
行政院國家科學委員會補助專題研究計畫成果報告
※※※※※※※※※※※※※※※※※※※※※※※※※
※ ※
※ 具資料流引擎之 x86 微處理機設計(II) ※
※ ※
※※※※※※※※※※※※※※※※※※※※※※※※※

計畫類別：ˇ個別型計畫 □整合型計畫

計畫編號：NSC89-2213-E-009-221

執行期間： 89年 8月 1日至 90年 7月 31日

計畫主持人：單智君 博士

共同主持人：鍾崇斌 博士

本成果報告包括以下應繳交之附件：
□赴國外出差或研習心得報告一份
□赴大陸地區出差或研習心得報告一份
□出席國際學術會議心得報告及發表之論文各一份
□國際合作研究計畫國外研究報告書一份

執行單位：國立交通大學資訊工程學系

中 華 民 國 90年 10月 29日

具資料流引擎之 x86微處理機設計(II)

Design of an x86 microprocessor with data-flow engine (II)
記畫編號：NSC89-2213-E-009-221

執行期限：89年 8月 1日~90年 7月 31日

主持人：單智君

共同主持人：鍾崇斌

計畫參與人員：邱日清、徐日明、劉嘉修、林育得

E-MAIL ：jjshann@csie.nctu.edu.tw

一、中文摘要
 本計畫的目標在於完成具資料流引擎
之 x86 微處理器（DF86）結構設計相關問
題的研究與探討。我們擬於三年內研究以
資料流引擎為核心的微架構，以模擬及實
作驗證設計的可行性，並提出一個測試原
型。第二年的研究方向則將延伸第一年的
研究，進行 DF86 微架構的效率化的機構
研究。
超純量微處理器是目前最被廣泛使用
的高效能計算機架構。為了達到提高效能
的目的，指令抓取率在此類微處理器的設
計中是相當重要之一環。但由於複雜指令
集（如：x86）的指令長度並不固定，使得
指令抓取效率受到了嚴重的限制，進而限
制了 CISC 超純量微處理器的效能。由於
迴圈的特殊行為模式，在過去有許多的機
制試圖透過迴圈指令之收集以提升指令之
抓取效率，例如 Loop Cache 與 Loop Buffer
等。但是此類的技術對指令平行度的提升
並無直接之好處。而針對迴圈指令平行度
提升的技術中最重要的為 Loop Unrolling。
此技術是透過編譯器之協助對迴圈內的指
令重新排序以開發迴圈中的指令平行度，
但對於指令之抓取效率則無幫助。因此，
本期計劃提出了一個處理迴圈的新機制，
運用資料流觀念達成迴圈中多個疊代並行
執行之目的，稱為多疊代資料流執行機制

(Multi-iteration Dataflow Execution for
Loops)。希望藉由動態地收集迴圈中的指
令以減低 x86 指令抓取的困難，進而開發
迴圈中指令之平行度。設計的想法主要是
動態地將迴圈的控制資訊與迴圈本體分
離，並將迴圈本體內的指令轉成資料流
圖。之後，再利用迴圈的控制資訊安排迴
圈中多個疊代以資料流的方式並行執行。
根據模擬結果，此機制在並行三個疊代
時，其執行迴圈所得到之指令平行度已相
當於理想的超純量微處理器所能達到之飽
和值。

關鍵詞：x86 指令集、微處理機、資料流
架構、超純量架構、資料流圖、高頻寬資
料存取

Abstract

The objective of this project is to study
and design an x86 microprocessor with
data-flow engine – DF86. We will design the
micro-architecture of the microprocessor using
a data-flow kernel, and verify the design by
simulation and emulation. Finally, we will
build a prototype using FPGAs. In the
secondary year, we will extend approach our

project further to advance the DF86
performance.

Superscalar is the mainstream of the
contemporary processors for improving
performance. Fetching many instructions in a
single cycle is an important ability of
superscalar processors. However, in a CISC
architecture, the variable length of instructions
makes fetching multiple instructions in a cycle
very difficult. The limited fetch rate may limit
the performance of a CISC superscalar
processor. Because of the special behavior of
loops, many techniques have been proposed to
increase the fetch rate for loops, such as Loop
Cache and Loop Buffer. These techniques are
proposed to save the instruction fetch energy,
but not to exploit instruction parallelism. On
the contrary, loop unrolling is a compiler
technique that exploits the instruction
parallelism by instruction scheduling, but
cannot increase the fetch rate. In this project,
we propose a mechanism, called
Multi-iteration Dataflow Execution for Loops
for loop. This mechanism is designed both to
increase the fetch rate and to exploit the
instruction parallelism for simple loops. It
splits a loop into two parts, the loop control
statement and the loop body, and translates the
loop body into dataflow graph. Then, it tries to
execute multiple iterations in parallel.
According to our simulation results, the issue
rate of simple loops achieves the ideal
performance of superscalar processors when
we execute three iterations in parallel.

