned again to generate the partitioned posting file from X.

The complexity of generating a partitioned posting file is as follows. Let N be the
number of documents, M be the number of workstations, n be the number of bins
generated by bin packing, and f be the number of postings in the input posting file.
The time complexity is O(N? + M + n + f), in which O(N? + M + n) is spent in the
algorithm LSB_Alloc and O(f) is spent to scan the input posting file twice. The space
complexity is O(n * M + N + f): O(f) space to store the input and generated posting
file and O(n * M + N) space for algorithm LSB_Alloc.

7 Application: Quantitative Method for Cluster De-
sign

With the proposed posting file partitioning algorithm, we show a quantitative method to
design a parallel information retrieval system systematically. The quantitative method

27

Algorithm PostingFilePartition(PFseq, TP,W S, PPF)
e Input:

— PFyq ={Lo, L, ...,Ly_1}: a posting file for sequential query processing
* Ly posting list of term ¢

— TP ={po,p1,-.-,Pn—1}: term popularities
* py: probability that term ¢ appears in a query

- WS ={WSy,WSi,...WSp_1}: a set of workstations

e Qutput:

— PPF = {LPFy,LPF,...LPFy_1}: the partitioned posting file

* LPFy, = {Lo(WSk),Li(WSk),...,Ln_1(WSg)}: local posting file at W Sy, con-
sists of local posting list L;(W Sy) for each term ¢

e Method:

(1) /* scan PFy.q to setup parameters for each item */

(1.1) for each document ID i do initialize I;: Load(I;) < 0 and postings(I;) < 0
(1.2) MazItemSize < 0
(1.3) for each posting list L; € PFy., do
for each document ID 7 € L; do
(1.3.1) Load(I;) + Load(I;) + py
(1.3.2) postings(I;) < postings(I;) + 1
(1.3.3) if MazltemSize<postings(I;) then MazltemSize«
postings(I;)
(1.4) for each document ID i do s; < %‘%
(2) perform LSB_Alloc(I,W S, X)
(3) /* rescan PFg, to generate the partitioned posting file from X */

(3.1) for each WS, € WS do
for each term ¢t do L;(W Sy) < ¢
(3.2) for each posting list L; € PFy., do
for each document ID 7 € L; do
(3.2.1) let WSy be the workstation that X;;, = 1
(3.2.2) append document ID i to L;(WSy)

Figure 19: Algorithm for generating partitioned posting file

determines number of workstations and storage capacity per workstation of a cluster.
The objective of the quantitative method is to minimize the hardware cost to satisfy a
given throughput requirement. Load balancing reduces the number of workstations to
satisfy a given throughput requirement. Storage balancing reduces storage requirement

28

of a workstation. We show the usefulness of our work on real-world applications with
TREC document collection [13].

7.1 Cluster configuration problem

The concerned problem is to determine the cluster configuration according to statistical
data. The input includes a posting file for sequential query processing and the following
parameters obtained from profiling:

e term popularity p, for each term ¢,
e average time per posting of sequential query processing, and
e throughput requirement \.
The output, cluster configuration, specifies
e number of workstations M in the cluster,
e storage capacity C AP per workstation, and
e data allocation X to generate the partitioned posting file for the M workstations.

Hardware cost of the cluster is [M*(cost per workstation)]. The cost (price) per worksta-
tion depends on the storage capacity CAP. The objective is to minimize the hardware
cost subject to the following constraints:

e throughput capability of the cluster > A, and

e amount of data allocated on a workstation can be fit into the selected storage
capacity CAP.
DSX(WSk) S CAP for any WSk

The following assumption is imposed on the given throughput requirement.

Assumption 1 The given throughput requirement \ satisfies the following equation.

1
A< maxy,{ Load(I;)} (37)

Recall that the load of an item I; is the quantity in mean query processing time imposed
by document ¢. Note that time unit is normalized that one unit of time is average
time per posting. The assumption ensures the existence of a solution to the cluster
configuration problem (see the next subsection).

29

7.2 Calculation of cluster configuration

Cluster configuration is calculated according to load and storage balancing property of
proposed data allocation algorithm. The key issue is to relate throughput requirement
to the load balancing property.

