
行政院國家科學委員會專題研究計畫 期中進度報告

子計劃三：數位訊號處理器與可重置加速器之設計(1/3)

計畫類別：整合型計畫
計畫編號： NSC91-2218-E-009-011-
執行期間： 91 年 08 月 01 日至 92 年 07 月 31 日
執行單位：國立交通大學電子工程研究所

計畫主持人：任建葳

計畫參與人員：林泰吉 張金祺 楊宗訓 張育銘 林建宏

報告類型：完整報告

處理方式：本計畫涉及專利或其他智慧財產權，2 年後可公開查詢

中 華 民 國 92 年 5 月 29 日

行政院國家科學委員會補助專題研究計畫 □成果報
告 �

期中進
度報告

用於軟體無線電基頻處理之系統晶片設計技術
子計畫三：數位訊號處理器與可重製加速器之設計

(1/3)

計畫類別：□ 個別型計畫 � 整合型計畫
計畫編號：NSC 91-2218-E009-011
執行期間：91 年 8 月 1 日 至 92 年 7 月 31 日

計畫主持人：任建葳
計畫參與人員： 林泰吉 張金祺 楊宗訓 張育銘 林建宏

成果報告類型(依經費核定清單規定繳交)：□精簡報告 �完整
報告

處理方式：除產學合作研究計畫、提升產業技術及人才培育研究
計畫、列管計畫及下列情形者外，得立即公開查詢

 �涉及專利或其他智慧財產權，□一年�二年後可公

開查詢

執行單位：國立交通大學 電子工程學系

中華民國 92 年 5 月 29 日

1 摘要

我們的計畫目標為設計一個應用在無線通訊的可程式化數位訊號處理器

(programmable DSP, or DSP processor) ，它擁有以下特性： (1) 高效能

(>2,000MOPS)、(2)高程式密度(good code density)、(3) 低功率(<1mW/MOP)及(4)

可重新組態。超長指令字元(VLIW)處理器使用靜態排程而擁有可精準預估的程

式執行行為，故非常適用於高效能即時數位訊號處理的應用中。我們在本計畫之

第一年提出了一個嶄新的數位訊號處理器架構，它擁有單指令多資料(SIMD)及

可變長度之 VLIW 能力。我們同時也完成了指令集模擬器並評估了此處理器的

效能。此處理器解決了 VLIW 架構上兩個主要的問題：「指數成長的暫存器組」

及「極差的程式密度」。指令模擬結果顯示我們所提出的新架構擁有目前與市面

上高階數位訊號處理器可比擬的運算效能，但我們所使用的環狀暫存器組僅需要

一般架構不到一成(8.12%)的面積，速度卻是其 4.4 倍。另外，我們所提出的階層

式超長指令字元編碼更可省去 32%~50%的指令空間。

關鍵詞：數位訊號處理器、矽智產、暫存器組、可變長度之超長指令字元

Abstract

This project is to develop a programmable digital signal processor

(programmable DSP or DSP processor) for wireless communications, which features:

(1) high performance (> 2,000MOPS), (2) good code density, (3) low power

(<1mW/MOP), and (4) configurability. VLIW processors with static instruction

scheduling and thus deterministic execution times are very suitable for

high-performance real-time DSP applications. In the first year of this project, we

propose a novel variable-length VLIW DSP with SIMD capability and constructed its

instruction set simulator (ISS) and evaluated the performance. The two major

weaknesses in VLIW processors have been improved, which prevent the integration

of more functional units (FU) for a higher instruction issuing rate – the exponentially

growing complexity in the register file (RF), and the poor code density due to the

NOP instructions. First, our proposed novel ring-structure RF partitions the

centralized RF into 2N sub-blocks with an explicit N-by-N switch network for N FU.

Each sub-block only requires access ports for a single FU. Second, we propose the

hierarchical VLIW encoding with variable-length RISC-like instructions and NOP

removal. The simulations show that our proposed instruction set architecture with

the exposed ring-structure RF has comparable performance with state-of-the-art

high-performance DSP processors. The ring-structure RF saves 91.88% silicon area

and reduces 77.35% access time of the centralized RF. Moreover, the hierarchical

VLIW encoding saves 32%~50% code sizes.

