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1 摘要

我們的計畫目標為設計一個應用在無線通訊的可程式化數位訊號處理器

(programmable DSP, or DSP processor) ，它擁有以下特性： (1) 高效能

(>2,000MOPS)、(2)高程式密度(good code density)、(3) 低功率(<1mW/MOP)及(4) 

可重新組態。超長指令字元(VLIW)處理器使用靜態排程而擁有可精準預估的程

式執行行為，故非常適用於高效能即時數位訊號處理的應用中。我們在本計畫之

第一年提出了一個嶄新的數位訊號處理器架構，它擁有單指令多資料(SIMD)及

可變長度之 VLIW 能力。我們同時也完成了指令集模擬器並評估了此處理器的

效能。此處理器解決了 VLIW 架構上兩個主要的問題：「指數成長的暫存器組」

及「極差的程式密度」。指令模擬結果顯示我們所提出的新架構擁有目前與市面

上高階數位訊號處理器可比擬的運算效能，但我們所使用的環狀暫存器組僅需要

一般架構不到一成(8.12%)的面積，速度卻是其 4.4 倍。另外，我們所提出的階層

式超長指令字元編碼更可省去 32%~50%的指令空間。

關鍵詞：數位訊號處理器、矽智產、暫存器組、可變長度之超長指令字元



Abstract

This project is to develop a programmable digital signal processor 

(programmable DSP or DSP processor) for wireless communications, which features: 

(1) high performance (> 2,000MOPS), (2) good code density, (3) low power 

(<1mW/MOP), and (4) configurability.  VLIW processors with static instruction 

scheduling and thus deterministic execution times are very suitable for 

high-performance real-time DSP applications.  In the first year of this project, we 

propose a novel variable-length VLIW DSP with SIMD capability and constructed its 

instruction set simulator (ISS) and evaluated the performance.  The two major 

weaknesses in VLIW processors have been improved, which prevent the integration 

of more functional units (FU) for a higher instruction issuing rate – the exponentially 

growing complexity in the register file (RF), and the poor code density due to the 

NOP instructions.  First, our proposed novel ring-structure RF partitions the 

centralized RF into 2N sub-blocks with an explicit N-by-N switch network for N FU.  

Each sub-block only requires access ports for a single FU.  Second, we propose the 

hierarchical VLIW encoding with variable-length RISC-like instructions and NOP

removal.  The simulations show that our proposed instruction set architecture with 

the exposed ring-structure RF has comparable performance with state-of-the-art 

high-performance DSP processors.  The ring-structure RF saves 91.88% silicon area 

and reduces 77.35% access time of the centralized RF.  Moreover, the hierarchical 

VLIW encoding saves 32%~50% code sizes.



Keywords: digital signal processor (DSP), silicon IP, register file, variable-length 

