
Theoretical Computer Science 396 (2008) 50–62
www.elsevier.com/locate/tcs

Jug measuring: Algorithms and complexity

Min-Zheng Shieh, Shi-Chun Tsai∗

Department of Computer Science, National Chiao-Tung University, Hsinchu 30050, Taiwan

Received 19 August 2004; received in revised form 18 April 2007; accepted 5 January 2008

Communicated by G. Italiano

Abstract

We study the hardness of the optimal jug measuring problem. By proving tight lower and upper bounds on the minimum
number of measuring steps required, we reduce an inapproximable NP-hard problem (i.e., the shortest GCD multiplier problem
[G. Havas, J.-P. Seifert, The Complexity of the Extended GCD Problem, in: LNCS, vol. 1672, Springer, 1999]) to it. It follows that
the optimal jug measuring problem is NP-hard and so is the problem of approximating the minimum number of measuring steps
within a constant factor. Along the way, we give a polynomial-time approximation algorithm with an exponential error based on
the well-known LLL basis reduction algorithm.
c© 2008 Elsevier B.V. All rights reserved.

Keywords: Jug measuring problem; Inapproximability; LLL algorithm; Lattice problem

1. Introduction

Let α and β be two positive integers. You are given an α-liter jug, a β-liter jug, an unlimited source of water and a
drain. You can fill a jug full of water from the source, empty water in a jug into the drain, or pour the water from one
jug to another. How do you measure x liters of water? This measuring problem is the so-called water jug problem,
which has been studied for a long time and is a popular problem for programming contests, a frequent heuristic search
exercise in artificial intelligence and algorithms, etc. The water jug problem has several variants, such as the problem
of sharing jugs of wine [5], i.e., given an x-liter jug full of wine and two empty jugs of capacity α and β where
x = α + β, what is the quickest way to divide the wine equally by pouring the wine among the jugs? This problem
can be reduced to the water jug problem, since we can replace “pouring from the x-liter jug to any other jug” by the
filling operation, and “pouring from any jug to the x-liter jug” by the emptying operation. In [3], a problem proposed
by Ehrlich asks: for two relatively prime integers α and β and an integer m with 1 ≤ m ≤ β, is it possible to measure
m liters?

Boldi et al. [4] generalized the water jug problem by considering a set of jugs of fixed capacities and they found out
which quantities are measurable and proved upper and lower bounds on the number of steps necessary for measuring
a specified amount of water. Here a quantity x is called measurable if after several steps one of the jugs holds the

∗ Corresponding author. Tel.: +886 3 5131551.
E-mail addresses: mzhsieh@csie.nctu.edu.tw (M.-Z. Shieh), sctsai@csie.nctu.edu.tw (S.-C. Tsai).

0304-3975/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.01.003

http://www.elsevier.com/locate/tcs
mailto:mzhsieh@csie.nctu.edu.tw
mailto:sctsai@csie.nctu.edu.tw
http://dx.doi.org/10.1016/j.tcs.2008.01.003

M.-Z. Shieh, S.-C. Tsai / Theoretical Computer Science 396 (2008) 50–62 51

quantity x . In other words, the generalized water jug problem is: given a set of jugs of fixed capacities, find out which
quantities are measurable. More specifically, suppose that we are given n jugs with positive integral capacities ci ,
i ∈ [n], where [n] denotes the set {1, . . . , n}.1 Without loss of generality, we assume that c1 ≤ c2 ≤ · · · ≤ cn . Let x
be a positive integer≤ cn . Boldi et al. proved that x is measurable if and only if it is a multiple of the greatest common
divisor of ci ’s. Define μc(x) = minx=x·c ‖x‖1, where x = (x1, . . . , xn) ∈ Z

n and ‖x‖1 = ∑n
i=1 |xi |. They also

proved that, for every measurable x , (1) x can be measured in at most 5
2μc(x) steps. (2) No algorithm can measure x

in less than 1
2μc(x) steps.

In this paper we deal with the optimal jug measuring problem, which considers the minimum number of measuring
steps. We generalize measurability by defining that a quantity x is additively measurable if there is a sequence of
operations such that the sum of the final contents in the jugs is equal to x . We prove that x is additively measurable if
and only if it is a multiple of the greatest common divisor of ci ’s. For every additively measurable integer x , we obtain
a lower bound 2μc(x) − ne, where ne is the number of non-empty jugs. Consequently, we have that: a measurable
integer x cannot be measured in less than max{2μc(x)−n, μc(x)} steps. Furthermore, all the measurable quantities can
be measured in at most 2μc(x) steps such that the largest jug contains the quantity x and the others are empty. With the
tight lower and upper bounds, we can reduce the problem of computing μc(x) to the optimal jug measuring problem.
Meanwhile, Havas and Seifert [6] proved that a special case of computing μc(x) is inapproximable in polynomial
time within a factor of k, where k ≥ 1 is an arbitrary constant. This implies that the optimal jug measuring problem is
inapproximable in polynomial time within a constant factor. Moreover, we can reduce the problem of computing μc(x)

to the closest lattice vector problem. Finally, we propose a polynomial-time approximation algorithm with exponential
errors for computing μc(x) based on the famous LLL (Lenstra–Lenstra–Lovasz) basis reduction algorithm.

The rest of the paper is organized as follows. In Section 2, we give some notation and definitions. In Section 3,
we characterize additive measurability and prove the lower and upper bounds for the number of non-pour operations.
In Section 4, we prove the lower and upper bounds for the number of minimum measuring steps. In Section 5, we
show that computing μc(x) is inapproximable and give a polynomial-time approximation algorithm with exponential
errors. Inapproximable results on the jug measuring problem are also addressed. Section 6 concludes the paper.

2. Notation and definitions

Following Boldi et al. [4], we define three types of elementary operations on the jugs.

Definition 1. Elementary jug operations:

(1) ↓ i : fill the i th jug (from the source) up to its capacity, and we call it the fill operation;
(2) i ↑: empty the i th jug (into the drain) completely, and we call it the empty operation;
(3) i → j : pour the contents of the i th jug to the j th jug, i �= j , and we call it the pour operation. Note that pour

operation never changes the total sum of the contents, and at the end of this operation, the i th jug is empty or the
j th jug is full.

Let O denote the set of all possible elementary operations, that is, O = {↓ i |∀i ∈ [n]} ∪ {i ↑ |∀i ∈ [n]} ∪ {i →
j |∀i, j ∈ [n], i �= j}. We say σ ∈ O∗ is a sequence of operations, and use |σ | to denote the length of σ (number of
operations in σ). We use ε to denote the empty sequence, i.e., |ε| = 0. Let N be the set of non-negative integers. A
state is a vector s ∈ N

n , where si denotes the amount contained in jug i . We define the state-transition function as
follows.