Keywords: digital signal processor (DSP), silicon IP, register file, variable-length

VLIW

2 計畫緣由與目的

隨著 IC 製程技術不斷創新，單晶片系(SoC)已是現代電子系統必要的關鍵性

組件。用於下一代無線通訊系統的系統晶片，在數位基頻部份將包括一個 RISC

控制器、DSP 處理器核心，特定功能單元、記憶體單元、視訊顯示與網路通訊規

約處理單元等。此系統晶片或核心模組的主要設計目標是低功率、高性能和低成

本。由於單晶片系統的高複雜度(十~百百萬閘)以及開發時間縮短等因素關係，

可再用之矽智產(silicon intellectual property)核心設計技術變成單晶片系統之重

要設計考量。下一代無線通訊系統雖然尚在發展中，但基本需求大致上已可以看

出：(1) high data rate，(2) sophisticated algorithms，(3) configurable for divergent

markets，(4) low power。也就是需要一個高性能的 DSP 處理器來從事通訊、視

訊方面所需之各種運算，此 DSP 處理器將以矽智產(IP)的方式與 RISC 控制器和

其他模組等整合成一個系統晶片。

DSP 處理器 IP 是 3C 整合產品的重要核心零組件已是眾所周知之事。追求

高性能與低功率 DSP 處理器(它們的本質是相互抵觸的)與其新架構提出，仍是許

多學術界、產業界努力的研究課題，也是國科會工程處近年來推動的重要研究主

題之一。雖然 DSP 處理器和其 Core 已有許多 vendors 存在市場，例如 Texas

Instruments (TI)、Analog Devices Inc. (ADI)、Motorola、Agere (Lucent)、DSP

Group…等等(詳見 Berkeley Design Technology Inc.; BDTI http://www.bdti.com)。

國內產業界已經或正在研發的有華邦、旺宏、創意、智原…等。大學方面也有清

華、台大、成大、中正、中山等校投入研究。但本計畫重點在於新架構與新指令

集的提出，目標是高性能低功率與可重新組態的特性，因此具有極高之研究挑戰

性。

我們的 DSP 處理器核心主要是能支援 DAB 及 DVB-T 基頻運算處理的要

求，其重要的特色有以下幾個：(1)高速度：高於 2,000 MOPS 的運算能力(16 位

元資料在 200MHz 的工作頻率下)，(2)低功率，低於 1mW/MOP，(3)具可再組、

可延展能力(包含了 customizable 的指令集設計及 configurable 硬體加速器模組)。

高速度、低功率是無線通訊基本要求。可重新組態之能力將提供此系可以(1)支

援多標準、多工作模態，(2)具有架構台的差異性，(3)實體操作環境的適應性(例

如高雜訊環境)。此處理器其他重要性能規格包括：32 位元定點資料，具 SIMD

與次字元平行度的能力，不同長度指令集，高程式碼密度，並採用.18um CMOS

製程，提供高度的架構延展性等。我們所開發的 DSP 智產核心將是用於下一代

無線通訊 SoC 的關鍵模組。

本期中報告將針對今年度計畫的主要工作項目「處理器指令集架構設計」分

項敘述與討論。包含：(1)二階層指令處理(2-tier instruction processing)、(2)環狀

結構暫存器組 (ring-structure register file)、及 (3)階層式超長指令字元編碼

(hierarchical VLIW encoding)。

.

3. 研究方法與成果

3.1 Proposed VLIW DSP Architecture

Programmable embedded solutions are attractive for their less development

efforts, the upgradability to support new standards and possibly field software patches.

These factors reduce the time-to-market, extend the time-in-market, and thus make

the greatest profit. Today’s media processing demands extremely high computations

with real-time constraints in the audio, image or video applications. Instruction

parallelism is exploited to speed up the high-performance microprocessors.

Compared to the dynamically hardware-scheduled superscalar processors, VLIW

machines [1] have low-cost compiler scheduling with deterministic execution time

and thus become the trends of high-performance DSP processors. But VLIW

processors are notorious for their poor code density, because the unused instruction

slots must be filled by NOP. The situation gets worse when the parallelism is limited.

Variable-length VLIW [2] eliminates NOP with alternative functional unit (FU) codes

for run-time instruction dispatch and decoding, compared to the conventional

position-coded VLIW processors (i.e. each FU has a corresponding bit-field in the

instruction packet). Indirect VLIW [3] has an addressable internal micro-instruction

memory (i.e. the programmable VIM) for the instruction packets. The RISC-like

instruction words in existing packets can be reused to synthesize new packets to

reduce the instruction bandwidth. In addition to the code density problem, the

complexity of the register file (RF) grows exponentially [4] as more and more FU are

integrated on a chip, which operate concurrently to achieve the performance

requirements. The RF is frequently partitioned for execution clusters [2] with

explicit interconnection networks among the clusters to significantly reduce the

complexity at the cost of small performance penalty.