VLIW



2 計畫緣由與目的

隨著 IC 製程技術不斷創新，單晶片系(SoC)已是現代電子系統必要的關鍵性

組件。用於下一代無線通訊系統的系統晶片，在數位基頻部份將包括一個 RISC

控制器、DSP 處理器核心，特定功能單元、記憶體單元、視訊顯示與網路通訊規

約處理單元等。此系統晶片或核心模組的主要設計目標是低功率、高性能和低成

本。由於單晶片系統的高複雜度(十~百百萬閘)以及開發時間縮短等因素關係，

可再用之矽智產(silicon intellectual property)核心設計技術變成單晶片系統之重

要設計考量。下一代無線通訊系統雖然尚在發展中，但基本需求大致上已可以看

出：(1) high data rate，(2) sophisticated algorithms，(3) configurable for divergent 

markets，(4) low power。也就是需要一個高性能的 DSP 處理器來從事通訊、視

訊方面所需之各種運算，此 DSP 處理器將以矽智產(IP)的方式與 RISC 控制器和

其他模組等整合成一個系統晶片。

DSP 處理器 IP 是 3C 整合產品的重要核心零組件已是眾所周知之事。追求

高性能與低功率 DSP 處理器(它們的本質是相互抵觸的)與其新架構提出，仍是許

多學術界、產業界努力的研究課題，也是國科會工程處近年來推動的重要研究主

題之一。雖然 DSP 處理器和其 Core 已有許多 vendors 存在市場，例如 Texas 

Instruments (TI)、Analog Devices Inc. (ADI)、Motorola、Agere (Lucent)、DSP 

Group…等等(詳見 Berkeley Design Technology Inc.; BDTI http://www.bdti.com)。

國內產業界已經或正在研發的有華邦、旺宏、創意、智原…等。大學方面也有清

華、台大、成大、中正、中山等校投入研究。但本計畫重點在於新架構與新指令

集的提出，目標是高性能低功率與可重新組態的特性，因此具有極高之研究挑戰

性。



我們的 DSP 處理器核心主要是能支援 DAB 及 DVB-T 基頻運算處理的要

求，其重要的特色有以下幾個：(1)高速度：高於 2,000 MOPS 的運算能力(16 位

元資料在 200MHz 的工作頻率下)，(2)低功率，低於 1mW/MOP，(3)具可再組、

可延展能力(包含了 customizable 的指令集設計及 configurable 硬體加速器模組)。

高速度、低功率是無線通訊基本要求。可重新組態之能力將提供此系可以(1)支

援多標準、多工作模態，(2)具有架構台的差異性，(3)實體操作環境的適應性(例

如高雜訊環境)。此處理器其他重要性能規格包括：32 位元定點資料，具 SIMD

與次字元平行度的能力，不同長度指令集，高程式碼密度，並採用.18um CMOS

製程，提供高度的架構延展性等。我們所開發的 DSP 智產核心將是用於下一代

無線通訊 SoC 的關鍵模組。

本期中報告將針對今年度計畫的主要工作項目「處理器指令集架構設計」分

項敘述與討論。包含：(1)二階層指令處理(2-tier instruction processing)、(2)環狀

結構暫存器組 (ring-structure register file)、及 (3)階層式超長指令字元編碼

(hierarchical VLIW encoding)。

.



3. 研究方法與成果

3.1 Proposed VLIW DSP Architecture

Programmable embedded solutions are attractive for their less development 

efforts, the upgradability to support new standards and possibly field software patches.  

These factors reduce the time-to-market, extend the time-in-market, and thus make 

the greatest profit.  Today’s media processing demands extremely high computations

with real-time constraints in the audio, image or video applications.  Instruction 

parallelism is exploited to speed up the high-performance microprocessors.  

Compared to the dynamically hardware-scheduled superscalar processors, VLIW 

machines [1] have low-cost compiler scheduling with deterministic execution time 

and thus become the trends of high-performance DSP processors.  But VLIW 

processors are notorious for their poor code density, because the unused instruction 

slots must be filled by NOP.  The situation gets worse when the parallelism is limited.  

Variable-length VLIW [2] eliminates NOP with alternative functional unit (FU) codes 

for run-time instruction dispatch and decoding, compared to the conventional 

position-coded VLIW processors (i.e. each FU has a corresponding bit-field in the 

instruction packet).  Indirect VLIW [3] has an addressable internal micro-instruction 

memory (i.e. the programmable VIM) for the instruction packets.  The RISC-like 

instruction words in existing packets can be reused to synthesize new packets to 

reduce the instruction bandwidth.  In addition to the code density problem, the 

complexity of the register file (RF) grows exponentially [4] as more and more FU are 

integrated on a chip, which operate concurrently to achieve the performance 



requirements.  The RF is frequently partitioned for execution clusters [2] with 

explicit interconnection networks among the clusters to significantly reduce the 

complexity at the cost of small performance penalty.

Fig 1 depicts the 2-tier instruction processing with separate control and data 

manipulations, which effectively smoothes the instruction flow to the DSP datapath.  

