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中文摘要: 
    我們針對此計畫所發展出來的橢圓偏微方程在圓盤上的快速算法，應用到流

體力學解那維爾史托克方程上面。運用巧妙的網格設計，我們成功地避開座標奇

異點的困難，而且也保持整體方法的四階精度。為使時間間距增大，我們在每一

步驟過濾傅立葉係數，在原點附近把旋度的高頻傅立葉係數重設為零，如此可增

加數值方法的穩定性。 
 
關鍵字: 那維爾史托克方程、旋度一流線函數形式、極座標、橢圓方程快速算法。 
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Fourth-order �nite di�erence scheme for the incompressible
Navier–Stokes equations in a disk
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SUMMARY

We develop an e�cient fourth-order �nite di�erence method for solving the incompressible Navier–
Stokes equations in the vorticity-stream function formulation on a disk. We use the fourth-order Runge–
Kutta method for the time integration and treat both the convection and di�usion terms explicitly. Using
a uniform grid with shifting a half mesh away from the origin, we avoid placing the grid point directly
at the origin; thus, no pole approximation is needed. Besides, on such grid, a fourth-order fast direct
method is used to solve the Poisson equation of the stream function. By Fourier �ltering the vorticity
in the azimuthal direction at each time stage, we are able to increase the time step to a reasonable size.
The numerical results of the accuracy test and the simulation of a vortex dipole colliding with circular
wall are presented. Copyright ? 2003 John Wiley & Sons, Ltd.

KEY WORDS: Navier–Stokes equations; vorticity-stream function formulation; polar co-ordinates; fast
Poisson solver; Runge–Kutta method

1. INTRODUCTION

For the past three decades, �nite di�erence approximation of the incompressible Navier–
Stokes equations on Cartesian geometry has been developed and implemented extensively.
However, for the �uid �ow in polar=cylindrical or spherical domain, the relevant literature is
still quite limited. The reason may be attributed to introduce some new additional di�culties
when the governing equations are expressed by those orthogonal curvilinear co-ordinates. For
instance, those di�culties might include the coupling of velocity components, the co-ordinate
singularities, and the restrictive CFL constraint. Let us describe those di�culties brie�y in the
following.
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910 M.-C. LAI

The coupling of velocity components is not unusual even in the case of Cartesian geometry.
This can be seen through the non-linear convection term in the governing equations. For
the case of other orthogonal curvilinear co-ordinates systems, the velocity components are
coupled even in the linear di�usion terms. This can be explained by when the vector elliptic
equation is written in those co-ordinates, the Laplacian acting on the vector �eld results a
coupled system of elliptic equations. Fortunately, this kind of coupling can be eliminated
by applying a similarity transformation to the vector �eld as described in Reference [1] for
the polar=cylindrical co-ordinates. A detailed summary for how to separate the vector elliptic
equations in other di�erent co-ordinates can be found in the book of Quartapelle [2].
The second di�culty arises from the co-ordinate singularities occurring at the origin=centre-

line (r=0) of the polar=cylindrical domain, and the north and south poles (�=0; �) of
spherical domain. It is important to note that the occurrence of those singularities is due to the
representation of the governing equation in those co-ordinates and it is irrelevant to the solution
at those singular points. For simplicity, we will just name those singularities as the ‘poles’
in di�erent domains. In order to capture the solution behaviour near the poles, some suitable
treatments must be employed. For instance, in Reference [3], the authors deduced a new
governing equation which is valid at the centerline in polar=cylindrical domain. This traditional
technique is to use a regular grid with imposing conditions at the poles. Some natural pole
conditions can be found in the book of Canuto et al. [4]. Note that, in �nite di�erence setting,
these pole conditions can be used to approximate numerical boundary values at the poles.
Another technique is to use a uniform grid by shifting a half mesh away from the poles

to avoid placing the grid points directly at the poles; thus, no pole conditions are needed
References [5, 6]. This simple and elegant approach has been successfully applied to simulate
the convective �ow over a sphere [5] and compressible Navier–Stokes equations [6]. Using
this kind of grid, Lai and Wang have been able to develop an e�cient class of second- and
fourth-order accurate fast direct solvers for Poisson=Helmholtz equations on 2D polar and
spherical domains without pole conditions [7, 8].
The third di�culty arising is the severe CFL stability restriction. This is because when