Load balancing property determines the throughput capability of a cluster. Theorem
5 states that load allocated on a workstation is the mean query processing time of the
workstation. Load balancing is to minimize the maximum amount of load allocated on
a single workstation. That is, to minimize

max{ Loadx (W Sy)} = max{ MQPTx (W 5y)}.

To cope with query arrival rate A, the mean query processing time of each workstation
should not exceed the average time interval between two arrived queries. That is,

1
MQPTx(WS) < 3 for any WSy

or equivalently,
1
max{ MQPTx(WS)} < 5.

With fixed number of workstations M, load balancing is to maximize the throughput
capability A\. When throughput requirement is given and M is to be determined, load
balancing is to minimize M to achieve the throughput requirement.

Performance limitation exists for parallel information retrieval. Following the partition-
by-document-ID principle, no parallel information retrieval system can achieve through-
put A > 1/max;{Load(I;)}. The throughput limit is derived as follows. Let I; be
the item with maximum load among all items. Suppose the throughput requirement A
exceeds the inverse of the maximum item load.

1 1

A =
” maxy, {Load(l;)} Load(I;)

Let WS, be the workstation that I; is assigned to. The mean query processing time of
WSk is at least the load of I;, which exceeds 1/A.

MQPTx(WS) = Loadx (WS) > Load(I;) > %
The workstation W Sy is overwhelmed by the query arrival rate A. According to the
throughput limitation, Assumption 1 ensures the existence of a solution to the cluster
configuration problem.

Cluster configuration is calculated as follows. According to Corollary 5, the required
number of workstations M to achieve throughput requirement \ is:

v [MQPT,.,

+ — maxy,{Load(I;)}

(38)

30

Note that Assumption 1 ensures that + — maxy,{Load(l;)} > 0. Let S be the total data
size. Storage requirement C' AP is determined according to Theorem 3.

S | S
> - 4+ — 4
CAP > — 2V/3 * T +3 (39)

Note that quantities in Eq.(39) is normalized with the factor that one unit of space is
the space occupied by the largest item. The next subsection justifies that S/M exceeds
12 in real world applications.

7.3 Usefulness on real world applications

We demonstrate the usefulness of our work on real-world applications with TREC [13]
document collection. The evaluation metric is ratio to ideal,

required number of workstations with proposed posting file partitioning algorithm

number of workstations with ideal load/storage balancing ’

with throughput requirement and storage capacity per workstation been controlled pa-
rameters. The metric indicates the efficiency on using processing and storage capabilities
of workstations. Query log on TREC document collection represents the behavior of
real-world applications and determines input parameters for calculating the evaluation
metric (Eq.(40) and (41)).

Parameters to calculate evaluation metrics are obtained as follows. The test data is a
query log over TREC [13] document collection. Queries are generated randomly following
[32]. Stop words (such as a, the, this, that, etc.) are eliminated from the documents. A
query is formed by randomly selecting consecutive words from documents and inserting
Boolean operators (AND,OR) into the consecutive words. A query contains 2 to 10
terms. A sequential information retrieval system is implemented on a PC with Linux
operating system to obtain query processing time. A posting consumes 12 bytes: 4
bytes integer for document ID and 8 bytes floating point of weight for ranking. Table 1
shows the obtained parameters. The average time per posting includes disk access time.
Note that these parameters are independent of the database scale. The experiment is
designed to indicate the behavior of our work when applying to a database far larger
than TREC [13].

average time per posting 0.606 us
(normalized) maxy,{ Load(1;)} 0.37
largest item size 24984 bytes (2082 postings)

Table 1: Parameters from TREC for calculating evaluation metrics

The evaluation metric for the efficiency on using throughput capabilities is as follows.
Let M,—_req be the number of workstations for the proposed partitioning algorithm to
satisfy the throughput requirement A. The parameter My, ,¢, is determined by Eq.(38).
Let My,_igeq; be the number of workstations to satisfy throughput requirement A with
ideal load balancing.

Mip—ideat = A * MQPTseq

31

The evaluation metric is the ratio to ideal.