Fig 1 depicts the 2-tier instruction processing with separate control and data

manipulations, which effectively smoothes the instruction flow to the DSP datapath.

The proposed DSP is a four-way VLIW processor with two load/store units and two

ALU/MAC units. The instruction dispatcher handles zero-overhead looping and the

unconditional branches (e.g. jumps and traps) transparently to the datapath, which

receives an instruction packet (including four RISC-like instruction words) per cycle,

regardless of the control flow, except the conditional branches (data-dependent

control), which need the cooperation with the control/LS FU (instruction field 0) of

the datapath. With the proposed ring-structure RF for efficient data exchange among

FU, the proposed DSP processor can easily achieve its peak performance of four

16-bit data operations per cycle, or fifteen RISC-type operations per cycle (including

four effective data manipulations, four data generations, four address updates, and

three branch controls).

Ring-structure RF

Instruction Dispatcher
(hardware decompression)

Control
LS

ALU
MACLS ALU

E_MAC

datapath

Assembly Program

Assembler/Linker
(software compression)

Instruction Set Simulation

Fig 1 2-tier instruction processing

In addition to the general assembling and linking, our code generation tool takes

the responsibility for the code compression, while the dispatcher dynamically

decompresses the instruction packets. The proposed hierarchical VLIW encoding

recodes the compressed variable-length instruction packets to simplify the target

address calculation in the control flow for a fixed-length header and the remnant

codes, which are stuffed from the beginning and the end respectively into a long

fixed-length instruction bundle. The linker assigns each label in the user’s assembly

program the bundle number with the packet offset, instead of the target address of the

packet directly to simplify control manipulations. Note that the symbolic

instruction-set simulation in the 2-tier instruction processing can be conducted

independently from the instruction encoding and compression schemes in the

implementations.

3.2 VLIW Datapath with SIMD Capability

3.2.1 Ring-structure register file

A centralized register file (RF) provides storage for and interconnects to each

functional unit (FU) in a general manner and each FU can read from or write to any

register location. For N concurrent FU, the silicon area of the centralized RF grows

as N 3, the delay as N 3/2, and the power dissipation as N 3 [3]. Thus, the RF will soon

dominate the area, the delay, and the power dissipation in the multi-issue processors

as the number of FU increases. The communication between FU is usually restricted

by partitioning the RF to reduce the complexity significantly with some performance

penalty. In other words, each FU can only read and write a limited subset of

registers. In this project, we partition the centralized RF into 2N sub-blocks and

separate the interconnection from the RF with an explicit switch network. Each FU

can simultaneously access two sub-blocks, one of which is private (i.e. dedicated to

the FU) and the other is dynamically mapped for inter-FU communications.

Therefore, each sub-block only requires the access ports for a single FU. By the way,

the shared sub-blocks are organized in a ring to reduce the control overheads, where

the dynamic mapping is exposed to the VLIW ISA with log2N offset bits and is

directly specified by the programmers for each instruction packet.

The shaded region in Fig 2 shows the ring-structure RF in our proposed 4-way

VLIW DSP processor. Each sub-block has four access ports (2R/2W). Imagine the

four concurrent FU as individual RISC-like processors, and each processor has a

16-element RF. Each RF is partitioned into a private and a shared sub-block, each of

which has eight registers. The shared sub-blocks (i.e. ring registers) are used for

data exchanges among the four FU and are concatenated as a ring with a 2-bit control

to reduce the context for dynamic port mapping. The shared sub-blocks are all

identical and each has eight 32-bit elements (r8~r15). The private sub-blocks (i.e.

local registers) of the control/LS FU have eight 32-bit elements for general-purpose

uses and memory addresses, while those of ALU/MAC have eight 40-bit

accumulators. The port mapping is controlled by the 2-bit ring offset attached to

each instruction packet without any state, which is completely transparent to the FU.

Control / LS LS ALU / MAC ALU /
Enhanced MAC

R0~R7
(private, 32-bit)

R0~R7
(private, 32-bit)

R0~R7
(private, 40-bit)

R0~R7
(private, 40-bit)

R8~R15
(ring, 32-bit)

R8~R15
(ring, 32-bit)

R8~R15
(ring, 32-bit)

R8~R15
(ring, 32-bit)

local
registers

Instruction Dispatcher

24 24 24 24

ring
registers

Ring-structure Register File

Fig 2 Ring-structure register file

3.2.2 SIMD functional units

The ALU/MAC unit can perform two 16-bit ALU operations simultaneously.