using a uniform grid to discretize the governing equations in polar=cylindrical co-ordinates,
the azimuthal grid resolution is proportional to the distance from the poles. In other words,
the physical mesh spacing of the azimuthal grid points becomes �ner and �ner as the poles
were approached. Thus, near the poles, this leads to an over-resolution in the azimuthal
direction which requires choosing a very small time step to ful�l the CFL constraint for
the time-dependent problem if an explicit time-integration is used. Several techniques were
proposed to overcome this di�culty. For instance, Akselvoll and Moin [9] treated all terms
with derivatives in the azimuthal direction implicitly in the core region (near the pole) but all
other terms are treated explicitly. While in the outer region (away from the pole), the di�usive
terms and the derivatives in the radial direction are treated implicitly but all other terms are
treated explicitly. The idea behind their approach is signi�cant, however, the treatment of the
interface between the two regions and the maintenance of the required accuracy could be
quite complex. Another simple treatment introduced by References [5, 10] is to �lter out the
high wavenumber modes of the dependent variable in the azimuthal direction. This treatment
has the same e�ect to coarsen the grid near the poles thus allowing us to increase the time
step to a reasonable size.
In this paper, we shall present an e�cient �nite di�erence scheme for solving the incom-

pressible Navier–Stokes equations in a two-dimensional disk. The reason that we choose the

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:909–922



FOURTH-ORDER SCHEME FOR NAVIER–STOKES EQUATIONS IN A DISK 911

�ow problem in a disk domain is because it su�ces to have all aforementioned numerical dif-
�culties occurring in higher-dimensional cylindrical and spherical geometries. Note that here
we are not trying to compare or compete with the �nite element or spectral methods for
solving such kind of problems. We simply want to introduce some simple �nite di�erence
treatments for the di�culties such as the co-ordinate singularity and the restrictive CFL con-
straint. Another main feature of our method is the fourth-order accuracy which is su�cient
for most of �ow computations. The rest of the paper is organized as follows. In Section 2, we
formulate the incompressible Navier–Stokes equations using the vorticity-stream function form
in polar co-ordinates. The complete fourth-order numerical scheme for solving the equations
is described in Section 3. A simple fourth-order fast direct solver for Poisson equation in a
disk is reviewed in Section 4. The numerical results are given in Section 5 and followed by
some conclusion.

2. INCOMPRESSIBLE NAVIER–STOKES EQUATIONS

The incompressible Navier–Stokes equations has the standard form

@u
@t
+ u · ∇u+∇p= ��u (1)

∇ · u=0 (2)

where u(x; t) is the �uid velocity, p(x; t) the pressure, and � the �uid viscosity. The �rst
equation describes the conservation of momentum and the second one is the conservation of
mass. In 2D geometry, we can express the Navier–Stokes equations (1)–(2) by so called
the vorticity-stream function formulation. By taking the curl of Equation (1) to eliminate the
pressure gradient term, we have

@!
@t
+ J (!;  )= ��! (3)

where ! is the non-zero z component of the vorticity,  the stream function, de�ned by
u=∇ × ez, and J (!;  ) is the Jacobian determinant. Using this formulation, the velocity
u automatically satis�es the incompressibility constraint (2). By the de�nition of !, we can
easily derive the relation of ! and  as

� =−! (4)

Therefore, the original 2D Navier–Stokes equations (1)–(2) with three primitive variables
now has an alternate formulation described by (3)–(4) with only two unknown variables.
We are interested in the numerical approximations of Equations (3)–(4) in a unit disk

�= {0¡r61; 06�62�}. Thus, it is natural to rewrite the equation by the polar co-ordinates.
The non-linear Jacobian describing the vorticity transport now has the form

J (!;  )=
1
r

[
@ 
@�

@!
@r

− @ 
@r

@!
@�

]
(5)
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912 M.-C. LAI

and the Laplacian operator � is

�≡ @2

@r2
+
1
r

@
@r
+
1
r2

@2

@�2
(6)