The proposed DSP is a four-way VLIW processor with two load/store units and two 

ALU/MAC units.  The instruction dispatcher handles zero-overhead looping and the 

unconditional branches (e.g. jumps and traps) transparently to the datapath, which 

receives an instruction packet (including four RISC-like instruction words) per cycle, 

regardless of the control flow, except the conditional branches (data-dependent 

control), which need the cooperation with the control/LS FU (instruction field 0) of 

the datapath.  With the proposed ring-structure RF for efficient data exchange among 

FU, the proposed DSP processor can easily achieve its peak performance of four

16-bit data operations per cycle, or fifteen RISC-type operations per cycle (including 

four effective data manipulations, four data generations, four address updates, and 

three branch controls).

Ring-structure RF

Instruction Dispatcher
(hardware decompression)

Control
LS

ALU
MACLS ALU

E_MAC

datapath

Assembly Program

Assembler/Linker
(software compression)

Instruction Set Simulation

Fig 1  2-tier instruction processing

In addition to the general assembling and linking, our code generation tool takes 

the responsibility for the code compression, while the dispatcher dynamically 

decompresses the instruction packets.  The proposed hierarchical VLIW encoding 



recodes the compressed variable-length instruction packets to simplify the target 

address calculation in the control flow for a fixed-length header and the remnant 

codes, which are stuffed from the beginning and the end respectively into a long 

fixed-length instruction bundle.  The linker assigns each label in the user’s assembly 

program the bundle number with the packet offset, instead of the target address of the 

packet directly to simplify control manipulations.  Note that the symbolic 

instruction-set simulation in the 2-tier instruction processing can be conducted 

independently from the instruction encoding and compression schemes in the 

implementations.



3.2 VLIW Datapath with SIMD Capability

3.2.1 Ring-structure register  file

A centralized register file (RF) provides storage for and interconnects to each 

functional unit (FU) in a general manner and each FU can read from or write to any 

register location.  For N concurrent FU, the silicon area of the centralized RF grows 

as N 3, the delay as N 3/2, and the power dissipation as N 3 [3].  Thus, the RF will soon 

dominate the area, the delay, and the power dissipation in the multi-issue processors 

as the number of FU increases.  The communication between FU is usually restricted

by partitioning the RF to reduce the complexity significantly with some performance 

penalty.  In other words, each FU can only read and write a limited subset of 

registers.  In this project, we partition the centralized RF into 2N sub-blocks and 

separate the interconnection from the RF with an explicit switch network.  Each FU 

can simultaneously access two sub-blocks, one of which is private (i.e. dedicated to 

the FU) and the other is dynamically mapped for inter-FU communications.  

Therefore, each sub-block only requires the access ports for a single FU.  By the way, 

the shared sub-blocks are organized in a ring to reduce the control overheads, where 

the dynamic mapping is exposed to the VLIW ISA with log2N offset bits and is 

directly specified by the programmers for each instruction packet.

The shaded region in Fig 2 shows the ring-structure RF in our proposed 4-way 

VLIW DSP processor.  Each sub-block has four access ports (2R/2W).  Imagine the 

four concurrent FU as individual RISC-like processors, and each processor has a 

16-element RF.  Each RF is partitioned into a private and a shared sub-block, each of 

which has eight registers.  The shared sub-blocks (i.e. ring registers) are used for 



data exchanges among the four FU and are concatenated as a ring with a 2-bit control 

to reduce the context for dynamic port mapping.  The shared sub-blocks are all 

identical and each has eight 32-bit elements (r8~r15).  The private sub-blocks (i.e. 

local registers) of the control/LS FU have eight 32-bit elements for general-purpose 

uses and memory addresses, while those of ALU/MAC have eight 40-bit 

accumulators.  The port mapping is controlled by the 2-bit ring offset attached to 

each instruction packet without any state, which is completely transparent to the FU.

Control / LS LS ALU / MAC ALU /
Enhanced MAC

R0~R7
(private, 32-bit)

R0~R7
(private, 32-bit)

R0~R7
(private, 40-bit)

R0~R7
(private, 40-bit)

R8~R15
(ring, 32-bit)

R8~R15
(ring, 32-bit)

R8~R15
(ring, 32-bit)

R8~R15
(ring, 32-bit)

local
registers

Instruction Dispatcher

24 24 24 24

ring
registers

Ring-structure Register File

Fig 2  Ring-structure register file

3.2.2 SIMD functional units

The ALU/MAC unit can perform two 16-bit ALU operations simultaneously. 