Moreover, it supports two concurrent 16-bit MAC operations with 40-bit

accumulators with the instruction

MAC_V ri, rm, rn,

which executes ri�ri+rm.Hi×rn.Hi, and ri+1�ri+1+rm.Lo ×rn.Lo in parallel.

It needs four concurrent accesses to the RF (two reads and two writes respectively).

The index i must be even, with i+1 implicitly specified. Besides, the DSP also

supports powerful double load (store) instructions of the form

LW_D rm, rn, (ri)+j,

which performs two parallel memory accesses (rm�Mem[ri], rn�Mem[ri+1]) with

concurrent address updates (ri�ri+j, and ri+1�ri+1+j). These instructions

require six concurrent RF accesses (including two reads and four writes for loads, or

four reads and two writes for stores). The accesses do not conflict because ri and

ri+1 are local address registers while rm and rn are ring registers that deliver data to

ALU/MAC. They locate in independent register sub-blocks.

Finally, the ALU/enhanced MAC unit supports single-cycle 16-bit complex

MAC/MUL or single-cycle 32-bit MAC/MUL. These instructions exhaust all

multiplication resources (i.e. our DSP totally has four 16-bit multipliers) and prevent

the other ALU/MAC unit from any operation involving multiplication.

3.2.3 Programming model

The assembly syntax for our VLIW DSP starts with the ring offset, followed by

the four RISC-like instruction words to form an instruction packet as

ring offset; i0; i1; i2; i3;.

The summary of our instruction set is available in Appendix.

Fig 3 is an illustrating example of a 64-tap finite-impulse response (FIR) filter

that produces 1,024 outputs. The memory subsystem uses half-word addressing and

the input and output data are 16-bit fractional and 32-bit fixed-point numbers

respectively. The RPT instruction (the repeat instruction for zero-overhead looping;

see line 4 and line 6) is carried out in the instruction dispatcher and consumes no

execution cycle of the datapath. Note that only two-level loop nesting is allowed in

our current implementation.

The inner loop (line 7-8) loads four 16-bit inputs and four 16-bit coefficients into

two 32-bit r8 and two 32-bit r9 with the two SIMD LS units respectively, while the

address registers (two r0 and two r1) are updated simultaneously. In the meanwhile,

the two ALU/MAC units perform 16-bit SIMD MAC operations of the form

MAC_V r0, r8, r9

for four taps (i.e. r0�r0+r8.Hi×r9.Hi, and r1�r1+r8.Lo× r9.Lo for each

ALU/MAC). After summing up the 32 32-bit products with 40-bit accumulators, r0

are r1 are added together and rounded to the 32-bit r8 in the ring registers. Finally,

two 32-bit outputs are stored in the memory subsystem by the two LS units via r8.

In this FIR example, the outer loop (line 5 and line 7-12) can produce two filter

outputs in 35 cycles. In other words, the proposed DSP can compute 3.66 taps every

cycle.

The conditional branches in our DSP processor evaluate the conditions through

the register ports of control/LS FU, which execute in parallel with the succeeding

instruction packet. Therefore, NOP must be inserted if the access port conflicts.

1 0; MOV r0,COEF; MOV r0,COEF; MOV r0,0; MOV r0,0;
2 0; MOV r1,X; MOV r1,X+2; NOP; NOP;
3 0; MOV r2,Y; MOV r2,Y+4; NOP; NOP;
4 RPT 512,8;
5 0; LW_D r8,r9,(r0)+2; LW_D r8,r9,(r0)+2; MOV r1,0; MOV r1,0;
6 RPT 15,2;
7 2; LW_D r8,r9,(r0)+2; LW_D r8,r9,(r0)+2; MAC_V r0,r8,r9; MAC_V r0,r8,r9;
8 0; LW_D r8,r9,(r0)+2; LW_D r8,r9,(r0)+2; MAC_V r0,r8,r9; MAC_V r0,r8,r9;
9 2; LW_D r8,r9,(r0)+2; LW_D r8,r9,(r0)+2; MAC_V r0,r8,r9; MAC_V r0,r8,r9;

10 0; MOV r0,COEF; MOV r0,COEF; MAC_V r0,r8,r9; MAC_V r0,r8,r9;
11 0; ADDI r1,r1,-60; ADDI r1,r1,-60; ADD r8,r0,r1; ADD r8,r0,r1;
12 2; SW (r2)+4,r8; SW (r2)+4,r8; MOV r0,0; MOV r0,0;

Fig 3 Example: 64-tap FIR Filter

3.2.4 ISA per formance with exposed r ing-structure RF

This section evaluates the performance degradation due to the access restrictions

of the ring-structure RF, where the port mapping is under the direct control of the

programmers. We have constructed an instruction-set simulator for the proposed

4-way VLIW DSP processor following the assembly syntax described in Section 3.4.