二、緣由與目的

To achieve high performance, contemporary
processors rely on exploiting ILP (instruction
level parallelism). For superscalar processors,
they exploit ILP through executing many
instructions in a single cycle. However, the
performance of a superscalar CISC (Complex

Instruction Set Computing) processor is limited
by the fetch bandwidth because of the variable
length of x86 instructions. To fetch more x86
instructions in, many techniques have been
proposed. For example, AMD series products
implement instruction identification by using
pre-decode information in the instruction cache
[1][2]. However, the simulation result shows
that the upper bound of the fetching rate is
about 4.5 x86 instructions per cycle [3]. It is
obvious that if the fetcher of a processor can
only supplies 4 or 5 x86 instructions per cycle,
the performance of the processor is also
bounded to this number.
Although many techniques have been
proposed to deal with loops, yet most of them
did not consider both of the ILP exploiting and
the fetch bandwidth increasing. For examples,
loop unrolling is a compiler technique to
exploit the ILP in loops, but it does not work to
increase the fetch bandwidth; loop buffer and
loop cache are hardware techniques that
proposed to increase the fetch bandwidth for
the instructions in loops, but the object of these
techniques is not to exploit the ILP in
programs. We propose a dataflow mechanism
for an x86 processor. It is designed to improve
the fetch bandwidth and to exploit the ILP for
simple loops. A simple loop is a loop that has
no function call and any other loop in it. There
are two execution modes in our design,
dataflow and superscalar execution mode.
When a program is executed in superscalar
mode, the proposed mechanism analyzes the
loops dynamically and tries to translate simple
loops into dataflow graphs. Once any simple
loop is detected and the dataflow graph is
created, it switches the superscalar mode to the
dataflow mode until the end of the loop
execution. We also store the created dataflow
graphs, because loops may be re-executed. If
we detect the entry of a simple loop, this loop
can be executed in dataflow immediately.

三、結果與討論

In this report, we present the design of
multi-iteration execution for loops in CISC
programs by applying dataflow concept. After
the extraction of a loop, we need a mechanism
to check the validity of each iteration execution.
Therefore, there is a Loop Controller to hold
the information of the loop control statement
and to determine if the execution of iterations
is legal. Moreover, the controller also initiates
and rolls the multi-iteration execution for loops.
When loops are executed with the proposed
mechanism, all needed instructions are from
the dataflow graphs stored in Loop Frames.

Figure 3-1 shows the architecture of the
processor that has two execution modes,
superscalar and dataflow execution mode.
 Figure 3-1 shows the flowchart for the

operation of this two-mode architecture.

Figure 3-2 shows the flowchart for the

operation of this two-mode architecture.

Backward PC occur?

Y

Semantic analysis
Dataflow graph creation
Instruction execution in superscalar mode

Loop recognized?

N

Instruction execution
in dataflow execution

Y

N

Fetch next instruction

Loop entry? N

Flush the created dataflow graph

Y

Instruction Fetch

DFG exist?

N

Y
Step 1:

Instruction execution in
superscalar mode

Step 2:

Step 3:

Step 4:

Figure 3- 2 Flowchart for the operation
of the two-mode architecture.

Step 1: When instructions are fetched, we
compare their program counter with the
loop entries that stored in Loop Frames.
This comparison determines if it is
possible a loop that we stored before. If
any matching pair exists, the dataflow
graph is loaded and the system is
switched to the dataflow execution for the
loop. Otherwise, these instructions are
still executed in the superscalar mode.
Step 2: After the instruction execution, if it
generates a backward NPC (next program
counter), Semantic Analyzer assumes that
it is a loop entry, and we start the
dataflow graph creation.
Step 3: After the instruction execution, if the
NPC is not the entry of the loop, it
represents that the semantic analysis and
the dataflow graph creation are not
finished yet.
Step 4: If the condition of Step 3 is true and
Semantic Analyzer recognizes it is a loop
by semantic analyzing, the program will
switch to the dataflow execution mode.
Otherwise, it means that it is not a loop
and the created dataflow graph is flushed.

From the simulation result, we know that
if we apply the proposed mechanism on a
scalar processor, the performance is worse than

Superscalar C
ontroller

Semantic Analyzer

Loop Controller
RF &
MEM

Matching Unit

Node Fetcher

Function Units

Form Token Unit
Reorder Buffer

Loop-carried Dep.
Checking Unit

instruction stream

analyze data

operand data

operand data

retire

registration

apply another iteration

Req & Ack(switch b/t DFG & SS)

controller info.

PC(switch to SS)

DFG Creator

.........

Loop Frame

Loop Frame

Loop Frame

tagsnodes

dest.

inter dep. info

...

signal token value

that of an ideal superscalar processor. The
main reason is that the percentage of the
simple loops in the programs is not high
enough. However, for the x86 sperscalar
processors, it is very difficult to design a
fetcher that can fetch three or more x86
instructions per cycle. To reduce the hardware
complexity of the instructions fetcher, various
fetching rules are defined in the contemporary
x86 processors. Unfortunately, the fetching
rule will reduce the fetching rate and the
performance of the processors. Figure 3-4
shows the performance of some commercial
x86 products, and none of their issue rates is
greater than 1.5 instructions per cycle.