Moreover, it supports two concurrent 16-bit MAC operations with 40-bit 

accumulators with the instruction

MAC_V ri, rm, rn,

which executes ri�ri+rm.Hi×rn.Hi, and ri+1�ri+1+rm.Lo ×rn.Lo in parallel.  

It needs four concurrent accesses to the RF (two reads and two writes respectively).  

The index i must be even, with i+1 implicitly specified.  Besides, the DSP also 

supports powerful double load (store) instructions of the form

LW_D rm, rn, (ri)+j,



which performs two parallel memory accesses (rm�Mem[ri], rn�Mem[ri+1]) with 

concurrent address updates (ri�ri+j, and ri+1�ri+1+j).  These instructions 

require six concurrent RF accesses (including two reads and four writes for loads, or 

four reads and two writes for stores).  The accesses do not conflict because ri and 

ri+1 are local address registers while rm and rn are ring registers that deliver data to 

ALU/MAC.  They locate in independent register sub-blocks.

Finally, the ALU/enhanced MAC unit supports single-cycle 16-bit complex 

MAC/MUL or single-cycle 32-bit MAC/MUL.  These instructions exhaust all 

multiplication resources (i.e. our DSP totally has four 16-bit multipliers) and prevent 

the other ALU/MAC unit from any operation involving multiplication.

3.2.3 Programming model

The assembly syntax for our VLIW DSP starts with the ring offset, followed by 

the four RISC-like instruction words to form an instruction packet as

ring offset; i0; i1; i2; i3;.

The summary of our instruction set is available in Appendix.

Fig 3 is an illustrating example of a 64-tap finite-impulse response (FIR) filter 

that produces 1,024 outputs.  The memory subsystem uses half-word addressing and 

the input and output data are 16-bit fractional and 32-bit fixed-point numbers 

respectively.  The RPT instruction (the repeat instruction for zero-overhead looping;

see line 4 and line 6) is carried out in the instruction dispatcher and consumes no 

execution cycle of the datapath.  Note that only two-level loop nesting is allowed in 

our current implementation.

The inner loop (line 7-8) loads four 16-bit inputs and four 16-bit coefficients into 

two 32-bit r8 and two 32-bit r9 with the two SIMD LS units respectively, while the 

address registers (two r0 and two r1) are updated simultaneously.  In the meanwhile, 



the two ALU/MAC units perform 16-bit SIMD MAC operations of the form

MAC_V r0, r8, r9

for four taps (i.e. r0�r0+r8.Hi×r9.Hi, and r1�r1+r8.Lo× r9.Lo for each 

ALU/MAC).  After summing up the 32 32-bit products with 40-bit accumulators, r0

are r1 are added together and rounded to the 32-bit r8 in the ring registers.  Finally, 

two 32-bit outputs are stored in the memory subsystem by the two LS units via r8.  

In this FIR example, the outer loop (line 5 and line 7-12) can produce two filter 

outputs in 35 cycles.  In other words, the proposed DSP can compute 3.66 taps every 

cycle.

The conditional branches in our DSP processor evaluate the conditions through 

the register ports of control/LS FU, which execute in parallel with the succeeding 

instruction packet.  Therefore, NOP must be inserted if the access port conflicts.

1 0; MOV r0,COEF; MOV r0,COEF; MOV r0,0; MOV r0,0;
2 0; MOV r1,X; MOV r1,X+2; NOP; NOP;
3 0; MOV r2,Y; MOV r2,Y+4; NOP; NOP;
4 RPT 512,8;
5 0; LW_D r8,r9,(r0)+2; LW_D r8,r9,(r0)+2; MOV r1,0; MOV r1,0;
6 RPT 15,2;
7 2; LW_D r8,r9,(r0)+2; LW_D r8,r9,(r0)+2; MAC_V r0,r8,r9; MAC_V r0,r8,r9;
8 0; LW_D r8,r9,(r0)+2; LW_D r8,r9,(r0)+2; MAC_V r0,r8,r9; MAC_V r0,r8,r9;
9 2; LW_D r8,r9,(r0)+2; LW_D r8,r9,(r0)+2; MAC_V r0,r8,r9; MAC_V r0,r8,r9;