The radial and azimuthal velocity components can be recovered from the stream function by
the formulas

ur =
1
r
@ 
@�

; u�=−@ 
@r

(7)

In this paper, we restrict our attention to the �ow inside a unit disk with the no-slip velocity
conditions speci�ed on the boundary; that is, ur = u�=0 at r=1. From the relation of (7),
the boundary conditions for Equations (3)–(4) become

 (1; �)=0;
@ 
@r
(1; �)=0 (8)

So the governing equations consist of Equations (3)–(4) and the boundary conditions (8).
It is interesting to note that there are two boundary conditions for the stream function  but

no boundary condition for the vorticity !. This is troublesome since Equations (3)–(4) are
also coupled by the boundary conditions. There are several di�erent approaches summarized
in Reference [2] to overcome this di�culty. In this paper, we will just use an explicit time
integration to solve Equations (3)–(4), and transfer one boundary condition of the stream
function to the vorticity.

3. NUMERICAL METHOD

3.1. Time integration

We employ a fourth-order Runge–Kutta method for the time integration of Equations
(3)–(4) as

!1 −!n

1
2 �t

+ J (!n;  n)= ��!n; � 1 =−!1;  1(1; �)=0 (9)

!2 −!n

1
2 �t

+ J (!1;  1)= ��!1; � 2 =−!2;  2(1; �)=0 (10)

!3 −!n

�t
+ J (!2;  2)= ��!2; � 3 =−!3;  3(1; �)=0 (11)

K4 =−J (!3;  3) + ��!3

!n+1 =
1
3
(−!n +!1 + 2!2 +!3) +

�t
6

K4 (12)

� n+1 =−!n+1;  n+1(1; �)=0

where the superscript on a variable represents the time step index, and �t is the time step.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:909–922



FOURTH-ORDER SCHEME FOR NAVIER–STOKES EQUATIONS IN A DISK 913

At each Runge–Kutta stage, we discretize both the convection and di�usion terms in the
vorticity equation explicitly such that the vorticity can be computed directly (without solving
any linear system of equations). The spatial derivatives with respect to r and � in both
convection and di�usion terms are approximated by the standard fourth-order centred di�erence
discretization, see next subsection in detail. Meanwhile, to avoid the severe CFL stability
constraint near the origin, increasingly many high wavenumber modes for the vorticity in �
direction are removed as the grid point toward to the origin. The resultant vorticity is then
used as a right-hand side function of Poisson equation for solving the stream function. The
scheme is very e�cient in terms of computational complexity since it only involves one
Poisson equation to be solved at each time stage. In Section 4, we will introduce a fourth-
order accurate fast Poisson solver for solving the stream function. The employment of Fourier
�ltering will be discussed more detail in Section 5.

3.2. Spatial discretization

First, let us choose a M ×N computational grid inside the disk domain � with the grid point
locations

G= {(ri; �j)= ((i − 1=2)�r; (j − 1)��) | 16i6M; 16j6N} (13)

where �r=2=(2M +1) and ��=2�=N . By the choice of �r, we have rM+1 =1. By shifting
a half mesh away from the origin, we avoid placing the grid point directly at the origin;
thus, hopefully no pole approximation is needed. Because a �ve-point stencil will be used for
approximating the derivatives, we de�ne a larger grid set by adding the computational grid
G with a few ghost points along the radial direction as

�G= {(ri; �j)= ((i − 1=2)�r; (j − 1)��) | − 16i6M + 2; 16j6N} (14)

The unknowns are computed at the grid points of G whereas �G consists of all grid points
involved. This polar grid �G is illustrated in Figure 1 with M =8 and N =16.
The computation of the non-linear convection and linear di�usion terms in the vorticity

equation involves the spatial discretization for the �rst and second derivatives in radial and
azimuthal directions. Those derivatives can be approximated by the standard fourth-order
centred di�erence formulas as

@!
@r

∣∣∣∣
ij
≈ −!i+2; j + 8!i+1; j − 8!i−1; j +!i−2; j

12�r
(15)

@2!
@r2

∣∣∣∣
ij
≈ −!i+2; j + 16!i+1; j − 30!ij + 16!i−1; j −!i−2; j

12�r2
(16)