Definition 2. A function δ : Nn × O∗ → N
n is a state-transition function if:

(1) δ(s, ε) = s;
(2) δ(s,↓ i) = (s1, . . . , si−1, ci , si+1, . . . , sn);
(3) δ(s, i ↑) = (s1, . . . , si−1, 0, si+1, . . . , sn);
(4) δ(s, i → j) = (t1, . . . , tn), where tk = sk for all k /∈ {i, j}, ti = max{0, si − (c j − s j)}, and t j = min{c j , si + s j };
(5) for |σ | ≥ 1 and o ∈ O, δ(s, σo) = δ(δ(s, σ), o).

1 For convenience we use [n] to denote {1, 2, . . . , n}, although [n] stands for {0, 1, . . . , n − 1} under von Neumann’s definition of natural
numbers.

52 M.-Z. Shieh, S.-C. Tsai / Theoretical Computer Science 396 (2008) 50–62

We say a state s is reachable if δ(0, σ) = s by some sequence σ ∈ O∗. Furthermore, we say σ is optimal if it is the
shortest one that reaches s. δi (s, σ) denotes the i -th entry of δ(s, σ). ei (σ) denotes the number of i ↑ operations in σ

and e(σ) =∑
i∈[n] ei (σ). fi (σ) denotes the number of ↓ i operations in σ and f (σ) =∑

i∈[n] fi (σ). pi (σ) denotes

the number of pour operations applied to jug i and p(σ) = 1
2

∑
i∈[n] pi (σ). A quantity x ∈ N is measurable via

sequence σ iff there exists i ∈ [n] such that δi (0, σ) = x . For convenience, let c = {c1, . . . , cn} and gcd(c) denote the
greatest common divisor of c1, · · · , cn . The set of quantities that are measurable using the capacities in c is denoted
as M(c). Boldi et al. [4] proved that all of the measurable quantities are multiples of the greatest common divisor of
the capacities as stated in the following.

Proposition 1 ([4]). M(c) = {m · gcd(c)| for all non-negative integer m ≤ cn/ gcd(c)}.
We extend the measurability by defining that a quantity x ∈ N is additively measurable via sequence σ iff the sum

of the contents in δ(0, σ) is equal to x , i.e.,
∑

i∈[n] δi (0, σ) = x . The set of quantities that are additively measurable
using the capacities in c is denoted by M+(c). Obviously, this is more general than M(c) and can measure larger
quantities up to

∑n
i=1 ci . We prove that all of the additively measurable quantities again are multiples of the greatest

common divisor of the capacities, that is, M+(c) = {
m · gcd(c)| for all non-negative integer m ≤∑n

i=1 ci/ gcd(c)
}
.

Each x ∈ M+(c) has one (or more) vector representation x = (x1, . . . , xn) ∈ Z
n with respect to c, such that

x = x · c = ∑n
i=1 xici . Moreover, we say a vector representation x is optimal if ‖x‖1 is minimum. We denote

μc(x) = minx=x·c ‖x‖1. We will use a representation x to construct a sequence of operations achieving the quantity
x , and vice versa.

3. Measurability and standard sequences

3.1. Measurability

First we show that the additively measurable quantities are multiples of gcd(c), which form a subgroup of (Zq ,+)

with gcd(c) as a generator, where q =∑n
i=1 ci . It can be proved by induction on the number of jugs.

Theorem 1. M+(c) = {
m · gcd(c)| for all non-negative integer m ≤∑n

i=1 ci/ gcd(c)
}
, for c ∈ Z

n+.

Proof. There are two parts to be proved. First we show that any additively measurable quantity is a multiple of gcd(c).
Secondly, we prove that every non-negative multiple of gcd(c), bounded by

∑n
i=1 ci , is additively measurable.

The first part is simple. Assume that x is additively measurable with c. Let (s1, . . . , sn) be a reachable state with
x =∑n

i=1 si . Note that each si is measurable. By Proposition 1, we know each si is a multiple of gcd(c) and thus x is
a multiple of gcd(c).

We prove the second part by induction on n, the number of jugs. It is trivial when n = 1. Assume that the theorem
holds up to n − 1. Assume that x = m · gcd(c) and x ≤∑n

i=1 ci , for some m ∈ N. Since c1 ≤ c2 ≤ c3 · · · ≤ cn , we
have that cn ≥ gcd(c1, c2, c3 . . . , cn−1). If x ≤∑n−1

i=1 ci , then let y = x mod gcd(c1, c2, c3 . . . , cn−1). We know that
x− y is a multiple of gcd(c1, c2, c3 . . . , cn−1) and thus a multiple of gcd(c). We already know x is a multiple of gcd(c)

by assumption, and then so is y. By Proposition 1, we have y ∈M(c). This implies that we can reach (0, 0, 0, . . . , y)

first. By induction hypothesis, x − y ∈ M+(c1, c2, . . . , cn−1). So we can reach a state s by using the first n − 1 jugs,
where the sum of its contents is equal to x − y. Together with the quantity y in jug n, we can achieve the total sum x .

If x >
∑n−1

i=1 ci , then let y = x − ∑n−1
i=1 ci ≤ cn . We know that y is a multiple of gcd(c), since x and∑n−1

i=1 ci are both multiples of gcd(c), and thus by Proposition 1 we have y ∈ M(c). This implies that we can reach

(0, 0, 0, . . . , x −∑n−1
i=1 ci) first, and then we can reach a state s with the sum of the quantity in each jug equal to x , by

filling all of the jugs other than jug n. From the above, we know that M+(c) = [0,
∑n

i=1 ci]∩{m ·gcd(c)|∀m ∈ N}. �

3.2. Standard sequences

A sequence of operations is called a standard sequence if fill operations are always applied to empty jugs, and
empty operations to full jugs. Formally, a standard sequence σ = o1 · · · om satisfies:

∀ol ∈ {↓ i, i ↑}, δi (0, o1 · · · ol−1) =
{

0, if ol =↓ i
ci , if ol = i ↑ .

M.-Z. Shieh, S.-C. Tsai / Theoretical Computer Science 396 (2008) 50–62 53

The total amount of water in the jugs can be changed only by non-pour operations. Since every fill operation is applied
to an empty jug and every empty operation is applied to a full jug in a standard sequence, each step changing the total
mount of water in the sequence either increases or decreases ci liters for some i . Therefore, if σ is standard, then
(f1(σ)− e1(σ), . . . , fn(σ)− en(σ)) is a vector representation of

∑n
i=1 δi (0, σ).

In this subsection, we show that for every reachable state s, there exists an optimal standard sequence σ such that
δ(0, σ) = s. According to this fact, we prove that a sequence that additively measures x has at least μc(x) non-pour
operations. We also give an algorithm outputs a sequence that additively measures x with exactly μc(x) non-pour
operations. The bounds for the number of pour operations will be discussed in Section 4.

The existence of optimal standard sequences is crucial. We show that any sequence of operations can be
transformed into standard one without increasing length.

Lemma 2. Let σ = o1o2 · · · om ∈ O∗ be an arbitrary sequence of m operations such that δ(0, σ) = t =
(t1, t2, . . . , tn). Then for every i ∈ [n], there exists a sequence of m operations ρ such that δ(0, ρ) �=
(t1, . . . , ti−1, 0, ti+1, . . . , tn) implies δ(0, ρ) = (t1, . . . , ti−1, ci , ti+1, . . . , tn).