10 0; MOV r0,COEF; MOV r0,COEF; MAC_V r0,r8,r9; MAC_V r0,r8,r9;
11 0; ADDI r1,r1,-60; ADDI r1,r1,-60; ADD r8,r0,r1; ADD r8,r0,r1;
12 2; SW (r2)+4,r8; SW (r2)+4,r8; MOV r0,0; MOV r0,0;

Fig 3  Example: 64-tap FIR Filter

3.2.4 ISA per formance with exposed r ing-structure RF

This section evaluates the performance degradation due to the access restrictions

of the ring-structure RF, where the port mapping is under the direct control of the 

programmers.  We have constructed an instruction-set simulator for the proposed 

4-way VLIW DSP processor following the assembly syntax described in Section 3.4.

Table 1 Performance comparison



TI 
C’55x [5]

TI 
C’64x [2]

NEC 
SPXK5[6]

Intel/ADI 
MSA [7]

Proposed

FIR NT/2 NT/4 NT/2 NT/2 NT/4
FFT 4,768 2,403 2,944 3,176 2,340

Viterbi
1 

(0.4)
N.A. 1 (1) 1 (N.A.) 1 (0.84)

ME N.A. 2 2 4 2

Table 1 summarizes the performance comparisons of the state-of-the-art 

high-performance DSP processors and the proposed ISA with the exposed 

ring-structure RF.  The second row shows the number of cycles required for 

N-sample T-tap FIR filtering, which indicates the on-chip MAC resources.  The third 

row lists the performance of the radix-2 256-point fast Fourier transform (FFT), 

which is measured in the number of execution cycles.  The maximum ACS 

(add-select-compare) operations per cycle are given in the fourth row, which is the 

kernel of the Viterbi algorithm.  The numbers in parentheses show the results that 

consider the load/store overheads when the depth is 16.  The performance of TI 

C’64s is not included because it has a specific Viterbi coprocessor.  Finally, the last 

row compares the performance of the motion estimation under the MAE (mean 

absolute error) criteria, which is measured in pixels per cycle. The simulation shows

that the performance of our proposed DSP processor is comparable with the 

state-of-the-art DSP for various benchmarks if the dataflow can be appropriately 

arranged through the ring-structure RF.

3.3 Hierarchical VLIW Encoding

The poor code density of the VLIW processors comes from the redundancy 

inside (1) the fixed-length RISC-like instruction words because most operations do 

not actually need all control bits, and (2) the position-coded instruction packet, where 



NOP must be inserted in the corresponding fields of idle functional units (FU).  HAT 

[8] is an efficient variable-length instruction format to solve the first problem with 

simple control flow.  We solve the second one with an explicitly specified ‘valid’

bit-field of the instruction packets to remove all NOP codes.  Each FU has a 

correspondent bit in ‘valid’ to indicate whether it is idle.  The variable-word 

instruction packets with the variable-length RISC-like instruction words are then 

packed into a large fixed-length bundle for easy instruction accesses.  The 

instruction encoding is described in Section 4.1 with complete instruction formats in 

Appendix, of which the layout is for simple decoding illustrated in Section 4.2.

3.3.1 Instruction format

A variable-length RISC-like instruction word is divided into a fixed-length 

‘head’ and a variable-length ‘tail’ as HAT [8] to deliver the control information on 

demand for the instruction and execution pipelines arranged as Fig 4(c).  Fig 7(a) 

and (b) in Appendix show the instruction formats for the load/store, and ALU/MAC 

units in our DSP.  The effective instruction words in an execution cycle (i.e. without 

NOP codes) are packed into an instruction packet with a fixed-length control ‘cap’.  

The fixed-length caps and the variable-length packets are then placed from the 

beginning and the end of the 1024-bit instruction bundle respectively as depicted in 

Fig 4 (a).  For each instruction packet, the fixed-length heads are placed in order 

ahead of the variable-length tails.