0
1
2
3
4
5
6
7

2 3 4 5 6 7 8

n -iteration execution

IP
C
 o
f p
ro
gr
am
s

perl vortex li m88k go ijpeg gcc compress average

Figure 3-3 Performance simulation for the
execution of the benchmark programs under a
scalar processor with the proposed mechanism.

0

0.5

1

1.5

2

2.5

Pentium Pentium MMX P6 series K5 series K6 series

in
st
ru
ct
io
ns
 /
cy
cl
e

Figure 3-4 The performance of some
commercial products.

Recall that, over 80% of the dynamically
executed instructions of the benchmark
program compress are within simple loops.
From Figure 3-3, the performance of compress
may exceed the ideal issue rate of superscalar
processors easily. It shows that the proposed
mechanism is good for some special
applications, such as the mpeg 4 and the
scientific computation, in which the
percentages of loops in programs are high.

四、計畫成果自評

In this project, we will extend approach our
project further to advance the DF86
performance. We have constructed a simulator
to evaluate the parameters of our mechanisms,
and have excellent results. These show that the
DF86 microarchitecture is better than other
current microprocessors’. This project is fully
matched with the proposal requirements.
There are still several researches could be
further studied. First, according to the
discussions above, we know that the compiler
support can reduce the hardware cost and make
the proposed mechanism more practical. For
compilers, it is much easy to achieve the goals
of Semantic Analyzer.

五、參考文獻

[1] AMD Corporation, AMD-K6-III
Processor Datasheet, 1999
[2] AMD Corporation, AMD Athlon
Processor Technical Brief, 1999

[3] Jih-Ching Chiu and Chung-Ping Chung,
High-Bandwidth X86 Instruction
Fetching Based on Instruction Pointer
Table, IEE 2001
[4] Arthur H. Venn, Dataflow Machine
Architecture, ACM Computing Surveys,
Vol. 18, No. 4, December 1986
[5] Jurij Silc, Borut Robic and Theo Ungerer,
Processor Architecture, Springer, 1999
[6] Arvind and David E. Culler, Dataflow
Architectures, Annual Reviews in
Computer Science, 1986
[7] J. R. Gurd, C. C. Kirkham, and I. Watson,
The Manchester Prototype Dataflow
Computer, ACM 1985
[8] Toshitsugu Yuba, Toshio Shimada, Kei
Hiraki, and Hiroshi Kashiwagi,
SIGAMA-1: A Dataflow Computer for

Scientific Computations, Computer
Physics Communication 1985
[9] Jack W. Davidson and Sanjay Jinturkar,
Improving Instruction-level Parallelism
by Loop Unrolling and Dynamic Memory
Disambiguation, IEEE 1995
[10] J. W. Davidson and S. Jinturkar,
Aggressive Loop Unrolling in a
Retargetable, Optimizing Compiler,
Proceeding of Compiler Construction
Conference 1996
[11] D. A. Patterson and J. L. Hennessy,
Computer: Architecture A Quantitative
Approach, 2th Ed., Morgan Kaufmann,
1996.
[12] Lea Hwang Lee, Bill Moyer, and John
Arends, Instruction Fetch Energy
Reduction Using Loop Caches for
Embedded Applications with Small Tight
Loops, ACM 1999
[13] Nikolaos Bellas, Ibrahim Hajj,
Constantine Polychronopoulos, and
George Stamoulis, Energy and
Performance Improvements in
Microprocessor Design using a Loop
Cache, IEEE 1999
[14] J. E. Thornton, Design of a Computer: the
Control Data 6600, Glenview, 1970
[15] J. E. Thornton, Parallel Operation in the
Control Data 6600, Proceeding of the Fall
Joint Computers Conference, 1961
[16] Bryan Black, Bohuslav Rychlik, and John
Paul Shen, The Block-based Trace Cache,
IEEE 1999
[17] Eric Rotenberg, Steve Bennett, and James
E. Smith, A Trace Cache
Microarchitecture and Evalution, IEEE
1999
[18] Matt Postiff, Gary Tyson, and Trevor
Mudge, Performance Limits of Trace
Caches, IEEE 1998
[19] Intel Corporation, The Microarchitecture
of Pentium 4 Processor, Intel Technology
Journal 2001

[20] Davis, A. L., A Data Flow Evaluation
System Based on the Concept of
Recursive Locality, Proceedings of
National Computing Conference 1979
[21] Arvind and David E. Culler, Dataflow
Architectures, Annual Reviews in
Computer Science, 1986
[22] Arvind and K. P. Gostelow, The
U-Interpreter, Computer, February 1982

	page1
	page2
	page3
	page4
	page5
	page6