Proof. Let i ∈ [n]. We prove the lemma by induction on m. The base case m = 0 is straightforward. Assume that
the lemma holds for m < k and let ol be the last operation involving jug i . Let t l = (tl

1, . . . , tl
n) = δ(0, o1 · · · ol). If

tl
i = 0 or tl

i = ci then the lemma holds. Otherwise, ol must be i → j or j → i for some j . Moreover, after applying
o1 · · · ol , tl

j = c j if ol = i → j , else 0. Now let

ql =
{↓ j, if ol = i → j

j ↑, if ol = j → i.

Let u = (u1, . . . , un) = δ(0, o1 · · · ol−1). By the induction hypothesis, there exists a sequence q1 . . . ql−1 such
that if δ(0, q1 · · · ql−1) �= (u1, . . . , ui−1, 0, ui+1, . . . , un) then δ(0, q1 · · · ql−1) = (u1, . . . , ui−1, ci , ui+1, . . . , un).
Observe that ol only affects jugs i and j . Therefore ur = tl

r for every r ∈ [n]− {i, j}. We have that if δ(0, q1 · · · ql) �=
(tl

1, . . . , tl
i−1, 0, tl

i+1, . . . , tl
n) then δ(0, q1 · · · ql) = (tl

1, . . . , tl
i−1, ci , tl

i+1, . . . , tl
n). Since ol+1, . . . , ok do not involve

jug i , we have that if δ(0, q1 · · · qlol+1 · · · ok) �= (t1, . . . , ti−1, 0, ti+1, . . . , tn) then δ(0, q1 · · · qlol+1 · · · ok) =
(t1, . . . , ti−1, ci , ti+1, . . . , tn). �

The following lemma states that for every sequence σ ′, we can construct a standard sequence σ which reaches the
same state as σ ′ does without length overhead.

Lemma 3. For any reachable state s = (s1, . . . , sn), if δ(0, σ ′) = δ(0, o′1 · · · o′m) = s, then there exists a standard
sequence σ = o1 · · · ok with k ≤ m and δ(0, σ) = s.

Proof. We prove the lemma by induction on |σ ′|. The base case |σ ′| = 0 is trivial. Assume that the lemma is true for
|σ ′| < r . Consider σ ′ = o′1 · · · o′r . If o′r is a pour operation, then by the induction hypothesis, we are done. Thus we
can assume that o′r is a non-pour operation. Assume that o′r is applied to jug i and t = (t1, . . . , tn) = δ(0, o′1 · · · o′r).
By lemma 2, there is a sequence ρ′ = p′1 · · · p′r−1 such that δ(0, ρ′) = (t1, . . . , ti−1, t ′i , ti+1, . . . , tn) where
t ′i �= 0 implies t ′i = ci . By the induction hypothesis, there exists a standard sequence ρ, where |ρ| ≤ r − 1 and
δ(0, ρ) = (t1, . . . , ti−1, t ′i , ti+1, . . . , tn).

For the case o′r =↓ i : if si = 0 then ρo′r is a standard sequence and δ(0, ρo′r) = s; else if si �= 0 then si = ci and
it means that o′r is a redundant operation and hence ρ satisfies the lemma. Similarly, for the case o′r = i ↑: if si = 0
then ρ satisfies the lemma; otherwise ρo′r does. �

Lemma 3 implies that for every reachable state s, there exists an optimal standard sequence of operations for it.
Now we can derive the lower bound of non-pour operations.

Lemma 4. For any reachable state s with x =∑n
i=1 si , there exists an optimal sequence of operations σ = o1 · · · om

with δ(0, σ) = s, such that the number of non-pour operations in σ is at least μc(x).

Proof. By Lemma 3, there exists an optimal standard sequence of operations σ reaching s. Since σ is standard,
the total amount of water in the jugs is increased or decreased by the amount ci after ↓ i or i ↑ operation for

54 M.-Z. Shieh, S.-C. Tsai / Theoretical Computer Science 396 (2008) 50–62

Algorithm MEASURE(c, x , x)
Input: c = (c1, · · · , cn), the capacity of jugs.

x , the quantity to be measured.
x = (x1, · · · , xn), the optimal representation of x that achieves μc(x).

Output: a sequence σ , such that δ∗(0, σ) achieves the quantity x .
Variable: s, the state of jugs, which is initialized to be zero state.

v = (v1, · · · , vn), initialized to be x.
begin
1. σ := ε;
2. for all i if (si = 0 and vi > 0) do fill(i);
3. while(∃i s.t. vi < 0) do
4. Find j s.t. s j > 0 and v j ≥ 0;
5. pour(j, i);
6. if (s j = 0 and v j > 0) then fill(j);
7. if (si = ci) then empty(i);
8. while(∃vi > 0) do
9. Find j > n − l with v j = 0 and s j �= c j ;
10. pour(i , j);
11. if si = 0 then fill(i);
end

Procedure fill(i)
begin σ := σ ◦ (↓ i); si := ci ; vi := vi − 1; end

Procedure empty(i)
begin σ := σ ◦ (i ↑); si := 0; vi := vi + 1; end

Procedure pour(i , j)
begin
1. σ := σ ◦ (i → j);
2. if (si + s j > c j) then {si := si + s j − c j ; s j := c j ;}
3. else {s j := si + s j ; si := 0;}
end

Fig. 1. Measuring algorithm given μc(x).

each i ∈ [n]. Note that pour operations do not change the sum. There are fi (σ) (↓ i)-operations and ei (σ) (i ↑)-
operations. We have x = ∑n

i=1(fi (σ) − ei (σ))ci and thus
∑n

i=1 | fi (σ) − ei (σ)| ≥ μc(x). From the above we have∑n
i=1(fi (σ)+ ei (σ)) ≥∑n

i=1 | fi (σ)− ei (σ)| ≥ μc(x). �

Now we introduce the basic idea of our algorithm that achieves the lower bound. Assume that there is an extra jug
with infinite capacity and x = ∑n

i=1 ci xi . Then the following operations can measure x : (1) for each xi > 0 repeat
{↓ i ; i → (n + 1)} for xi times; (2) for each xi < 0 repeat {(n + 1) → i ; i ↑} for |xi | times. The total number of
non-pour operations is exactly

∑n
i=1 |xi | and the total number of measuring steps is 2

∑n
i=1 |xi | steps. With the above

observation, given the optimal representation of x , we obtain an algorithm as in Fig. 1, which additively measures x
by μc(x) non-pour operations and at most μc(x) + l − 1 pour operations, where l is the minimum number of jugs
needed to hold the quantity x . The key idea is simply simulate the imaginary jug of infinite capacity with the n jugs.
However, it is not clear how to compute μc(x) and the optimal representation efficiently.