  In our 4-way VLIW DSP, the cap is a 12-bit control word including the 

aforementioned 4-bit ‘valid’ and the 2-bit ring offset.  Because an instruction bundle 

contains various number of instruction packets, the leading two bits are used to detect 

the bundle end.  Moreover, they help to recognize the zero-overhead flow controls 

before the detailed packet decoding.  Finally, the total length of the tails is attached, 



to easily locate the next instruction packet for the pipelined instruction dispatcher.  

Fig 4(b) shows the packet cap format.  

Cap
Cap

Cap H0H2T0T2

instruction packet

1,024-bit instruction bundle

Valid Tail Length Ring

12-bit

2-bit 4-bit 4-bit 2-bit

00: VLIW instruction
10: RPT (repeat) instruction
01: other control instructions
11: end of bundle

instruction
pipelineHeads

Heads
Tails

Tails

Read
Read EXE/

MEM

EXE/
MEM Write

Write
execution
pipeline

00

(a)

(b) (c)

Fig 4  Instruction bundle

The instruction dispatcher handles the control instructions, which have 

fixed-length caps and variable-length tails, but without heads as depicted in Fig 7(a).  

Branch instructions re-direct the instruction flow to a new instruction bundle with the 

packet index.  To easily locate the target instruction packet, the pointer for the first 

instruction head is also available in the instruction encoding.  Our first DSP 

implementation has 128 instruction memory pages, each of which contains 256 

bundles (32 Kbytes).  In other words, the maximum instruction memory is 4 Mbytes.

3.3.2 Decoder  with incremental/logar ithmic shifter s

To extract from the instruction bundle the appropriate bit fields for decoding is 

complex, especially for the variable-length instruction packets.  Instead of large 

multiplexers, we utilize incremental and logarithmic shifters shown in Fig 5, where 

the decoder operates only on the fixed positions.  In the simulations, a bundle 

contains 16~17 packets in average and thus we limit the number of packets in a 



bundle to 32 in our implementation.  Thus, the cap decoder only needs to examine 

the leading 14 bits of the 386-bit shifter, which shifts out one 12-bit cap constantly 

every cycle.  The four multiplexers at the right-hand-side Fig 5 shift out the 

fixed-length heads depending on the ‘valid’ bits of the cap.  The logarithmic tail 

shifter follows to shift out all tails of the instruction packet.  In brief, the head/tail 

shifter is aligned to the next instruction packet at succeeding clock cycle as the 12-bit 

cap shifter.  Finally, for branch instructions, two coarse logarithmic shifters are used 

to align the new instruction bundle with the index and the packet pointer respectively.  

Note that the cap and head/tail shifters contain overlapped bits because of the 

non-deterministic boundary between caps and packets.

32KByte On-chip Instruction Memory
(including 256 instruction bundles)

Cap shifter (12-bit)

Cap buffer (384-bit)

Cap decoder

12+2

384

H0 shifter (16-bit)

H1 shifter (16-bit)

H2 shifter (12-bit)

H3 shifter (12-bit)

Tail & fine branch shifter (0~60-bit)

HT buffer (928-bit)

Tail
decoder

928

16

16

12

12

Coarse
branch shifter

(0~896-bit)

928

60

Head
decoder

2nd/3rd pipeline
stages

2nd/3rd pipeline
stages

Cap decoding
Cap/HT buffer alignment

Head dispatching

Cap decoding
Cap/HT buffer alignment

Head dispatching

928384

Coarse
branch shifter

(0~360-bit)

Fig 5  Instruction dispatcher

3.3.3 Code compression

Actually, the HAT format has already been extended for VLIW processors [9].  

The major distinction between our proposed hierarchical VLIW encoding and 



VLIW-HAT is that we use the explicit ‘valid’ bits in the cap to maintain the 

position-coded VLIW that enables distributed decoding, instead of individual dispatch 

codes with a complex centralized decoder.  For an N-way VLIW processor, our 

approach uses N ‘valid’ bits for each packet to dispatch its instruction words.  By 

contrast, VLIW-HAT requires log2(N+1) bits for each packet to indicate the number 

of active FU and additional log2N bits of each effective instruction word for FU 

mapping.  Assume the average number of instruction words in a packet is P (0�P�N), 

and the number of bits for instruction dispatch in VLIW-HAT is log2(N+1)+P log2N.  

