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一、中文摘要
   本計畫的目標在於完成具資料流引擎
之 x86 微處理器（DF86）結構設計相關問
題的研究與探討。我們擬於三年內研究以
資料流引擎為核心的微架構，以模擬及實
作驗證設計的可行性，並提出一個測試原
型。第二年的研究方向則將延伸第一年的
研究，進行 DF86 微架構的效率化的機構
研究。
超純量微處理器是目前最被廣泛使用
的高效能計算機架構。為了達到提高效能
的目的，指令抓取率在此類微處理器的設
計中是相當重要之一環。但由於複雜指令
集（如：x86）的指令長度並不固定，使得
指令抓取效率受到了嚴重的限制，進而限
制了 CISC 超純量微處理器的效能。由於
迴圈的特殊行為模式，在過去有許多的機
制試圖透過迴圈指令之收集以提升指令之
抓取效率，例如 Loop Cache 與 Loop Buffer
等。但是此類的技術對指令平行度的提升
並無直接之好處。而針對迴圈指令平行度
提升的技術中最重要的為 Loop Unrolling。
此技術是透過編譯器之協助對迴圈內的指
令重新排序以開發迴圈中的指令平行度，
但對於指令之抓取效率則無幫助。因此，
本期計劃提出了一個處理迴圈的新機制，
運用資料流觀念達成迴圈中多個疊代並行
執行之目的，稱為多疊代資料流執行機制

(Multi-iteration Dataflow Execution for 
Loops)。希望藉由動態地收集迴圈中的指
令以減低 x86 指令抓取的困難，進而開發
迴圈中指令之平行度。設計的想法主要是
動態地將迴圈的控制資訊與迴圈本體分
離，並將迴圈本體內的指令轉成資料流
圖。之後，再利用迴圈的控制資訊安排迴
圈中多個疊代以資料流的方式並行執行。
根據模擬結果，此機制在並行三個疊代
時，其執行迴圈所得到之指令平行度已相
當於理想的超純量微處理器所能達到之飽
和值。

關鍵詞：x86 指令集、微處理機、資料流
架構、超純量架構、資料流圖、高頻寬資
料存取

Abstract

The objective of this project is to study 
and design an x86 microprocessor with 
data-flow engine – DF86. We will design the 
micro-architecture of the microprocessor using 
a data-flow kernel, and verify the design by 
simulation and emulation. Finally, we will 
build a prototype using FPGAs. In the 
secondary year, we will extend approach our 



project further to advance the DF86 
performance.

Superscalar is the mainstream of the 
contemporary processors for improving 
performance. Fetching many instructions in a 
single cycle is an important ability of 
superscalar processors. However, in a CISC 
architecture, the variable length of instructions 
makes fetching multiple instructions in a cycle 
very difficult. The limited fetch rate may limit
the performance of a CISC superscalar 
processor. Because of the special behavior of 
loops, many techniques have been proposed to 
increase the fetch rate for loops, such as Loop 
Cache and Loop Buffer. These techniques are 
proposed to save the instruction fetch energy, 
but not to exploit instruction parallelism. On 
the contrary, loop unrolling is a compiler 
technique that exploits the instruction 
parallelism by instruction scheduling, but
cannot increase the fetch rate. In this project, 
we propose a mechanism, called 
Multi-iteration Dataflow Execution for Loops
for loop. This mechanism is designed both to 
increase the fetch rate and to exploit the 
instruction parallelism for simple loops. It
splits a loop into two parts, the loop control 
statement and the loop body, and translates the 
loop body into dataflow graph. Then, it tries to 
execute multiple iterations in parallel. 
According to our simulation results, the issue 
rate of simple loops achieves the ideal 
performance of superscalar processors when 
we execute three iterations in parallel.

二、緣由與目的

To achieve high performance, contemporary 
processors rely on exploiting ILP (instruction 
level parallelism). For superscalar processors, 
they exploit ILP through executing many 
instructions in a single cycle. However, the 
performance of a superscalar CISC (Complex 