Before we prove the correctness of the algorithm, we give a small execution example of the algorithm. Assume
that c = (3, 15, 16) and we want to additively measure x = 5 corresponding to the representation (2, 1,−1). The

M.-Z. Shieh, S.-C. Tsai / Theoretical Computer Science 396 (2008) 50–62 55

algorithm MEASURE(c, x , x) outputs a sequence σ =↓ 1◦ ↓ 2 ◦ 2 → 3 ◦ 1 → 3 ◦ 3 ↑ ◦1 → 3◦ ↓ 1. The state
transitions of σ are shown in the following table.

1st loop (0, 0, 0)
↓1=⇒ (3, 0, 0)

↓2=⇒ (3, 15, 0)

2nd loop (3, 15, 0)
2→3=⇒ (3, 0, 15)

1→3=⇒ (2, 0, 16)
3↑=⇒ (2, 0, 0)

3rd loop (2, 0, 0)
1→3=⇒ (0, 0, 2)

↓1=⇒ (3, 0, 2)

We prove the correctness in this section and leave the analysis on the number of operations in the output sequence
in Section 4. We prove the correctness with the following lemma.

Lemma 5. Let x be an optimal representation of x with capacity c. The algorithm MEASURE outputs a sequence of
operations σ such that δ(0, σ) = s and

∑n
i=1 si = x.

Proof. Let F = {i |xi > 0} and E = {i |xi < 0}. The integer variables vi ’s are used to track the number of empty
and fill operations performed. Initially, vi = xi for i ∈ [n]. After each fill operation some vi with i ∈ F will decrease
by 1, and after each empty operation some v j with j ∈ E will increase by 1. Observe that during the execution the
number of fill and empty operations performed on jug i is (xi − vi) for i ∈ F and (vi − xi) for i ∈ E , respectively.
Thus the total quantity in the jugs is

∑
i∈F (xi − vi)ci −∑

i∈E (vi − xi)ci during the operations.
After the first loop (in line 2), si = ci for all i ∈ F . Next we show that after an iteration of the second loop (in lines

3–7), if there still exists a vi < 0, then we can always find j in line 4. There are two possibilities after pour(j, i) is
executed in line 5, i.e., jug j can become non-empty or empty.

• (Case 1: Jug j is still non-empty.) If the loop condition holds, we can always find j in line 4, since s j > 0 and
v j ≥ 0.
• (Case 2: Jug j becomes empty.) If v j > 0, then jug j will be refilled immediately and s j > 0. If v j = 0, suppose

that line 4 fails to find a j in the subsequent iteration, then it implies that for all vk ≥ 0, sk = 0. However, there
does not exist such vk > 0 since jug k would be refilled right after line 6. Thus vk must be 0 for all k ∈ F . Line 7
shows that for all i ∈ E , if vi < 0 then si < ci and thus the amount of water in the jugs is less than

∑
i∈E;vi <0 ci .

Since we have done
∑

i∈F xi fill operations and
∑

i∈E (vi − xi) empty operations, the quantity of water left in
the jugs is exactly

∑
i∈F ci xi +∑

i∈E ci (xi − vi) = x · c −∑
i∈E civi , which is greater than

∑
i∈E;vi <0 ci — a

contradiction!

Thus, as long as the loop condition in line 3 holds, one can always find (in line 4) a jug to perform the pour
operation.

After the second loop (lines 3–7), no more empty operation will be performed. For all i ∈ E , vi = 0 and
for all i ∈ F with vi > 0, we have si > 0 by line 6. Note that the quantity of water left in the jugs is∑

i∈F (xi − vi)ci −∑
j∈E(v j − x j)c j = x −∑

i∈F civi > 0. If for all i ∈ F , vi = 0, then we are done.
By the assumption, the largest l jugs are sufficient to contain the quantity x . Thus,

∑
j>n−l c j ≥ x . Note that we

always fill jug i at line 6 and at line 11 when vi > 0 and si = 0. We have that for every k ∈ [n] if vk > 0 then sk > 0
at line 8. This implies that there must be some jug j > n − l with s j �= c j and v j = 0. Otherwise ∀ j > n − l we
have s j = c j or v j > 0, which implies the quantity x =∑n

j=1(s j + v j c j) ≥ si +∑
j>n−l c j > x (note that vi > 0

and si > 0), a contradiction. Thus, whenever the loop condition at line 8 holds (i.e., vi > 0), one can always find a
suitable jug for pouring at line 9.

Finally, when the algorithm terminates, it actually performed
∑

i∈F xi fill operations and −∑
j∈E x j empty

operations and the net quantity is
∑

i∈F ci xi +∑
j∈E c j x j = x . �

We remark that the output sequence of the MEASURE algorithm is a standard sequence achieving the quantity x . It
matches the lower bound of non-pour operations when we use the optimal representation as input.

4. Lower and upper bounds of measuring steps

4.1. Bounds for additively measurable quantities

In this subsection, we give the lower and upper bounds for additively measuring. First, we prove the following
theorem as a consequence of the lower bound on the number of pour operations in an optimal standard sequence.

56 M.-Z. Shieh, S.-C. Tsai / Theoretical Computer Science 396 (2008) 50–62

v(1,0)← {o1, o3} v(1,1)← {o4, o5} v(1,2)← {o7, o8}

v(2,0)← {o3, o5, o6} v(2,1)← {o8, o9, o10} v(2,2)← {o11, o13, o14}

v(3,0)← {o2, o9, o11} v(3,1)← {o12, o13}

Fig. 2. Gσ ′ : the corresponding graph of σ ′.

Theorem 6. Let s = (s1, . . . , sn) be a reachable state, x = ∑n
i=1 si and nne be the number of non-zero entries of s,

then no sequence of operations can reach s in less than 2μc(x)− nne steps.

We prove the lower bound for pour operations by inspecting a graph Gσ corresponding to a standard sequence of
operations σ = o1 · · · om . Recall that δi (s, ρ) is the quantity in jug i after applying a sequence of operations ρ to state
s. We denote the number of operations making jug i empty in σ as zi (σ), i.e., zi (σ) = |{k : k > 0, δi (0, o1 · · · ok) =
0, and δi (0, o1 · · · ok−1) > 0}|. Note that zi (σ) can be larger than ei (σ).

For jug i , we define vertices v(i, j), where i ∈ [n] and j = 0, . . . , zi (σ) if δi (0, σ) �= 0, else j = 0, . . . , (zi (σ)−1).
Let Vσ be the set of all v(i, j)’s. For each vertex v(i, j) ∈ Vσ , we associate it with every operation ok satisfying:(1) ok is
applied to jug i . (2) There are exactly j operations making jug i empty before ok. More precisely, we associate v(i, j)
with the following set of operations:{

ok : ok involves jug i and
∣∣{ok′ : k ′ < k, δi (0, o1 · · · ok′) = 0 and δi (0, o1 · · · ok′−1) > 0}∣∣ = j

}
.

Note that in a standard sequence each v(i, j) is associated with at most one empty and one fill operation. Now we
define the corresponding graph Gσ = 〈Vσ , Eσ 〉 of σ , where Vσ is the set of all v(i, j)’s and {v(i, j), v(i ′, j ′)} ∈ Eσ if
and only if both v(i, j) and v(i ′, j ′) are associated with a common operation ol . Therefore, |Eσ | is the number of pour
operations. If every operation in the set associated with v(i, j) does not make jug i empty, then we color v(i, j) gray,
otherwise we color it white.