Thus, VLIW-HAT has better compression ratio only for codes with extremely low 

parallelism.  Moreover, we use the 2-bit control in the cap to indicate the bundle end 

instead of specifying the number of packets for each bundle as VLIW-HAT, which 

reduces some bits further.

Table 2 summarizes the code sizes for the benchmarks in Table 1 with different 

coding schemes.  The original codes contain 24-bit fixed-length RISC-like 

instruction words, and an instruction packet has 98 bits including the 2-bit ring offset.  

VLIW-HAT has a 6-bit packet number in each bundle and a 3-bit instruction number 

in each packet, and the instruction formats are very similar to those in Appendix.  

Our proposed scheme has better compression ratio for all cases.  Moreover, it has 

better layout to simplify the decoding than VLIW-HAT.

Table 2 Code size comparison

Original VLIW-HAT [9] Proposed
FIR 2,450 1,452 (59%) 1,354 (55%)
FFT 39,298 23,726 (60%) 22,214 (56%)

Viterbi 4,998 3,610 (72%) 3,414 (68%)
ME 2,156 1,194 (55%) 1,086 (50%)

3.4 Silicon Implementation



We have implemented in Verilog RTL the ring-structure RF for the proposed 

4-way VLIW DSP and the centralized one with the same number of registers.  The 

designs are synthesized using Synopsys with 0.35ìm cell library and automatically 

placed and routed in 1P4M CMOS technology using Apollo.  The results are

summarized in Table 3.  Our approach reduces the delay and the area by factors of 

4.42 and 87.37 respectively.  PowerMill is used to estimate the power dissipation of 

the ring-structure RF to perform FFT at 100 MHz.  We do not have the power 

measure for the centralized RF due to the limited tool capability.

Table 3 Comparison of RF structures

Centralized RF Ring-Structure RF
Delay 38.46 ns 8.71 ns

Gate Count 591K 48K
Area 17.76mm×17.76mm 1.9mm×1.9mm
Power N.A. 356mW @3.3V 100MHz



32Kbyte Instruction Memory
(256 1024-bit bundles)

32Kbyte Data Memory
(4 banks)

Instruction
Dispatcher

Instruction
Decoder

ALU/eMACALU/MACL/SL/S

Local Registers

4-by-4 Switch Network

Ring Registers

Fig 6  Layout of the proposed VLIW DSP

Fig 6 shows the layout of our trial implementation of the proposed 4-way VLIW 

DSP processor with 32-Kbyte data and 32-Kbyte instruction memories.  The 

processor is pipelined into five stages (3-stage instruction pipeline and 3-stage 

execution pipeline with one overlapping stage) and operates at 71.43 MHz.  The 

estimated gate count is 552,492 (133,992 for core only) with 9mm×9mm chip area.



4. 結論與討論

In this project, we design an efficient VLIW DSP architecture for baseband 

processing, where the two major weaknesses of VLIW processors are effectively 

improved.  We propose a novel ring-structure register file (RF), which saves 91.88% 

silicon area of a centralized one, and reduces its access time by 77.35%.  The 

simulation shows that the ISA with the exposed ring-structure RF has comparable 

performance for various DSP kernels with the state-of-the-art DSP processors.  The 

preliminary results of our trial implementation are very promising.  We are currently 

working on the custom designs of the register sub-blocks, the 4-by-4 switch network, 

and critical components of the datapath.  Extensive clock gating will be applied to 

reduce the power.

