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The objective of this project is to study

Loop Unrolling and design an x86 microprocessor with
data-flow engine — DF86. We will design the

micro-architecture of the microprocessor using

a data-flow kernel, and verify the design by

simulation and emulation. Finally, we will

build a prototype using FPGAs. In the

secondary year, we will extend approach our



project further to advance the DF86

performance.

Superscalar is the mainstream of the

contemporary  processors  for  improving
performance. Fetching many instructions in a
single cycle is an important ability of

superscalar processors. However, in a CISC
architecture, the variable length of instructions
makes fetching multiple instructions in a cycle
very difficult. The limited fetch rate may limit
the performance of a CISC superscalar
processor. Because of the special behavior of
loops, many techniques have been proposed to
increase the fetch rate for loops, such as Loop
Cache and Loop Buffer. These techniques are
proposed to save the instruction fetch energy,
but not to exploit instruction parallelism. On
the contrary, loop unrolling is a compiler
technique that exploits the instruction
parallelism by instruction scheduling, but
cannot increase the fetch rate. In this project,
we propose a mechanism, called
Multi-iteration Dataflow Execution for Loops
for loop. This mechanism is designed both to
increase the fetch rate and to exploit the
instruction parallelism for simple loops. It
splits a loop into two parts, the loop control
statement and the loop body, and translates the
loop body into dataflow graph. Then, it tries to
execute multiple iterations in  parallel.
According to our simulation results, the issue
rate of simple loops achieves the ideal
performance of superscalar processors when
we execute three iterations in parallel.

To achieve high performance, contemporary
processors rely on exploiting ILP (instruction
level parallelism). For superscalar processors,
they exploit ILP through executing many
instructions in a single cycle. However, the
performance of a superscalar CISC (Complex

Instruction Set Computing) processor is limited
by the fetch bandwidth because of the variable
length of x86 instructions. To fetch more x86
instructions in, many techniques have been
proposed. For example, AMD series products
implement instruction identification by using
pre-decode information in the instruction cache
[1][2]. However, the simulation result shows
that the upper bound of the fetching rate is
about 4.5 x86 instructions per cycle [3]. It is
obvious that if the fetcher of a processor can
only supplies 4 or 5 x86 instructions per cycle,
the performance of the processor is also
bounded to this number.

Although many techniques have been
proposed to deal with loops, yet most of them
did not consider both of the ILP exploiting and
the fetch bandwidth increasing. For examples,
loop unrolling is a compiler technique to
exploit the ILP in loops, but it does not work to
increase the fetch bandwidth; loop buffer and
loop cache are hardware techniques that
proposed to increase the fetch bandwidth for
the instructions in loops, but the object of these
techniques is not to exploit the ILP in
programs. We propose a dataflow mechanism
for an x86 processor. It is designed to improve
the fetch bandwidth and to exploit the ILP for
simple loops. A simple loop is a loop that has
no function call and any other loop in it. There
are two execution modes in our design,
dataflow and superscalar execution mode.
When a program is executed in superscalar
mode, the proposed mechanism analyzes the
loops dynamically and tries to translate simple
loops into dataflow graphs. Once any simple
loop is detected and the dataflow graph is
created, it switches the superscalar mode to the
dataflow mode until the end of the loop
execution. We also store the created dataflow
graphs, because loops may be reexecuted. If
we detect the entry of a simple loop, this loop
can be executed in dataflow immediately.



In this report, we present the design of
multi-iteration execution for loops in CISC
programs by applying dataflow concept. After
the extraction of a loop, we need a mechanism
to check the validity of each iteration execution.
Therefore, there is a Loop Controller to hold
the information of the loop control statement
and to determine if the execution of iterations
is legal. Moreover, the controller also initiates
and rolls the multi-iteration execution for loops.
When loops are executed with the proposed
mechanism, all needed instructions are from
the dataflow graphs stored in Loop Frames.

Figure 3-1 shows the architecture of the
processor that has two execution modes,
superscalar and dataflow execution mode.

Figure 3-1 shows the flowchart for the
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operation of this two-mode architecture.

Figure 3-2 shows the flowchart for the

operation of thistwo-mode architecture.
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Figure 3- 2 Flowchart for the operation
of the two-mode architecture.

Step 1: When instructions are fetched, we
compare their program counter with the
loop entries that stored in Loop Frames.
This comparison determines if it is
possible a loop that we stored before. If
any matching pair exists, the dataflow
graph is loaded and the system is
switched to the dataflow execution for the
loop. Otherwise, these instructions are
still executed in the superscalar mode.

Step 2: After the instruction execution, if it
generates a backward NPC (next program
counter), Semantic Analyzer assumes that
it is a loop entry and we start the
dataflow graph creation.

Step 3: After the instruction execution, if the
NPC is not the entry of the loop, it
represents that the semantic analysis and
the dataflow graph creation are not
finished yet.

Step 4: If the condition of Step 3 is true and
Semantic Analyzer recognizes it is a loop
by semantic analyzing, the program will
switch to the dataflow execution mode.
Otherwise, it means that it is not a loop
and the created dataflow graph is flushed.

From the simulation result, we know that
if we apply the proposed mechanism on a
scalar processor, the performance is worse than



that of an ideal superscalar processor. The
main reason is that the percentage ofthe
simple loops in the programs is nothigh
enough. However, for the x86 sperscalar
processors, it is very difficult to design a
fetcher that can fetch three or more x86
instructions per cycle. To reduce the hardware
complexity of the instructions fetcher, various
fetching rules are defined in the contemporary
x86 processors. Unfortunately, the fetching
rule will reduce the fetching rate and the
performance of the processors. Figure 3-4
shows the performance of some commercial
x86 products, and none of their issue rates is
greater than 1.5 instructions per cycle.
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Figure 3-3 Performance simulation for the
execution of the benchmark programs under a
scalar processor with the proposed mechanism.

Figure 3-4 The performance of some
commercia products.

Recall that, over 80% of the dynamically
executed instructions of the benchmark
program compress are within simple loops.
From Figure 3-3, the performance of compress
may exceed the ideal issue rate of superscalar
processors easily. It shows that the proposed
mechanism is good for some special
applications, such as the mpeg 4 and the
scientific ~ computation, in  which  the
percentages of loops in programs are high.

In this project, we will extend approach our
project further to advance the DF86
performance. We have constructed a simulator

to evaluate the parameters of our mechanisms,

and have excellent results. These show that the

DF86 microarchitecture is better than other
current microprocessors’. This project is fully

matched with the proposal requirements.
There are still several researches could be

further studied. First, according to the
discussions above, we know that the compiler

support can reduce the hardware cost and make

the proposed mechanism more practical. For

compilers, it is much easy to achieve the goals

of Semantic Analyzer.
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