Mth—req — 1
Mth—ideal 1— A% ma,xli{Load(Ii)}

(40)

Note that parameter A in Eq.(40) is normalized by the average time per posting.

Figure 20 depicts the evaluation results on the efficiency of using processing capa-
bilities. Google [33] reports that the average query arrival rate is several thousands per
second. The examined throughput requirement ranges up to ten thousand queries per
second. Almost ideal efficiency is achieved since the effect of a document on mean query
processing time is negligible. Corollary 5 states that almost ideal mean query processing
time is achieved if the effect of a document is small. Our experiment shows that adding
a document increases the mean query processing time by at most (0.606*0.37=0.224 us),
which is quite small compared to the required mean query processing time even when
10000 queries arrived per second.

Ratio to idea

1.006 T T T T

1.005

1.004

1.003

1.002

1.001

1 I I I I
0 2000 4000 6000 8000 10000

—= Throughput requirement (queries/sec)

Figure 20: Efficiency on using processing capability

The evaluation metric for the efficiency on using storage capability is as follows.
Let S be the total data size and C AP be the storage capacity per workstation. Let
Myi_req be the required number of workstations to store all data with proposed posting
file partitioning algorithm. The parameter M; ,., is determined by Theorem 3.

S
(VCAP — +/3)2

Let My;_;geqr be the number of workstations to store all data with ideal storage balancing.

S
CAP

Mst—req =

M, st—ideal —

32

The evaluation metric is the ratio to ideal.

Mst—req _ CAP (41)
Mst—ideal (\/ CAP — \/5)2
Note that CAP in above equations is normalized with the largest item size.

The evaluation results on the efficiency of using storage capacity are depicted in
Figure 21 and 22. Both operating on random access memory (RAM) and operating
on disks are evaluated. (Some search engines, such as Google [33], operate on RAM.)
The RAM size of a contemporary PC ranges from 64MB to 2GB. The capacity of a
contemporary disk ranges from 10GB to 100 GB and a PC can connect up to 7 disks.
Almost ideal efficiency is achieved since the size of an item is far less than the storage
capacity per workstation. An item is at most several Kilobytes but the storage capacity
of a workstation is at least several Megabytes (even using only RAM). The storage
requirement is determined by Theorem 3 and almost optimal storage cost is achieved.

Ratio to ideal
11 T T T T T T T T T T

1.08 - B

1.06

1.04

1.02

1 1 1 1 1 1 1 1 1 1 1
64 200 400 600 800 1000 1200 1400 1600 1800 2000

—= Memory capacity (MB)

Figure 21: Efficiency on using storage capability (operating on RAM)

8 Conclusion

This paper investigates posting file partitioning for both high performance and storage
efficiency. The research objective is to design a cluster satisfying throughput requirement
with minimum hardware cost. Primary results are as follows. The kernel of the posting
file partitioning algorithm is a data allocation algorithm for load and storage balancing.
The proposed data allocation algorithm is an integration of bin packing [28], MMPacking
[27], and bin splitting procedures. The algorithm is proved to satisfy the load balancing
criteria with asymptotically 1-optimal storage cost. Based on the analysis, a quantitative
method for the research objective is derived. Evaluation with TREC document collection
[13] shows that, for real-world applications, the proposed algorithm achieves almost
optimal efficiency on using processing and storage capabilities of workstations.

These results greatly simplifies the effort to design a large-scale information retrieval
system. In recent years, many major search engines on Internet use a cluster of hundreds

33

Ratio to ideal

T 1.006 T T T T T T

1.005

1.004

1.003

1.002

1.001

1 I I I I I I
10 100 200 300 400 500 600 700

—= Disk capacity (GB)

Figure 22: Efficiency on using storage capability (operating on disk)

or more workstations to store huge amount of data and cope with high query arrival
rate. Reducing the hardware cost is important and a quantitative method to design the
cluster is desired. In the previous work [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]
storage efficiency is not considered and complex simulation is required for performance
evaluation. To achieve our research objective, the data allocation algorithm has to
allocate variable-size items for both load and storage balancing. The barrier to propose
a quantitative method was the lack of such a data allocation algorithm with good e-
optimality been proved. The barrier is eliminated in this research. This research changes
the design of parallel information retrieval system from ad-hoc approach to systematical
and quantitative approach.