There are some interesting properties about the first and last operations associated with a vertex. Let os and oe be
the first and last operations associated with vertex v(i, j) ∈ Vσ . We have δi (0, o1 · · · os−1) = 0, since if there exists an
operation applied to jug i before os , then it must make jug i empty (note that if os is the first operation applied to jug
i then prior to os jug i is empty). Also δi (0, o1 · · · oe) = 0 if and only if v(i, j) is white (note that a gray vertex cannot
be associated with an operation making it empty).

For example, we consider an instance with c = (14, 28, 31) and x = 20. Let σ ′ = o1o2 · · · o14 =↓ 1◦ ↓ 3 ◦ 1→
2◦ ↓1 ◦ 1→2 ◦ 2↑ ◦ ↓1 ◦ 1→2 ◦ 3→2 ◦ 2↑ ◦3→2◦ ↓3 ◦ 3→2 ◦ 2↑. It can be justified that δ(0, σ ′) = (0, 0, 20),

but σ ′ is not an optimal sequence. The detailed transitions by σ ′ are: (0, 0, 0)
↓1=⇒ (14, 0, 0)

↓3=⇒ (14, 0, 31)
1→2=⇒

(0, 14, 31)
↓1=⇒ (14, 14, 31)

1→2=⇒ (0, 28, 31)
2↑=⇒ (0, 0, 31)

↓1=⇒ (14, 0, 31)
1→2=⇒ (0, 14, 31)

3→2=⇒ (0, 28, 17)
2↑=⇒

(0, 0, 17)
3→2=⇒ (0, 17, 0)

↓3=⇒ (0, 17, 31)
3→2=⇒ (0, 28, 20)

2↑=⇒ (0, 0, 20). We construct the corresponding graph
in Fig. 2, where each vertex v is associated with a set of operations Ov (denoted as v ← Ov in a rectangle) and
z1(σ

′) = z2(σ
′) = 3, z3(σ

′) = 1.
We now prove the following crucial lemma, which is a key tool to prove the lower bound of pour operations.

Lemma 7. Let Gσ = 〈Vσ , Eσ 〉 be the corresponding graph of σ = o1 · · · om. If a connected component G ′σ =
〈V ′σ , E ′σ 〉 of Gσ contains no gray vertex, then δ(0, σ) = δ(0, σ ′), where σ ′ is obtained from σ by removing all
operations in the sets associated with the vertices in V ′σ .

Proof. Suppose that σ ′ = o′1 · · · o′m′ . Since σ ′ is obtained by removing some operations from σ , we define a one-
to-one mapping g : {1, . . . , m′} → {1, . . . , m} such that o′i in σ ′ corresponds to og(i) in σ , for i = 1 to m′. In
other words, σ ′ is simply a projection of σ . We claim that: for every k ∈ {1, . . . , m′}, if o′k is applied to jug i , then
δi (0, o′1 · · · o′k) = δi (0, o1 · · · og(k)).

M.-Z. Shieh, S.-C. Tsai / Theoretical Computer Science 396 (2008) 50–62 57

We show that δ(0, σ) = δ(0, σ ′) follows from the claim. First consider every i with δi (0, σ ′) �= 0. Let o′l be the
last operation applied to jug i in σ ′. Since δi (0, σ ′) �= 0, v(i,zi (σ)) is gray. The last operation applied to jug i is still in
σ ′. Therefore, there is no operation ol∗ applied to jug i in σ with l∗ > g(l). We have that δi (0, σ ′) = δi (0, o′1 · · · o′l) =
δi (0, o1 · · · og(l)) = δi (0, σ). Next for those i with δi (0, σ) = 0, there are two possibilities: (1) All operations on jug
i are removed. Therefore, δi (0, σ ′) = δi (0, ε) = 0 = δi (0, σ); (2) There are still some operations on jug i in σ ′. Note
that δi (0, σ) = 0 implies that all operations on jug i in σ are associated with white vertices. Let the last operation
applied to jug i in σ ′ be o′l . Then δi (0, σ ′) = δi (0, o′1 · · · o′l) = δi (0, o1 · · · og(l)) = 0 = δi (0, σ), since og(l) is the last
operation associated with some white vertex. We conclude that for every i ∈ [n], δi (0, σ ′) = δi (0, σ) which implies
δ(0, σ ′) = δ(0, σ).

Now we prove the claim by the way of contradiction. Let k be the smallest index such that when o′k is applied
to some jug π , δπ(0, o′1 · · · o′k) �= δπ(0, o1 · · · og(k)). We have that o′k must be a pour operation, thus we assume
that o′k = i → j . Since o′k is applied to both jug i and jug j , one of the following two inequalities must hold:
δi (0, o′1 · · · o′k−1) �= δi (0, o1 · · · og(k)−1) or δ j (0, o′1 · · · o′k−1) �= δ j (0, o1 · · · og(k)−1). Therefore, if we can show that
δi (0, o′1 · · · o′k−1) = δi (0, o1 · · · og(k)−1) and δ j (0, o′1 · · · o′k−1) = δ j (0, o1 · · · og(k)−1), then the assumption leads to a
contradiction.

We show that δi (0, o′1 · · · o′k−1) = δi (0, o1 · · · og(k)−1), and the proof for δ j (0, o′1 · · · o′k−1) = δ j (0, o1 · · · og(k)−1)

is similar. If og(k) is the first operation applied to jug i in σ , then δi (0, o1 · · · og(k)−1) = δi (0, ε) = 0 =
δi (0, o′1 · · · o′k−1). Assume that og(k) is not the first operation applied to jug i . Let ol be the operation applied to
jug i prior to og(k). We have two possible cases:

• (Case 1: ol is not removed.) Then we have δi (0, o1 · · · og(k)−1) = δi (0, o1 · · · ol) = δi (0, o′1 · · · o′g−1(l)
) =

δi (0, o′1 · · · o′k−1), since by the assumption there is no no integer k ′ < k such that ok′ is applied to jug i and
δi (0, o′1 · · · o′k′) �= δi (0, o1 · · · og(k′)).
• (Case 2: ol is removed.) Then ol must make jug i empty, otherwise og(k) and ol would be associated with the

same removed vertex. If all operations involving jug i before og(k) are removed, then δi (0, o1 · · · og(k)−1) = 0 =
δi (0, o′1 · · · o′k−1). Assume that some of them are not removed. Let og(h) be the last remaining operation applied to
jug i before og(k). Since there is no other operation applied to jug i between og(h) and og(k), og(h) is the last operation
associated with some white vertex. Thus, og(h) empties jug i and δi (0, o1 · · · og(k)−1) = 0 = δi (0, o1 · · · og(h)) =
δi (0, o′1 · · · o′h) = δi (0, o′1 · · · o′k−1).