Table 1 Performance comparison

TI
C’55x [5]

TI
C’64x [2]

NEC
SPXK5[6]

Intel/ADI
MSA [7]

Proposed

FIR NT/2 NT/4 NT/2 NT/2 NT/4
FFT 4,768 2,403 2,944 3,176 2,340

Viterbi
1

(0.4)
N.A. 1 (1) 1 (N.A.) 1 (0.84)

ME N.A. 2 2 4 2

Table 1 summarizes the performance comparisons of the state-of-the-art

high-performance DSP processors and the proposed ISA with the exposed

ring-structure RF. The second row shows the number of cycles required for

N-sample T-tap FIR filtering, which indicates the on-chip MAC resources. The third

row lists the performance of the radix-2 256-point fast Fourier transform (FFT),

which is measured in the number of execution cycles. The maximum ACS

(add-select-compare) operations per cycle are given in the fourth row, which is the

kernel of the Viterbi algorithm. The numbers in parentheses show the results that

consider the load/store overheads when the depth is 16. The performance of TI

C’64s is not included because it has a specific Viterbi coprocessor. Finally, the last

row compares the performance of the motion estimation under the MAE (mean

absolute error) criteria, which is measured in pixels per cycle. The simulation shows

that the performance of our proposed DSP processor is comparable with the

state-of-the-art DSP for various benchmarks if the dataflow can be appropriately

arranged through the ring-structure RF.

3.3 Hierarchical VLIW Encoding

The poor code density of the VLIW processors comes from the redundancy

inside (1) the fixed-length RISC-like instruction words because most operations do

not actually need all control bits, and (2) the position-coded instruction packet, where

NOP must be inserted in the corresponding fields of idle functional units (FU). HAT

[8] is an efficient variable-length instruction format to solve the first problem with

simple control flow. We solve the second one with an explicitly specified ‘valid’

bit-field of the instruction packets to remove all NOP codes. Each FU has a

correspondent bit in ‘valid’ to indicate whether it is idle. The variable-word

instruction packets with the variable-length RISC-like instruction words are then

packed into a large fixed-length bundle for easy instruction accesses. The

instruction encoding is described in Section 4.1 with complete instruction formats in

Appendix, of which the layout is for simple decoding illustrated in Section 4.2.

3.3.1 Instruction format

A variable-length RISC-like instruction word is divided into a fixed-length

‘head’ and a variable-length ‘tail’ as HAT [8] to deliver the control information on

demand for the instruction and execution pipelines arranged as Fig 4(c). Fig 7(a)

and (b) in Appendix show the instruction formats for the load/store, and ALU/MAC

units in our DSP. The effective instruction words in an execution cycle (i.e. without

NOP codes) are packed into an instruction packet with a fixed-length control ‘cap’.

The fixed-length caps and the variable-length packets are then placed from the

beginning and the end of the 1024-bit instruction bundle respectively as depicted in

Fig 4 (a). For each instruction packet, the fixed-length heads are placed in order

ahead of the variable-length tails.

 In our 4-way VLIW DSP, the cap is a 12-bit control word including the

aforementioned 4-bit ‘valid’ and the 2-bit ring offset. Because an instruction bundle

contains various number of instruction packets, the leading two bits are used to detect

the bundle end. Moreover, they help to recognize the zero-overhead flow controls

before the detailed packet decoding. Finally, the total length of the tails is attached,

to easily locate the next instruction packet for the pipelined instruction dispatcher.

Fig 4(b) shows the packet cap format.

Cap
Cap

Cap H0H2T0T2

instruction packet

1,024-bit instruction bundle

Valid Tail Length Ring

12-bit

2-bit 4-bit 4-bit 2-bit

00: VLIW instruction
10: RPT (repeat) instruction
01: other control instructions
11: end of bundle

instruction
pipelineHeads

Heads
Tails

Tails

Read
Read EXE/

MEM

EXE/
MEM Write

Write
execution
pipeline

00

(a)

(b) (c)

Fig 4 Instruction bundle

The instruction dispatcher handles the control instructions, which have

fixed-length caps and variable-length tails, but without heads as depicted in Fig 7(a).