Similarly, we can write down the same formulas for the approximations of @!=@� and @2!=@�2.
Since the function de�ned in a disk is periodic in �, the approximation of �-derivative

does not have any numerical boundary value problem. By this, we mean that !ij=!ij′ ,
where j′ ≡ j (modN ). However, the numerical boundary values for the approximation of
r-derivatives are more complicated. First, the centred di�erence formulas (15)–(16) are ap-
plied to all interior points except the last radial interior point (rM ; �j) adjacent to the boundary.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:909–922



914 M.-C. LAI

Figure 1. A polar grid in a disk based on �G with M =8 and N =16. The circle denotes
the boundary. The vorticity ! are de�ned on those ‘.’ grid points. The stream function  

are de�ned on ‘.’ points as well as the outer ghost points ‘+’.

At the point (rM ; �j), we use the following one-sided di�erence approximations described in
Reference [11]

@!
@r

∣∣∣∣
M; j

≈ 3!M+1; j + 10!M;j − 18!M−1; j + 6!M−2; j −!M−3; j
12�r

(17)

@2!
@r2

∣∣∣∣
M; j

≈ 11!M+1; j − 20!M;j + 6!M−1; j + 4!M−2; j −!M−3; j
12�r2

(18)

Second, due to the �ve-point stencil of (15)–(16), the numerical boundary approximations
in the vicinity of the origin must also be provided. For instance, when i=1 in the formula
of (15), the numerical approximations of !−1; j and !0j at the corresponding ghost points
(r−1; �j); (r0; �j) need to be provided. Those approximations can be found in the following.
When we replace r by −r and � by �+� in the Cartesian-polar transformation, the Cartesian
co-ordinates of a point remain �xed. Therefore, any scalar function satis�es!(−r; �)=!(r; �+�)
if the domain of the function is extended to negative values of r. So we have

!0j=!(−�r=2; �j)=!(�r=2; �j + �)=!1; j+N=2 (19)

Similarly, we have !−1; j=!2; j+N=2.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:909–922
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3.3. Vorticity boundary condition

As we mentioned before, the no-slip conditions become two boundary conditions of the stream
function as in (8). This causes that the Poisson equation of the stream function is over-
determined. One easy way to overcome this di�culty is to translate one boundary condition
of the stream function to the vorticity, which is �rst derived by Thom [12]. A very detailed
discussion of the vorticity boundary condition in Cartesian co-ordinates and di�erent variants
of Thom’s formula can be found in the work of E and Liu [11]. Next, we will derive the
fourth-order vorticity boundary condition in polar coordinates.
As in the scheme (9)–(12), the Poisson equation of the stream function is solved with

the Dirichlet boundary condition  (1; �)=0. The other Neumann boundary condition of  
can be used to obtain the boundary condition of the vorticity as follows. Using the one-
sided di�erence formula (17) to approximate the Neumann condition on the boundary points
(rM+1; �j), we have

@ 
@r

∣∣∣∣
M+1; j

≈ 3 M+2; j + 10 M+1; j − 18 M; j + 6 M−1; j −  M−2; j
12�r

=0 (20)

Since  M+1; j=0 for all j, we obtain

 M+2; j=6 M; j − 2 M−1; j +
1
3
 M−2; j (21)

Using the fact that  M+1; j=0 and @ =@r|M+1; j=0, the boundary vorticity becomes

!M+1; j=−(� )M+1; j=− @2 
@r2

∣∣∣∣
M+1; j

(22)

Applying the one-sided di�erence (18) and using the approximation of (21), we obtain

!M+1; j=
−108 M; j + 27 M−1; j − 4 M−2; j

18�r2
(23)

Therefore, the vorticity at the boundary can be approximated by the neighbouring values of
the stream function.
It is interesting to note that the vorticity boundary condition derived here (under the

assumption of (8)) is exactly the same one �rst derived by Briley [13] in the case of Cartesian
co-ordinates. Although our derivation is for the no-slip boundary conditions, the extension to
slip boundary conditions can be derived straightforwardly. In fact, in our numerical test in
Section 5, we have implemented the slip boundary conditions for Example 1.