Thus δi (0, o′1 · · · o′k−1) = δi (0, o1 · · · og(k)−1) and similarly δ j (0, o′1 · · · o′k−1) = δ j (0, o1 · · · og(k)−1). Therefore the
claim is true and the lemma is proved. �

Now we can give the lower bound on the number of pour operations in a standard sequence.

Lemma 8. Let σ = o1 · · · om be a standard sequence for a reachable state s = δ(0, σ) and x =∑n
i=1 si . Let nne be

the number of non-zero entries of s, then the number of pour operations in σ is at least μc(x)− nne.

Proof. Let V w
σ be the vertex set of all connected components of Gσ that contains no gray vertex. By removing all

operations associated with vertices in V w
σ , we obtain a standard sequence ρ such that δ(0, ρ) = s, p(ρ) ≤ p(σ)

and its corresponding graph Gρ = 〈Vρ, Eρ〉 does not contain any connected component consisting of only white
vertices. Since Gρ has at most nne connected components, we have p(ρ) = |Eρ | ≥ |Vρ | − nne. Since ρ is standard,
for every vertex v ∈ Vρ , v is associated with at most one fill operation and at most one empty operation. We have
|Vρ | ≥ ∑n

i=1 max(ei (ρ), fi (ρ)) ≥ ∑n
i=1 |ei (ρ) − fi (ρ)| ≥ μc(x); hence the number of pour operations in σ is at

least μc(x)− nne. �

By Lemmas 4 and 8, we have Theorem 6 as an immediate consequence. We remark that this lower bound is tight
empirically for many cases, for example, for measuring (0, . . . , 0, x) with x ∈M(c).

Now we turn to the upper bound. We show the following theorem by analyzing the MEASURE algorithm carefully.

Theorem 9. For all x ∈ M+(c), if we can use the largest l jugs to hold the quantity x, then the algorithm MEASURE

additively measures x in 2μc(x)+ l − 1 steps.

Since we already know the number of non-pour operations generated by the algorithm is ‖x‖1, we focus on the
number of pour operations.

58 M.-Z. Shieh, S.-C. Tsai / Theoretical Computer Science 396 (2008) 50–62

Lemma 10. Let x be an optimal representation of x with capacity c. The algorithm MEASURE outputs a sequence of
operations σ such that |σ | ≤ 2μc(x)+ l − 1.

Proof. Let F = {i |xi > 0} and E = {i |xi < 0}. Let e be the number of empty operation in σ . There are 3 loops in
algorithm MEASURE. Let fk be the numbers of fill operations generated in the k-th loop, k = 1, 2, 3. Since for every
i ∈ F , we fill jug i in the first loop, we have f1 = |F |.

If an invocation of pour(j, i) in the second loop is neither followed by an empty(i) nor by a f i ll(j), then we
have v j = 0 and s j = 0 at the end of that iteration. This means that we will never pick such j in line 4 afterward.
Note that we only pick j ’s from F . Therefore, the number of pour operations generated in the second loop is at most
f2 + e + |F | = f2 + e + f1.

If we do not fill jug i after invoking pour(i, j) in the third loop, then we have jug j is full and jug i is non-
empty. Such j will never be picked in line 9 again. Moreover, such event happens at most l − 1 times, otherwise
x >

∑n
k=n−l+1 ck , a contradiction. The total number of pour operations generated in the third loop is at most f3+l−1.

The total number of pour operations in σ is no more than f2 + e+ f1 + f3 + l − 1 = ‖x‖1 + l − 1 = μc(x)+ l − 1
and thus |σ | ≤ 2μc(x)+ l − 1. �

Theorem 9 follows by Lemmas 5 and 10. The above proof is suggested by one of the anonymous referees which
simplifies our proof in the early draft.

4.2. Bounds for measurable quantities

In this subsection, we prove new lower and upper bounds for measurable quantities. Recall that a sequence σ

measures x if one of the entries of δ(0, σ) equal to x , but a sequence σ ′ additively measures x if the sum over all
entries of δ(0, σ ′) equal to x . Therefore, we cannot directly apply the results for additively measuring here. We prove
the following lower bound, which improves the previous bound 1

2μc(x) by Boldi et al. [4].

Theorem 11. No sequence of operations can measure x, for all x ∈M(c), in less than max{2μc(x)−n, μc(x)} steps.

Proof. First we show that no sequence can measure x in less than 2μc(x)− n steps by way of contradiction. If there

is a state s with si = x for some i ∈ [n] that can be reached in less than 2μc(x)− n steps, then (

i−1︷ ︸︸ ︷
0, . . . , 0, x, 0, . . . , 0)

is reachable in less than 2μc(x)− 1 steps by applying at most n − 1 extra empty operations. By Theorem 6, we know
it is impossible!

Note that the above bound vanishes when 2μc(x)−n < 0. Next we prove that no sequence measures x in less than
μc(x) steps by a more careful observation on the number of pour operations. It is trivial for x = 0. Thus we consider
the case when x > 0. Let ρ be a shortest standard sequence that measures x . Let δ(0, ρ) = t and tk = x for some k.
Due to Lemma 2, we can assume that t j ∈ {0, c j } for every j �= k. Let R = { j : t j �= 0 ∧ j �= k} = {r1, . . . , r|R|}.

Let σ = ρ ◦ r1 ↑ ◦ · · · ◦ r|R| ↑. Thus σ is standard, δ(0, σ) = (

k−1︷ ︸︸ ︷
0, . . . , 0, x, 0, . . . , 0) and p(ρ) = p(σ). By Lemma 8,

we obtain p(ρ) = p(σ) ≥ μc(x) − 1. Since we need at least one fill operation for measuring x > 0, we have
|ρ| ≥ 1+ p(ρ) = μc(x). �

Next we prove the following upper bound which improves the previous bound 5
2μc(x) by Boldi et al..

Theorem 12. For all x ∈ M(c), there exists a sequence of operations ρ such that δ(0, ρ) = (0, . . . , 0, x) and
|ρ| ≤ 2μc(x).

Proof. Let σ = o1 · · · o|σ | be the sequence output by MEASURE. A pour operation i → j in σ makes jug j full or
jug i empty. Let P1 be the set of pour operations in the former case and P2 in the latter case.

Consider an arbitrary operation ok = i → j in P1. If it is generated in the second loop, then MEASURE invokes
empty(j) in the same iteration. Since the total amount of water is less than x in any iteration of the third loop and the
largest jug has capacity at least x , one can conclude that there is no pour operation in P1 generated in the third loop.
Thus, |P1| = e(σ).

Let ok = i → j be a pour operation in P2. Let l = max{q : q < k ∧ oq =↓ i}. We claim that for every r ∈ (l, k),
or is not a pour operation emptying jug i . Suppose not, let or = i → j ′ in P2. If or is generated in the third loop, then

M.-Z. Shieh, S.-C. Tsai / Theoretical Computer Science 396 (2008) 50–62 59

it must be followed by ↓ i , since jug i is emptied by or . If or is generated in the second loop and or is not followed
by ↓ i , then vi = 0 and si = 0 after invoking pour(i, j ′). Consequently, or is the last pour operation emptying jug i
and this contradicts the assumption r < k. Then or must be followed by ↓ i , and it leads to r < l, which contradicts
that r ∈ (l, k). Now we know the claim is true, and every pour operation i → j in P2 can be paired with the closest
prior ↓ i operation. Thus |P2| = f (σ)− fu , where fu is the number of unpaired fill operations.