References

[1] I. J. Aalbersberg and F. Sijstermans, “High quality and high performance full-
text document retrieval: the parallel infoguide system,” Proceedings of the First
International Conference on Parallel and Distributed Information Systems, pp. 142—
150, 1991.

[2] D. K. Lee, “Massive parallelism on the hybrid text-retrieval machine,” Information
Processing and Management, Vol. 31, No. 6, pp. 815-830, 1995.

[3] C. Stanfill, “Partitioned posting files: a parallel inverted file structure for informa-
tion retrieval,” Proceedings of the 13th International Conference on Research and
Development in Information Retrieval, pp. 413-428, 1990.

[4] C. Stanfill and B. Kahle, “Parallel free-text search on the connection machine sys-
tem,” Communications of the ACM, Vol. 29, No. 12, pp. 1229-1239, 1986.

[6] B. Mansand and C. Stanfill, “An information retrieval test-bed on the cm-5,” Pro-
ceedings of the 2nd Text RFEtrieval Conference, pp. 117-122, 1993.

34

[6]

[7]

8]

[9]

[10]

[11]

12)
13]
[14)
15]
16]
17)

18]

[19]

B. S. Jeong and E. Omiecinski, “Inverted file partitioning schemes in multiple disk
systems,” IEEE Transactions on Parallel and Distributed Systems, Vol. 6, No. 2,
pp- 142-153, 1995.

S. F. Reddaway, “High speed text retrieval from large database on a massively par-
allel processor,” Information Processing and Management, Vol. 27, No. 4, pp. 311—
316, 1991.

A. Tomasic and H. G. Molina, “Performance of inverted indices in shared-nothing
distributed text document information retrieval systems,” IEEE Transactions on
Parallel and Distributed Systems, Vol. 6, No. 2, pp. 142-153, 1995.

B. A. Riberio-Neto, J. P. Kitajima, and G. Navarro, “Parallel generation of in-
verted files for distributed text collections,” Proceedings of the 18th International
Conference of the Chilean Society of Computer Science, pp. 149-157, 1998.

J. K. Cringean, R. England, G. A. Manson, and P. Willett, “Parallel text search-
ing in serial files using a processor farm,” Proceedings of the 13th ACM SIGIR

Conference on Research and Development in Information Retrieval, pp. 429445,
1990.

S. H. Chung, S. C. Oh, K. R. Ryu, and S. H. Park, “Parallel information retrieval on
a distributed memory multiprocessor system,” Proceedings of the 3rd International

Conference on Algorithms and Architectures for Parallel Processing, pp. 163-176,
1997.

A. MacFarlane, J. A. McCann, and S. E. Robertson, “Parallel search using par-
titioned inverted files,” Proceedings of the 7th International Symposium on String
Processing and Information Retrieval, pp. 209-220, 2000.

D. K. Hardman, Proceedings of TREC Text Retrieval Conference. 1992.

W. B. Frakes and R. Baeza-Yates, Information Retrieval: Data Structures and
Algorithms. 1992.

I. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes: Compressing and
Indexing on Documents and Images. 1999.

G. Salton, Automatic Text Processing: the Transformation, Analysis, and Retrieval
of Information by Computer. 1989.

G. Zipf Human Behavior and the Principle of Least Effort, 1949.

D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham, “Worst-
case performance bounds for simple one-dimensional packing algorithms,” STAM
Journal on Computing, Vol. 3, No. 4, pp. 299-325, 1974.

W. Dowdy and D. Foster, “Comparative models of the file assignment problem,”
ACM Computing Surveys, Vol. 14, No. 2, pp. 287-313, 1982.

35

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

28]
[29]

[30]

[31]

32]

33]
[34]

B. Wah, “File placement on distributed computer systems,” Computer, Vol. 17,
No. 1, pp. 23-32, 1984.

J. Wolf and K. Pattipati, “A file assignment problem model for extended local
area network environments,” Proceedings of 10th International Conference on Dis-
tributed Computing Systems, Vol. 17, No. 1, 1990.