4. REVIEW OF FOURTH-ORDER FAST POISSON SOLVER

In the numerical scheme (9)–(12), we know that at each time stage requires solving one
Dirichlet Poisson equation for the stream function. In this section, we review a simple FFT-
based fast Poisson solver in a disk [8] which is applied to our numerical computations. This
solver is based on truncating the Fourier series expansion, and then solving the di�erential
equations of Fourier coe�cients by �nite di�erence discretization. Note that, this kind of

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:909–922



916 M.-C. LAI

approach is not a new one, since we can �nd it in di�erent literature, e.g. Reference [14].
However, our method di�ers from the one in Reference [14] by two folds: without pole
conditions and fourth-order accuracy [8] vs with pole conditions and second-order accuracy
[14]. One can see that our method has a very simple treatment for the co-ordinate singularity
and it can be applied to di�erent boundary conditions as well.
The Poisson equation with Dirichlet boundary in a unit disk can be written as

@2u
@r2

+
1
r
@u
@r
+
1
r2

@2u
@�2

=f(r; �); u(1; �)= g(�) (24)

Due to the periodicity of u in � direction, we can approximate the solution by the truncated
Fourier series as

u(r; �)=
N=2−1∑
n=−N=2

un(r) ein� (25)

where un(r) is the complex Fourier coe�cient given by

un(r)=
1
N

N∑
j=1

u(r; �j) e−in�j (26)

Here, �j is a uniform grid in [0; 2�] which is de�ned exactly the same way as in (14).
The above transformation between the physical space and Fourier space can be e�ciently
performed using the fast Fourier transform (FFT) with O(N log2 N ) arithmetic operations.
Substituting the expansion in (25) into Equation (24), and equating the Fourier coe�cients,
the un(r) satis�es the boundary value problem

d2un

dr2
+
1
r
dun

dr
− n2

r2
un=fn; un(1)= gn (27)

Here, the complex Fourier coe�cients fn(r) and gn are de�ned in the same manner as
Equations (25)–(26).
Now let us denote the discrete values Ui ≈ un(ri) and Fi ≈fn(ri), where ri is chosen exactly

the same way as in (14). We now discretize Equation (27) using the fourth-order di�erence
formulas given in (15)–(16) at the interior points i=1; 2; : : : ; M as

−Ui+2 + 16Ui+1 − 30Ui + 16Ui−1 −Ui−2
12�r2

+
−Ui+2 + 8Ui+1 − 8Ui−1 +Ui−2

12ri�r
− n2

r2i
Ui=Fi (28)

This is a penta-diagonal linear system which can be solved by O(M) arithmetic operations. In
order to close the above linear system, we need to supply numerical boundary values such as
U−1; U0, UM+1 and UM+2. The value UM+1 is simply given by gn. The inner numerical bound-
ary values U0; U−1 can be easily found by the symmetry constraint of Fourier coe�cients [8]

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:909–922



FOURTH-ORDER SCHEME FOR NAVIER–STOKES EQUATIONS IN A DISK 917

which are

U0 = un(r0)= un(−�r=2)= (−1)n un(�r=2)= (−1)nU1 (29)

U−1 = un(r−1)= un(−3�r=2)= (−1)nun(3�r=2)= (−1)nU2 (30)

The outer numerical boundary value UM+2 can be obtained as follows. Since Equation (27)
also holds at the boundary rM+1 =1, we have,

u′′n (rM+1) + u′n(rM+1)= n2 un(rM+1) + fn(rM+1) (31)

Substituting the one-sided di�erence formulas (17)–(18) into the above equation and after
some careful calculations, we obtain a formula for UM+2 in terms of UM+1; UM ;UM−1; UM−2
and FM+1. Thus, all the necessary numerical boundary values are derived. We conclude that
this fast solver is spectral accurate in the � direction while is fourth-order accurate in the r
direction.

5. NUMERICAL RESULTS

In this section, we �rst demonstrate the rate of convergence (or the order of accuracy) for
our fourth-order scheme (9)–(12) together with the spatial discretization and the vorticity
boundary conditions outlined in Section 3. The Poisson equation of the stream function at
each Runge–Kutta step is solved by the fourth-order fast direct solver described in Section 4.
The second numerical test for our new scheme is to simulate a vortex dipole colliding with
a circular wall [15].