Now we turn to bound fu . Let F∗ = {i : i < n∧si > 0 when MEASURE terminated}. F∗ ⊆ {i : xi > 0} since at the
end of the second loop for every i ∈ {i : xi ≤ 0} si = 0 and we only pour water into jug n in the third loop. For every
i ∈ F∗, there exists ↓ i in σ , and the last one is unpaired, since there is no operation emptying jug i after it. We have
|F∗| ≤ fu , so |σ | = f (σ)+ e(σ)+ p(σ) ≤ f (σ)+ e(σ)+ |P1| + |P2| ≤ 2(f (σ)+ e(σ))− |F∗| ≤ 2μc(x)− |F∗|.
Let ρ = σ ◦ i1 → n ◦ · · · ◦ i|F∗| → n where F∗ = {i1, . . . , i|F∗|}. We have that δ(0, ρ) = (0, . . . , 0, x) and
|ρ| ≤ 2μc(x). �

We thank one of the anonymous referees whose comments inspired us to give stronger results for measurable
quantities than the original version. From Theorem 12, we know that when measuring (0, . . . , 0, x) with x ∈ M(c),
the bound is very close to the lower bound mentioned in Section 4.1.

5. Computing µc(x) and its approximation

5.1. Hardness of jug measuring

Recall that we define the optimal jug measuring problem as: given n jugs with capacity c1, . . . , cn , and a state s,
find the length of shortest sequence σ such that δ(0, σ) = s.

We have used μc(x) to bound the number of steps on jug measuring. In this section, we investigate the hardness
of computing μc(x) and the optimal jug measuring problem. It can be shown directly that computing μc(x) is indeed
N P-hard. For the notations of computational complexity we refer to standard textbooks such as by Sipser [10] and
Papadimitriou [9]. However, we have stronger results, i.e., it is hard even to approximate it.

To study the complexity of computing μc(x), we investigate the shortest GCD multiplier problem [6], which
is: given c1, c2, . . . , cn , we want to find x = (x1, x2, . . . , xn) such that

∑n
i=1 xi ci = gcd(c1, c2, . . . , cn) and

‖x‖p is minimal. The latter problem, for p = 1, is a special case of the problem of computing μc(x). Havas
and Seifert [6] proved that: (1) Unless N P ⊆ P , there exists no polynomial-time algorithm which approximates
the shortest GCD multiplier problem in l p-norm within a factor of k, where k ≥ 1 is an arbitrary constant. (2)
Unless N P ⊆ DTIME(n poly(logn)), there exists no polynomial-time algorithm which approximates the shortest GCD
multiplier problem in l p-norm within a factor of n1/(p logγ n), where γ is an arbitrary small positive constant.

Let σ be an optimal sequence to measure x ∈ M(c). By the lower and upper bounds of the previous section, we
have μc(x) = �|σ |2 �where δ(0, σ) = (0, . . . , 0, x). In other words, if we know how to solve the optimal jug measuring
problem, then we know the value of μc(x). By selecting x = gcd(c), for the optimal jug measuring problem we have
analogous results:

Theorem 13. Unless NP ⊆ P, there exists no polynomial-time algorithm which approximates the optimal jug
measuring problem within a factor of k, where k ≥ 1 is an arbitrary constant.

Theorem 14. Unless NP ⊆ DTIME(n poly(logn)), there exists no polynomial-time algorithm which approximates the
optimal jug measuring problem within a factor of n1/ logγ n, where γ is an arbitrary small positive constant.

5.2. Reduction from computing μc(x) to CVP

In this section we give a polynomial-time reduction from the problem of computing μc(x) to CVP and
an LLL-based approximation algorithm for computing μc(x) with exponential errors (approximation ratio). Our
approximation algorithm is based on the fact: computing μc(x) can be polynomially reduced to the closest lattice
vector problem (CVP). This is an extension of the approach given by Havas et al. [7] for approximating the extended
GCD problem.

We introduce lattice and the closest lattice problem briefly as follows. A lattice in R
n is the set of all integer linear

combination of m independent column vectors b1, b2, . . . , bm . The lattice generated by b1, b2, . . . , bm , denoted as

60 M.-Z. Shieh, S.-C. Tsai / Theoretical Computer Science 396 (2008) 50–62

L(b1, b2, . . . , bm), is the set {∑m
i=1 λibi |∀i ∈ [m], λi ∈ Z}. The independent vectors b1, b2, . . . , bm are called a basis

of the lattice. The closest lattice vector problem is: given a basis b1, b2, . . . , bm , a vector v ∈ R
n and an integer p, we

want to find the lattice point u ∈ L(b1, b2, . . . , bm) which is closest to v under l p-norm.
In order to complete the reduction from computing μc(x) to CVP, we introduce the Hermite normal form [11].

A matrix A is said to be in Hermite normal form if it has the form [B 0] where the matrix B is a non-singular,
lower triangular, non-negative matrix, in which each row has a unique maximum entry, which is located on the main
diagonal of B .

The following operations on a matrix are called elementary (unimodular) column operations: (1) exchanging two
columns; (2) multiplying a column by −1; (3) adding an integral multiple of one column to another column.

A non-singular matrix U is a unimodular matrix if U is integral and has determinant 1 or −1. Unimodular matrix

can be obtained by applying some unimodular operations to I . For example,

⎡
⎣ 3 1 0
−1 0 0
0 0 1

⎤
⎦ is a unimodular matrix

which is obtained by: exchanging column 1 and 2, multiplying column 1 by −1, then adding 3 times column 2 to
column 1. There are several known facts about Hermite normal form:

Theorem 15 ([11]). (1) Each rational matrix of full row rank can be brought into Hermite normal form by a
series of elementary column operations. (2) For each rational matrix A of full row rank, there is a unimodular
matrix U such that AU is the Hermite normal form of A. (3) Given a feasible system Ay = b of rational
linear diophantine equations, we can find in polynomial-time integral vectors y0, y1, y2, . . . , yt such that {y|Ay =
b; y is integral} = {y0 + λ1y1 + · · · + λtyt |λ1, . . . , λt ∈ Z} with y1, y2, . . . , yt linearly independent. Moreover,

[y0 y1 y2 · · · yt] = U

[
B−1b 0

0 I

]
, where AU = [B 0] is the Hermite normal form of A.

We are now in position to prove the announced reduction.

Corollary 16. The problem of computing μc(x) can be polynomially reduced to CVP.