D. Rotem, G. Schloss, and A. Segev, “Data allocation of multi-disk databases,”
IEFEE Trans. Knowledge and Data Engineering, Vol. 5, No. 5, pp. 882-877, 1993.

H. Lee and T. Park, “Allocating data and workload among multiple servers in a
local area network,” Information Systems, Vol. 20, No. 3, 1995.

T.D. C. Little and D. Venkatesh, “Popularity-based assignment of movies to storage
devices and video-on-demand system,” ACM/Springer Multimedia System, Vol. 2,
No. 6, pp. 280-287, 1995.

B. Narendran, S. Rangarajan, and S. Yajnik, “Data distribution algorithm for load
balanced fault-tolerant web access,” Proceedings of 16th Symposium on Reliable
Distributed Systems, pp. 97-106, 1997.

L. W. Lee, P. Scheuermann, and R. Vingralek, “File assignment in parallel i/o
systems with minimal variance of service time,” IEEE Transactions on Computers,
Vol. 49, No. 2, pp. 127-140, 2000.

D. N. Serpanos, L. Georgiadis, and T. Bouloutas, “MMPacking: a load and storage
balancing algorithm for distributed multimedia servers,” IEEE Trans. Circuits and
Systems for Video Technology, Vol. 8, No. 1, pp. 13—17, 1998.

E. Horowitz, S. Sahni, and B. Rajasekaran, Computer Algorithms/C++. 1996.

V. P. Kumar, Introduction to Parallel Computing: Design and Analysis of Algo-
rithms. 1994.

A. Arpaci-Dusseau, R. Arpaci-Dusseau, D. E. Culler, J. M. Hellerstein, and D. Pat-
terson, “High performance sorting on networks of workstations,” Proceedings of
1997 ACM SIGMOD Conference, 1997.

A. Arpaci-Dusseau, R. Arpaci-Dusseau, D. E. Culler, J. M. Hellerstein, and D. Pat-
terson, “Searching for the sorting record: experiences in tuning now-sort,” Proceed-
ings of 1998 Symposium on Parallel and Distributed Tools, 1998.

A. Moffat and J. Zobel, “Self-indexing inverted files for fast text retrieval,” ACM
Transactions on Information Systems, Vol. 14, No. 4, pp. 349-379, 1996.

“Google search engine (http://www.google.com).”

G. Salton and C. Buckley, “Parallel text search methods,” Communications of the
ACM, Vol. 81, No. 2, pp. 202215, 1988.

36

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

H. S. Stone, “Parallel querying of large databases: a case study,” IEEE Computer,
pp. 11-21, 1987.

J. Zobel, A. Moffat, and K. Ramamohanarao, “Inverted files versus signature
files for text indexing,” ACM Transactions on Database Systems, Vol. 23, No. 4,
pp. 453-490, 1998.

C. Faloutsos, “Access methods for text,” ACM Computing Surveys, Vol. 17, No. 1,
pp- 49-74, 1985.

A. N. Vo and A. Moffat, “Compressed inverted file with reduced decoding over-
heads,” Proceedings of the 21st ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pp. 290-297, 1998.

J. Hennessy and D. A. Patterson, Computer Architecture: a Quantitative Approach,
2nd edition. 1996.

Y. C. Ma and C. P. Chung, “A dominance relation enhanced branch-and-bound
task allocation,” To appear in Journal of Systems and Software.

C. C. Shen and W. H. Tsai, “A graph matching approach to optimal task assignment
in distributed computing systems using a minimax criterion,” IEEE Transactions
on Computers, Vol. C-34, No. 3, pp. 197-203, 1985.

M. R. Garey and D. S. Johnson, Computers and Intractability: a Guide to the
Theory of NP-Completeness. 1979.

A. Moffat and L. Stuiver, “Exploiting clustering in inverted file compression,” Pro-
ceedings of 1996 Data Compression Conference, pp. 82-91, 1996.

E. G. Coffman, M. R. Garey, and D. S. Johnson, “An application of bin-packing to
multiprocessor scheduling,” SIAM Journal on Computing, Vol. 7, No. 1, pp. 1-17,
1978.

37