Instruction Set Computing) processor is limited 
by the fetch bandwidth because of the variable 
length of x86 instructions. To fetch more x86 
instructions in, many techniques have been 
proposed. For example, AMD series products 
implement instruction identification by using 
pre-decode information in the instruction cache 
[1][2]. However, the simulation result shows 
that the upper bound of the fetching rate is 
about 4.5 x86 instructions per cycle [3]. It is 
obvious that if the fetcher of a processor can 
only supplies 4 or 5 x86 instructions per cycle, 
the performance of the processor is also 
bounded to this number.
Although many techniques have been 
proposed to deal with loops, yet most of them 
did not consider both of the ILP exploiting and 
the fetch bandwidth increasing. For examples, 
loop unrolling is a compiler technique to 
exploit the ILP in loops, but it does not work to 
increase the fetch bandwidth; loop buffer and 
loop cache are hardware techniques that 
proposed to increase the fetch bandwidth for 
the instructions in loops, but the object of these 
techniques is not to exploit the ILP in 
programs. We propose a dataflow mechanism 
for an x86 processor. It is designed to improve 
the fetch bandwidth and to exploit the ILP for 
simple loops. A simple loop is a loop that has 
no function call and any other loop in it. There 
are two execution modes in our design, 
dataflow and superscalar execution mode. 
When a program is executed in superscalar 
mode, the proposed mechanism analyzes the 
loops dynamically and tries to translate simple 
loops into dataflow graphs. Once any simple 
loop is detected and the dataflow graph is
created, it switches the superscalar mode to the 
dataflow mode until the end of the loop 
execution. We also store the created dataflow 
graphs, because loops may be re-executed. If 
we detect the entry of a simple loop, this loop 
can be executed in dataflow immediately.



三、結果與討論

In this report, we present the design of 
multi-iteration execution for loops in CISC 
programs by applying dataflow concept. After 
the extraction of a loop, we need a mechanism 
to check the validity of each iteration execution. 
Therefore, there is a Loop Controller to hold 
the information of the loop control statement 
and to determine if the execution of iterations 
is legal. Moreover, the controller also initiates 
and rolls the multi-iteration execution for loops.
When loops are executed with the proposed 
mechanism, all needed instructions are from 
the dataflow graphs stored in Loop Frames.

Figure 3-1 shows the architecture of the 
processor that has two execution modes, 
superscalar and dataflow execution mode.
 Figure 3-1 shows the flowchart for the 

operation of this two-mode architecture. 

Figure 3-2 shows the flowchart for the 

operation of this two-mode architecture. 
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Figure 3- 2 Flowchart for the operation 
of the two-mode architecture.

Step 1: When instructions are fetched, we 
compare their program counter with the 
loop entries that stored in Loop Frames. 
This comparison determines if it is 
possible a loop that we stored before. If 
any matching pair exists, the dataflow 
graph is loaded and the system is 
switched to the dataflow execution for the 
loop. Otherwise, these instructions are 
still executed in the superscalar mode. 
Step 2: After the instruction execution, if it 
generates a backward NPC (next program 
counter), Semantic Analyzer assumes that 
it is a loop entry, and we start the 
dataflow graph creation.
Step 3: After the instruction execution, if the 
NPC is not the entry of the loop, it 
represents that the semantic analysis and 
the dataflow graph creation are not 
finished yet.
Step 4: If the condition of Step 3 is true and 
Semantic Analyzer recognizes it is a loop 
by semantic analyzing, the program will 
switch to the dataflow execution mode. 
Otherwise, it means that it is not a loop 
and the created dataflow graph is flushed.

From the simulation result, we know that 
if we apply the proposed mechanism on a 
scalar processor, the performance is worse than 
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that of an ideal superscalar processor. The 
main reason is that the percentage of the 
simple loops in the programs is not high 
enough. However, for the x86 sperscalar 
processors, it is very difficult to design a 
fetcher that can fetch three or more x86 
instructions per cycle. To reduce the hardware 
complexity of the instructions fetcher, various
fetching rules are defined in the contemporary 
x86 processors. Unfortunately, the fetching 
rule will reduce the fetching rate and the 
performance of the processors. Figure 3-4
shows the performance of some commercial 
x86 products, and none of their issue rates is
greater than 1.5 instructions per cycle.
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Figure 3-3 Performance simulation for the 
execution of the benchmark programs under a 
scalar processor with the proposed mechanism.
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Figure 3-4 The performance of some 
commercial products.

Recall that, over 80% of the dynamically 
executed instructions of the benchmark 
program compress are within simple loops. 
From Figure 3-3, the performance of compress
may exceed the ideal issue rate of superscalar 
processors easily. It shows that the proposed 
mechanism is good for some special 
applications, such as the mpeg 4 and the 
scientific computation, in which the 
percentages of loops in programs are high.

四、計畫成果自評

In this project, we will extend approach our 
project further to advance the DF86 
performance. We have constructed a simulator 
to evaluate the parameters of our mechanisms, 
and have excellent results. These show that the 
DF86 microarchitecture is better than other 
current microprocessors’. This project is fully 
matched with the proposal requirements.  
There are still several researches could be 
further studied. First, according to the 
discussions above, we know that the compiler 
support can reduce the hardware cost and make 
the proposed mechanism more practical. For 
compilers, it is much easy to achieve the goals 
of Semantic Analyzer.
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