Proof. Assume that 〈(c1, c2, . . . , cn), x〉 is an instance for computing μc(x). Let 1-by-n-matrix C = [c1 c2 · · · cn].
By Theorem 15(2), there exists a unimodular n-by-n-matrix U such that CU = [b 0 · · · 0] is the Hermite

normal form of C . Let [v0 v1 v2 · · · vn−1] = U

[x
b 0
0 I

]
. By Theorem 15(3), we know that v1, v2 · · · , vn−1

are linearly independent column vectors and form a basis of a lattice L. Hence μc(x) = minv∈{x|c·x=x} ‖v‖1 =
minλ1,...,λn−1∈Z ‖v0 + λ1v1 + · · · + λn−1vn−1‖1 = minw∈L ‖w − (−v0)‖1. Thus μc(x) is the l1-norm of the vector
v ∈ L which is closest to −v0. Note that all computation can be done in polynomial time. �

For the problem of computing the unimodular matrix U such that [c1 c2 · · · cn]U is in the Hermite normal form,
we propose an algorithm which is simpler than the general algorithm in [11] and the algorithms mentioned in [7].
However, the algorithms in [7] could outperform our algorithm. Our algorithm works for our application on the
special case [c1 c2 · · · cn]U , but it cannot compute the unimodular matrix U for any other n by m matrix, where
n > 1. The algorithm is shown in Fig. 3, and it is based on the Euclidean algorithm. It computes the greatest common
divisor of the first and the i th entries by applying Euclidean algorithm with unimodular operations. Each iteration
terminates when the greatest common divisor is written back to the first entry and 0 is written to the i th entry, thus it
runs in O(n2 log cn) time. The maximum of the absolute value of the entries of U will not exceed O(n log cn).

Babai [2] provided two polynomial-time approximation algorithms for CVP. Both algorithms are based on LLL
basis reduction algorithm proposed by A. K. Lenstra, H. W. Lenstra and L. Lovasz (see e.g., [8]). Assume that we are

given an LLL reduced basis {b1, b2, . . . , bn} where ‖b1‖2 ≤ 2
n−1

2 minv∈L(b1,...,bn)−{0} ‖v‖2, a vector x = ∑n
i=1 αibi

and we are to find a vector w ∈ L(b1, b2, . . . , bn) that is close to x. The first algorithm is called the rounding off
heuristic algorithm. It simply outputs w = ∑n

i=1 βi bi where βi is the closest integer to αi . The second algorithm is
called the nearest-plane heuristic algorithm. It is a recursive algorithm. Let V = span(b1, b2, . . . , bn−1), and find
v ∈ L(b1, b2, . . . , bn) such that the distance between V + v and x is minimal. Let x′ be the orthogonal projection of
x on V + v. Then find y ∈ L(b1, b2, . . . , bn−1) close to x′ − v, and output w = y + v. Both algorithms guarantee
that w is close to x.

M.-Z. Shieh, S.-C. Tsai / Theoretical Computer Science 396 (2008) 50–62 61

Algorithm HERMITE NORMALIZE(C)
Inputs: C = [c1c2 · · · cn], the capacities of jugs.
Outputs: U = [u1u2 · · ·un] such that [c1c2 · · · cn]U is in the Hermite normal form.
Variables: q , temporal storages for � ci

c1
�

begin
1. U := I ;
2. for i = 2 to n do
3. while (true) do
4. q := � ci

c1
�; ci := ci − qc1; ui := ui − qu1;

5. if (ci = 0) then break;
6. Swap(ci , c1); Swap(ui ,u1);
7. loop
8. next i
end

Fig. 3. A simple algorithm to compute U .

Theorem 17 ([2]). The rounding off heuristic algorithm find a vector w such that ‖x − w‖2 ≤ (1 +
2n(9

2)
n
2) minv∈L(b1,b2,...,bn) ‖x − v‖2.

Theorem 18 ([2]). The nearest-plane algorithm heuristic algorithm find a vector w such that ‖x − w‖2 ≤
2

n
2 minv∈L(b1,b2,...,bn) ‖x − v‖2.

Using the nearest-plane heuristic algorithm, we can approximate μc(x) in polynomial time but with an exponential
error (approximation ratio) .

Corollary 19. There exists a polynomial-time algorithm to find a vector x such that c · x = x and ‖x‖1 ≤√
n · 2 n−1

2 μc(x).

The LLL algorithm can reduce a basis of some lattice L to a shorter one. If we replace the LLL reduced basis
with another shorter basis in the nearest-plane heuristic algorithm, it will have a better performance. Using the basis
reduction algorithm in [1], we can have a smaller approximation ratio 2O(n log log n/ log n).

6. Conclusion and remarks

We have characterized the additively measurable quantities, and proved new lower and upper bounds on the
minimum number of measuring steps. We prove that the optimal jug measuring problem is hard to approximate
within constant factor. Finally, based on LLL-algorithm we give a polynomial-time approximation algorithm with
exponential errors.

Acknowledgments

We would like to thank the anonymous referees who provided very helpful comments for improving and preparing
this paper. We also would like to thank Dr. Chi-Jen Lu for his hospitality during one of the authors’ visit to Institute
of Information Science, Academia Sinica, while working on this problem.

The work was supported in part by the National Science Council of Taiwan under contract NSC 91-2213-E-009-
057, 95-2221-E-009-094-MY3 and in part by a MediaTek grant, 2003.

References

[1] Miklos Ajtai, Ravi Kumar, D. Sivakumar, A sieve algorithm for the shortest lattice vector problem, in: Proceedings of the 33rd ACM
Symposium on Theory of Computing, 2001, pp. 601–610.

[2] L. Babai, On Lovasz’ lattice reduction and the nearest lattice point problem, Combinatorica 6 (1986) 1–13.

62 M.-Z. Shieh, S.-C. Tsai / Theoretical Computer Science 396 (2008) 50–62

[3] The American Mathematical Monthly 109 (1) (2002) 77.
[4] P. Boldi, M. Santini, S. Vigna, Measuring with jugs, Theoretical Computer Science 282 (2002) 259–270.
[5] C. McDiarmid, J. Alfonsin, Sharing jugs of wine, Discrete Math 125 (1994) 279–287.
[6] G. Havas, J.-P. Seifert, The Complexity of the Extended GCD Problem, in: LNCS, vol. 1672, Springer, 1999.
[7] G. Havas, B.S. Majewski, K.R. Matthews, Extended GCD and Hermite Normal Form Algorithm via Lattice Basis Reduction, in: Experimental

Mathematics, vol. 7, 1998.
[8] L. Lovasz, An Algorithmic Theory of Numbers, Graphs and Convexity, SIAM, Philadelphia, PA, 1986.
[9] C. Papadimitriou, Computational Complexity, Addison-Wesley Publishing Co, 1995.

[10] M. Sipser, Introduction to the Theory Computation, PWS Publishing Company, 1997.
[11] A. Schrijver, Theory of Linear and Integer Programming, John Wiley & Sons Inc., 1986.

	Jug measuring: Algorithms and complexity
	Introduction
	Notation and definitions
	Measurability and standard sequences
	Measurability
	Standard sequences

	Lower and upper bounds of measuring steps
	Bounds for additively measurable quantities
	Bounds for measurable quantities

	Computing mu c(x) and its approximation
	Hardness of jug measuring
	Reduction from computing mu c(x) to CVP

	Conclusion and remarks
	Acknowledgments
	References