Branch instructions re-direct the instruction flow to a new instruction bundle with the

packet index. To easily locate the target instruction packet, the pointer for the first

instruction head is also available in the instruction encoding. Our first DSP

implementation has 128 instruction memory pages, each of which contains 256

bundles (32 Kbytes). In other words, the maximum instruction memory is 4 Mbytes.

3.3.2 Decoder with incremental/logar ithmic shifter s

To extract from the instruction bundle the appropriate bit fields for decoding is

complex, especially for the variable-length instruction packets. Instead of large

multiplexers, we utilize incremental and logarithmic shifters shown in Fig 5, where

the decoder operates only on the fixed positions. In the simulations, a bundle

contains 16~17 packets in average and thus we limit the number of packets in a

bundle to 32 in our implementation. Thus, the cap decoder only needs to examine

the leading 14 bits of the 386-bit shifter, which shifts out one 12-bit cap constantly

every cycle. The four multiplexers at the right-hand-side Fig 5 shift out the

fixed-length heads depending on the ‘valid’ bits of the cap. The logarithmic tail

shifter follows to shift out all tails of the instruction packet. In brief, the head/tail

shifter is aligned to the next instruction packet at succeeding clock cycle as the 12-bit

cap shifter. Finally, for branch instructions, two coarse logarithmic shifters are used

to align the new instruction bundle with the index and the packet pointer respectively.

Note that the cap and head/tail shifters contain overlapped bits because of the

non-deterministic boundary between caps and packets.

32KByte On-chip Instruction Memory
(including 256 instruction bundles)

Cap shifter (12-bit)

Cap buffer (384-bit)

Cap decoder

12+2

384

H0 shifter (16-bit)

H1 shifter (16-bit)

H2 shifter (12-bit)

H3 shifter (12-bit)

Tail & fine branch shifter (0~60-bit)

HT buffer (928-bit)

Tail
decoder

928

16

16

12

12

Coarse
branch shifter

(0~896-bit)

928

60

Head
decoder

2nd/3rd pipeline
stages

2nd/3rd pipeline
stages

Cap decoding
Cap/HT buffer alignment

Head dispatching

Cap decoding
Cap/HT buffer alignment

Head dispatching

928384

Coarse
branch shifter

(0~360-bit)

Fig 5 Instruction dispatcher

3.3.3 Code compression

Actually, the HAT format has already been extended for VLIW processors [9].

The major distinction between our proposed hierarchical VLIW encoding and

VLIW-HAT is that we use the explicit ‘valid’ bits in the cap to maintain the

position-coded VLIW that enables distributed decoding, instead of individual dispatch

codes with a complex centralized decoder. For an N-way VLIW processor, our

approach uses N ‘valid’ bits for each packet to dispatch its instruction words. By

contrast, VLIW-HAT requires log2(N+1) bits for each packet to indicate the number

of active FU and additional log2N bits of each effective instruction word for FU

mapping. Assume the average number of instruction words in a packet is P (0�P�N),

and the number of bits for instruction dispatch in VLIW-HAT is log2(N+1)+P log2N.

Thus, VLIW-HAT has better compression ratio only for codes with extremely low

parallelism. Moreover, we use the 2-bit control in the cap to indicate the bundle end

instead of specifying the number of packets for each bundle as VLIW-HAT, which

reduces some bits further.

Table 2 summarizes the code sizes for the benchmarks in Table 1 with different

coding schemes. The original codes contain 24-bit fixed-length RISC-like

instruction words, and an instruction packet has 98 bits including the 2-bit ring offset.

VLIW-HAT has a 6-bit packet number in each bundle and a 3-bit instruction number

in each packet, and the instruction formats are very similar to those in Appendix.

Our proposed scheme has better compression ratio for all cases. Moreover, it has

better layout to simplify the decoding than VLIW-HAT.