Example 1 (Accuracy check)
We start our numerical tests by checking the accuracy of our scheme for a computation in
a unit disk �= {0¡r61; 06�62�}. We have taken the exact solution for Navier–Stokes
equations as

!(x; y; t)=2 e−2�t cos x cosy;  (x; y; t)= e−2�t cos x cosy (32)

Using the polar co-ordinate transformation, the above exact solution can be represented by
the functions of r and �. Notice that, the above example has the non-zero vorticity at the
origin (x=y=0), but the velocity components are zero at this particular point. In fact, we did
another numerical test which has non-zero velocity components and got the similar numerical
results as in Table I so we omitted here.
In our test, we choose N=2×N grid points in the disk so that there are N=2 points in

the radial direction and N points in the azimuthal direction. The time steps for the cases of
N =32; 64; 128; 256 are �t=0:05; 0:025; 0:0125; 0:00625, respectively. The viscosity is chosen
as �=0:001. The approximate solution was computed at T =3. Table I shows the L∞; L1,
and L2 errors for di�erent number of grid points. In addition to comparing the errors of the
vorticity (!) and stream function ( ), we also list the errors of the velocity components
(ur and u�). One can clearly see that the fourth-order accuracy of our scheme can be indeed
achieved for all variables in di�erent norms.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:909–922



918 M.-C. LAI

Table I. Grid re�nement analysis at T =3.

N L∞ error Rate L1 error Rate L2 error Rate

! 32 8.8196E-05 3.5668E-05 4.1421E-05
64 1.4197E-05 2.64 2.7410E-06 3.70 4.1679E-06 3.31
128 6.8231E-07 4.38 1.2070E-07 4.51 1.8914E-07 4.46
256 3.5084E-08 4.28 5.0087E-09 4.59 7.5868E-09 4.64

 32 4.8863E-07 6.1366E-07 4.0599E-07
64 1.9435E-08 4.65 1.9195E-08 5.50 1.3896E-08 4.87
128 7.8116E-10 4.64 9.3920E-10 4.35 6.5151E-10 4.41
256 6.1184E-11 3.67 6.8173E-11 3.78 5.0133E-11 3.70

ur 32 7.4158E-04 5.9268E-04 5.0019E-04
64 5.3446E-05 3.79 4.3944E-05 3.75 3.5112E-05 3.83
128 3.5364E-06 3.92 2.9198E-06 3.91 2.2929E-06 3.94
256 2.2664E-07 3.96 1.8705E-07 3.96 1.4597E-07 3.97

u� 32 7.6869E-06 2.7102E-06 3.1914E-06
64 5.0719E-07 3.92 1.5524E-07 4.13 1.6942E-07 4.24
128 2.4950E-08 4.35 7.1842E-09 4.43 7.0078E-09 4.60
256 1.1435E-09 4.45 3.7646E-10 4.25 3.2495E-10 4.43

Example 2 (Vortex dipole colliding with a circular wall)
In order to demonstrate the performance of our new fourth-order scheme, we consider the
problem of a vortex dipole colliding with a circular wall. This example was taken directly
from Reference [15] where the authors used it to test their pseudospectral code. Notice that,
we are not trying to compare with the pseudospectral method in Reference [15] but just simply
introducing an alternative �nite di�erence approach to the simulation of the �uid dynamical
problem in a disk. In particular, our approach should be valid for moderate Reynolds number
�ows since a fourth-order explicit time stepping procedure is used.
The vortex dipole consists of two point vortices with equal magnitude of strength but

di�erent signs. Those two vortex centres are initially located at the two points (0:15; 0) and
(−0:15; 0) inside a unit disk. The smoothing initial vorticity is chosen as