Besides efficient datapath designs, we also improve the poor code density with 

the proposed hierarchical VLIW encoding, which reduces redundant bits with 

variable-length instruction words and NOP removal.  Our simulation shows the 

proposed encoding scheme reduces 32%~50% code sizes.  Finally, there still exists 

redundancy between instruction packets due to loop unrolling and software pipelining 

techniques [1], which improve the instruction-level parallelism.  The integration of 

differential encoding scheme [10] will be studied to remove the repetitive codes for 

the unrolled loops to further improve the compression ratio.
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附錄
Instruction set summary

Mnemonic Action

INSTRUCTION DISPATCHER

RPT Repeat the following m packets n times
J Jump; unconditional branch

JAL Jump and link
JR Jump register

BNEZ Branch on not equal zero
TRAP Trap; system call

COMMON TO ALL FIELDS

NOP No operation
ADDI Add immediate
XOR Exclusive OR

MOV32 Move 32-bit immediate

FIELD 0/1

LH / SH Load/store half word
LW / SW Load/store word

LH_D / SH_D Double load/store halfword
LW_D / SW_D Double load word

LH_V / SH_V (SIMD) load/store halfword vector

FIELD 2/3

MUL 16-bit Hi/Lo multiply
MAC 16-bit Hi/Lo multiply & accumulate
ADD Add
SUB Subtract
AND AND

OR OR
SLL Shift left logical
SRL Shift right logical
SRA Shift right arithmetic
BF2 Radix-2 butterfly

MUL_V (SIMD) 16-bit multiply with 32-bit result
MUL_16V (SIMD) 16-bit multiply with 16-bit result

MAC_V (SIMD) 16-bit multiply with 40-bit accumulate
ADD_V (SIMD) 16-bit add
SUB_V (SIMD) 16-bit subtract
ABS_V (SIMD) absolute value
SRA_V (SIMD) shift right arithmetic
MIN_V (Subword) select the small element

MAX_V (Subword) select the large element
PACK Merge low 16-bit of two registers

SPECIFIC TO FIELD 3

CMUL 16-bit complex multiply with 32-bit result
CMUL_16V 16-bit complex multiply with 16-bit result

CMAC 16-bit complex multiply with 40-bit accumulate
MUL32 32-bit multiply



MAC32 32-bit multiply & accumulate

10 repeat # instr #RPT

00 000000 syscall #TRAP 0001

01 bundle #00 page #J index head pointer

01 bundle #01 page #JAL index head pointer

01 Rs10JR unused

01 bundle offset11 RsBNEZ index head pointerRing

Cap (12-bit) Tail (4~16-bit)

unused

VLIW format

(a)

00 Rsaddr_offset func: 00(LH), 01(LW), 10(SH), 11(SW)Rdfunc

01 Rd_0 addr_offsetRd_1func func: 00(LH_D), 01(LW_D), 10(SH_D), 11(SW_D)Rs

100 Rs_1 Rdf func: 0(LH_V), 1(SH_V)Rs_0 ad_offset_0 ad_offset_1

1101 Imm.RsADDI Rd

111 Imm.uMOV32 24-bit Imm.

1100 Rs_1XOR RdRs_0

Tail (0~24-bit)Head (16-bit)

L/S

vector L/S

double L/S

Rd

Imm.

u

(b)

00 Rs_0Rs_1 func: 00(ADD),01(SUB),10(ADD_V),11(SUB_V)Rdfunc

unuse

Tail (0~28-bit)Head (12-bit)

add/sub

0100 Rs_0Rs_1 Rdlogical func

0110 funcshamtshift Rs

0111 RdADDI Rs Imm.

shamt func: 00(SLL),01(SRL),10(SRA),11(SRA_V)

111 Imm.MOV32 24-bit Imm.Rd

110 Rd Rs fu func: 0(MAC), 1(MUL)10multiply

110 Rd Rs funcu 0min/max func: 00(MIN_V), 01(MAX_V), 10(ABS_V)

10 Rdmac Rs_0 func: 0(MAC_V), 1(CMAC)

func: 00(AND), 01(OR), 10(XOR)

0101 Rs_0Rs_1 Rdmultiply func func: 00(MUL_V), 01(MUL16_V)
10(CMUL), 11(CMUL16)

Rs_1

Rs_1 Rdother ALU func func: 00(PACK), 01(BF2)Rs_0

f

0101 u

u0

1

u

u

u

(c)

Fig 7  Instruction format for (a) instruction dispatcher, (b)load/store, and (c) 



ALU/MAC functional units
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