Table 2 Code size comparison

Original VLIW-HAT [9] Proposed
FIR 2,450 1,452 (59%) 1,354 (55%)
FFT 39,298 23,726 (60%) 22,214 (56%)

Viterbi 4,998 3,610 (72%) 3,414 (68%)
ME 2,156 1,194 (55%) 1,086 (50%)

3.4 Silicon Implementation

We have implemented in Verilog RTL the ring-structure RF for the proposed

4-way VLIW DSP and the centralized one with the same number of registers. The

designs are synthesized using Synopsys with 0.35ìm cell library and automatically

placed and routed in 1P4M CMOS technology using Apollo. The results are

summarized in Table 3. Our approach reduces the delay and the area by factors of

4.42 and 87.37 respectively. PowerMill is used to estimate the power dissipation of

the ring-structure RF to perform FFT at 100 MHz. We do not have the power

measure for the centralized RF due to the limited tool capability.

Table 3 Comparison of RF structures

Centralized RF Ring-Structure RF
Delay 38.46 ns 8.71 ns

Gate Count 591K 48K
Area 17.76mm×17.76mm 1.9mm×1.9mm
Power N.A. 356mW @3.3V 100MHz

32Kbyte Instruction Memory
(256 1024-bit bundles)

32Kbyte Data Memory
(4 banks)

Instruction
Dispatcher

Instruction
Decoder

ALU/eMACALU/MACL/SL/S

Local Registers

4-by-4 Switch Network

Ring Registers

Fig 6 Layout of the proposed VLIW DSP

Fig 6 shows the layout of our trial implementation of the proposed 4-way VLIW

DSP processor with 32-Kbyte data and 32-Kbyte instruction memories. The

processor is pipelined into five stages (3-stage instruction pipeline and 3-stage

execution pipeline with one overlapping stage) and operates at 71.43 MHz. The

estimated gate count is 552,492 (133,992 for core only) with 9mm×9mm chip area.

4. 結論與討論

In this project, we design an efficient VLIW DSP architecture for baseband

processing, where the two major weaknesses of VLIW processors are effectively

improved. We propose a novel ring-structure register file (RF), which saves 91.88%

silicon area of a centralized one, and reduces its access time by 77.35%. The

simulation shows that the ISA with the exposed ring-structure RF has comparable

performance for various DSP kernels with the state-of-the-art DSP processors. The

preliminary results of our trial implementation are very promising. We are currently

working on the custom designs of the register sub-blocks, the 4-by-4 switch network,

and critical components of the datapath. Extensive clock gating will be applied to

reduce the power.

Besides efficient datapath designs, we also improve the poor code density with

the proposed hierarchical VLIW encoding, which reduces redundant bits with

variable-length instruction words and NOP removal. Our simulation shows the

proposed encoding scheme reduces 32%~50% code sizes. Finally, there still exists

redundancy between instruction packets due to loop unrolling and software pipelining

techniques [1], which improve the instruction-level parallelism. The integration of

differential encoding scheme [10] will be studied to remove the repetitive codes for

the unrolled loops to further improve the compression ratio.

參考文獻

[1] J. L Hennessy, and D. A. Patterson, Computer Architecture – A Quantitative
Approach, 3rd Edition, Morgan Kaufmann, 2002

[2] TMS320C64x DSP Library Programmer's Reference, Texas Instruments Inc., Apr
2002

[3] G. G. Pechanek and S. Vassiliadis, "The ManArray embedded processor
architecture," Euromicro Conference, vol.1, pp.348-355, September, 2000

[4] S. Rixner, W. J. Dally, B. Khailany, P. Mattson, U. J. Kapasi, and J. D. Owens,
“Register organization for media processing,” International Symposium on High
Performance Computer Architecture (HPCA), pp.375-386, 2000

[5] TMS320C55x DSP Programmer’s Guide, Texas Instruments Inc., July 2000
[6] T. Kumura, M. Ikekawa, M. Yoshida, and I. Kuroda, “VLIW DSP for mobile

applications,” IEEE Signal Processing Magazine, pp.10-21, July 2002
[7] R. K. Kolagotla, et al, “A 333-MHz dual-MAC DSP architecture for

next-generation wireless applications,” IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP 2001), vol. 2, pp.1013-1016,
May 2001

[8] H. Pan and K. Asanovic, “Heads and tails: a variable-length instruction format
supporting parallel fetch and decode,” International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems (CASES 2001), Nov 2001

[9] H. Pan, High-Performance, Variable-Length Instruction Encodings, Master Thesis,
MIT, 2002

[10] G. Fettweis, M. Bolle, J. Kneip, and M. Weiss, “OnDSP: a new architecture for
wireless LAN applications,” Embedded Processor Forum, May 2002