!(x; y; 0)=1:5e−20((x−0:15)
2+y2) − 1:5e−20((x+0:15)2+y2) (33)

whose contour lines can be found in the �rst plot of Figure 2. The no-slip boundary conditions
are imposed on the wall. The viscosity � is chosen as 2× 10−5.
The calculation was performed on a M ×N =512× 512 polar grid. Since the uniform grid

is used, the physical mesh spacings along the grid circles in the core region (the region near
the origin) are very small. This has the consequence that the CFL constraint is very restrictive
for the time-dependent problem. One simple treatment is to employ the Fourier �ltering [5, 10]
for the vorticity in the � direction inside the core region at each Runge–Kutta time stage. This
treatment has the same e�ect to coarsen the physical mesh near the origin thus allowing us to
increase the time step to a reasonable size. The idea is to remove the high wavenumber modes
of the vorticity gradually as the grid points toward to the origin. For simplicity, we choose
the core region as the half disk r60:5. At the inner grid circle r=�r=2, we keep the modes
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Figure 2. Evolutionary vorticity contours for a vortex dipole colliding with a
circular wall. The positive vorticity denotes by ‘-’ and the negative vorticity

by ‘−’. The magnitude ranges from −2 to 2.

with wavenumber n=0; 1;−1 and remove the Fourier modes whose wavenumbers are greater
than one. At the second grid circle r=3�r=2, we keep two more modes with wavenumber
n=0; 1; 2;−1;−2 and remove the rest of high modes. Continuing in such way, the Fourier
modes are no longer to be removed outside the core region. By applying this Fourier �ltering,
we are able to choose a much larger time step to ensure the numerical stability. In our present
computation, we choose the time step �t=2:5× 10−3 which is about ten times larger than
the one used in Reference [15].
Figure 2 shows the evolutionary contour plots for the vorticity. The solid line denotes the

positive vorticity and the dash line denotes the negative values. The magnitude of those plots
ranges from −2 to 2. One can see the vortex dipole collides with the circular wall then splits.
Each vortex generates another di�erent sign of vortex and forms another dipole and moves
to the centre. Then they exchange the partners to form two symmetric vortex dipoles which
the smaller one moves upward and the larger one moves downward to repeat the colliding
process. Figure 3 shows an enlarging part of the vorticity plot at T =120. One can see that
there are four vortex dipoles totally after two complete collisions.
The energy (E) and enstrophy (�) are the two interesting quantities measured in this test.

They are de�ned by

E=
1
2

∫ 1

0

∫ 2�

0
(u2r + u2�) r dr d�; �=

∫ 1

0

∫ 2�

0
!2r dr d� (34)

We compute those quantities via a discrete approximation of the above integral based on
the nodes described in (13). Thus, the computation is almost the same as the usage of the
midpoint rule for the double integral integration. Figure 4(a) and (b) are the time evolutionary
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Figure 3. Four vortex dipoles were seen after two complete dipole collisions at T =120.

plots for the energy and enstrophy, respectively. One can see that the energy is decreasing.
The enstrophy is oscillating with the maximum occurring around at T =30 when the dipole
completes the �rst hitting to the wall and generates another vortices.
As in Reference [15], we also calculate the energy decay rate by the formula

dE
dt
=−�� (35)

The relative error of the decay rate is computed by

rel(t)=
(E(t +�t)− E(t −�t))=2�t + ��(t)

−��(t)
(36)

Figure 4(c) shows the relative error of the energy decay rate which is within 1.6E-03 after
some earlier time. The computed error at T =120 is 4.3E-05 which is about the magnitude
of O(�t2). So the numerical evidence shows that our scheme does provide the right energy
decay rate.

6. CONCLUSION

Let us summarize our scheme as follows. The Navier–Stokes equations are written in the
vorticity-stream function form. We use the fourth-order Runge–Kutta method for the time
integration and treat both the convection and di�usion terms explicitly. Using a uniform grid
with shifting a half mesh away from the origin, we avoid placing the grid point directly at the
origin; thus, no pole approximation is needed. Besides, on such grid, a fourth-order fast direct
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Figure 4. The evolutionary plot of energy, enstrophy, and the relative error of energy decay rate.

method is used to solve the Poisson equation of the stream function. By Fourier �ltering the
vorticity in the azimuthal direction at each time stage, we are able to increase the time step
to a reasonable size. The numerical results of the accuracy test and the simulation of a vortex
dipole colliding with circular wall are presented.
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