[11] P. Lapsley, J. Bier, A. Shoham, and E. A. Lee, DSP Processor Fundamentals –
Architectures and Features, IEEE Press, 1996

[12] Y. H. Hu, Programmable Digital Signal Processors – Architecture, Programming,
and Applications, Marcel Dekker Inc., 2002

附錄
Instruction set summary

Mnemonic Action

INSTRUCTION DISPATCHER

RPT Repeat the following m packets n times
J Jump; unconditional branch

JAL Jump and link
JR Jump register

BNEZ Branch on not equal zero
TRAP Trap; system call

COMMON TO ALL FIELDS

NOP No operation
ADDI Add immediate
XOR Exclusive OR

MOV32 Move 32-bit immediate

FIELD 0/1

LH / SH Load/store half word
LW / SW Load/store word

LH_D / SH_D Double load/store halfword
LW_D / SW_D Double load word

LH_V / SH_V (SIMD) load/store halfword vector

FIELD 2/3

MUL 16-bit Hi/Lo multiply
MAC 16-bit Hi/Lo multiply & accumulate
ADD Add
SUB Subtract
AND AND

OR OR
SLL Shift left logical
SRL Shift right logical
SRA Shift right arithmetic
BF2 Radix-2 butterfly

MUL_V (SIMD) 16-bit multiply with 32-bit result
MUL_16V (SIMD) 16-bit multiply with 16-bit result

MAC_V (SIMD) 16-bit multiply with 40-bit accumulate
ADD_V (SIMD) 16-bit add
SUB_V (SIMD) 16-bit subtract
ABS_V (SIMD) absolute value
SRA_V (SIMD) shift right arithmetic
MIN_V (Subword) select the small element

MAX_V (Subword) select the large element
PACK Merge low 16-bit of two registers

SPECIFIC TO FIELD 3

CMUL 16-bit complex multiply with 32-bit result
CMUL_16V 16-bit complex multiply with 16-bit result

CMAC 16-bit complex multiply with 40-bit accumulate
MUL32 32-bit multiply

MAC32 32-bit multiply & accumulate

10 repeat # instr #RPT

00 000000 syscall #TRAP 0001

01 bundle #00 page #J index head pointer

01 bundle #01 page #JAL index head pointer

01 Rs10JR unused

01 bundle offset11 RsBNEZ index head pointerRing

Cap (12-bit) Tail (4~16-bit)

unused

VLIW format

(a)

00 Rsaddr_offset func: 00(LH), 01(LW), 10(SH), 11(SW)Rdfunc

01 Rd_0 addr_offsetRd_1func func: 00(LH_D), 01(LW_D), 10(SH_D), 11(SW_D)Rs

100 Rs_1 Rdf func: 0(LH_V), 1(SH_V)Rs_0 ad_offset_0 ad_offset_1

1101 Imm.RsADDI Rd

111 Imm.uMOV32 24-bit Imm.

1100 Rs_1XOR RdRs_0

Tail (0~24-bit)Head (16-bit)

L/S

vector L/S

double L/S

Rd

Imm.

u

(b)

00 Rs_0Rs_1 func: 00(ADD),01(SUB),10(ADD_V),11(SUB_V)Rdfunc

unuse

Tail (0~28-bit)Head (12-bit)

add/sub

0100 Rs_0Rs_1 Rdlogical func

0110 funcshamtshift Rs

0111 RdADDI Rs Imm.

shamt func: 00(SLL),01(SRL),10(SRA),11(SRA_V)

111 Imm.MOV32 24-bit Imm.Rd

110 Rd Rs fu func: 0(MAC), 1(MUL)10multiply

110 Rd Rs funcu 0min/max func: 00(MIN_V), 01(MAX_V), 10(ABS_V)

10 Rdmac Rs_0 func: 0(MAC_V), 1(CMAC)

func: 00(AND), 01(OR), 10(XOR)

0101 Rs_0Rs_1 Rdmultiply func func: 00(MUL_V), 01(MUL16_V)
10(CMUL), 11(CMUL16)

Rs_1

Rs_1 Rdother ALU func func: 00(PACK), 01(BF2)Rs_0

f

0101 u

u0

1

u

u

u

(c)

Fig 7 Instruction format for (a) instruction dispatcher, (b)load/store, and (c)

ALU/MAC functional units

	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8
	page9
	page10
	page11
	page12
	page13
	page14
	page15
	page16
	page17
	page18
	page19
	page20
	page21
	page22
	page23
	page24
	page25
	page26
	page27

