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1. 中文摘要

這個計劃結合了幾何以及影像是顯像技術，發展
出一套整合式顯像系統以即時地瀏覽複雜的虛擬實
境。這個系統分成兩個階段，前置處理階段包含了場
景分割、依據物體自身遮擋選擇其表示法、保守的背
向剔除以及保守的可見性剔除。目的都是要盡量降低
瀏覽時的場景複雜度。在執行階段，針對深度網格採
用貼圖的方式來加速顯像，而執行期的可見性剔除也
能輕易地整合到我們的系統中。我們的實驗結果顯示
了我們的系統只損失少許的影像品質，便能以即時的
顯像率來瀏覽相當複雜的場景。

關鍵詞：虛擬實境、可見性剔除、影像快取、影像式
顯像、混合式顯像

Abstract

In this project, we combine geometry-based and 
image-based rendering techniques to develop a VR 
navigation system that aims to have efficiency relatively 
independent of the scene complexity. The system has 
two stages. The pre-processing stage includes 3D scene 
partitioning, object representation selection depending on 
its self-occlusion error, conservative back-face 
computation, and conservative visibility computation. All
aim to remove polygons that are invisible from any point 
inside the cell. At run-time stage, LOD meshes are 
rendered normally while depth meshes are rendered by 
texture mapping with their cached images.  Techniques 
for run-time back-face culling and occlusion culling can 
be easily included. Our experimental results have 
depicted fast frame rates for complex environments with 
an acceptable quality-loss.

Keywords:  Virtual Reality, Visibility, Image Caching, 
Image-Based Rendering, Hybrid Rendering

2. INTRODUCTION

To take the advantages of both geometry- and 
image-based rendering techniques, we introduce a hybrid 
rendering scheme that aims to render a complex scene in 
a constant and high frame rate with only a little or an 
acceptable quality loss. The hybrid scheme consists of 
two stages: pre-processing stage and run-time stage. In 
the pre-processing stage, to exploit the spatial coherence, 
the x-y plane of a 3D scene is partitioned into equal-sized
hexagonal navigation cells. To reduce hole problem due
to self-occluding, each object outside a cell is represented
either by a LOD mesh or by a depth mesh depending on
its approximate self-occluding error. The object is 
represented by a LOD mesh of an appropriate resolution 
if its self-occluding error is over a user-specified 
tolerance; otherwise by an object-based depth mesh. 
The object-based depth mesh is derived from the object’s 
original mesh based on the silhouette and depth variation 
on the rendered image viewed from the cell center. The 
resulting depth mesh is a view-dependent LOD model of 
the object’s visible part that the resolution becomes 
coarser when the object is at farther distance while the 
silhouette is well preserved.  In consequence, for each 
navigation cell, we have a set of LOD meshes and depth 
meshes (together with their cached images) for objects 
outside the cell. Since viewpoint is constrained in a 
particular cell during the navigation, we can further 
remove back-facing polygons of LOD meshes and 
occluded polygons for both types of meshes for any 
viewpoint inside the cell. This is accomplished by the
proposed conservative back-facing culling and a 
conservative occlusion culling.

At the run-time stage, LOD meshes and depth meshes 
associated with the navigation cell where current 
view-point lies are rendered.  The depth meshes are 
texture mapped with the cached images by the proposed 
hardware accelerated projective-alike texture mapping
which generates texture coordinates automatically. 
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Run-time occlusion culling for the entire scene and 
back-facing culling for the objects inside the cell can be 
performed to further reduce the polygon count.  To 
minimize the impact of the data loading while navigating 
across the cell boundary, a pre-fetching scheme is also 
developed to amortize the loading time to several
previous frames.

3. RELATED WORK
  
With traditional visibility culling techniques, the 
remaining polygons might be still too many to achieve 
interactive rate.  Level-of-detail (LOD) modeling has 
been very useful in further reducing the number of 
polygon that are visible and inside the view frustum.
Distant objects get projected to small areas on the screen 
and hence can be represented with coarse meshes.  Many 
methods have been proposed to obtain LOD meshes; e.g., 
edge collapsing4, vertex clustering, and vertex 
decimation.

Geometry-based rendering based on visibility culling
and LOD modeling alone usually still cannot meet 
interactive requirement for very complex scenes. 
Image-based rendering (IBR) has been a well known 
alternative. IBR takes parallax into account, and renders a 
scene by interpolating neighboring reference views1,7. 
IBR has efficiency that is independent of the scene 
complexity, and can model natural scenes using 
photographs. It is, however, often constrained by the 
limited viewing degree of freedom. IBR in general has 
problems like folding, gap, and hole.

Hierarchical image caching8 is the first approach that 
combines geometry- and image-based rendering aiming to 
achieve an interactive frame rate for complex static 
scenes. The cached texture possesses no depth 
information and, in turns, limits its life cycle.  The image 
simplification schemes2,9 represent background or distant 
scene using 2D cached depth meshes derived from the 
rendered images for some specific views. In such 
approaches, folding problems and gaps resulting from the 
resolution changes can be eliminated; however, the hole 
problems due to visibility and self-occluding still remain.
Moreover, disjointed objects might be rendered as 
connected objects, and depth meshes derived on the 2D 
cached images are in pixel resolution, which might lead to 
geometric inaccuracy when re-projected into 3D space.  
Multi-layered impostors3 are proposed to restrict visibility 
artifacts between objects to a given size, and as well as a 
dynamic update scheme to improve the resolution
mismatch.  However, it still encountered hole problem 

due to self occlusion, and an efficient dynamic update 
requires a special hardware architecture.

4. PROPOSED HYBRID SCHEME

We propose an object-based depth meshes scheme to 
greatly reduce the hole artifacts produced from the 
occlusion between objects, as well as a self-occlusion
error estimation to restrict the hole artifacts produced 
from object’s self-occlusion in a given size.  Such 
estimation decides the representation of objects.  Those 
objects which will potentially result in holes smaller than 
a user-specified tolerance are represented by depth 
meshes; otherwise, by standard meshes of appropriate
LOD resolutions.

To reduce the redundancy of a regular-grid meshing, 
as well as the precision error caused by the projection 
from object space to image space, the depth mesh is 
simplified by an edge collapsing from original mesh 
based on the depth characteristic while preserving most of 
the important visual appearances.  

Furthermore, the regional back-face culling for each 
object from a cell could be performed before the 
self-occluding error estimation and depth mesh 
construction. In a result, more objects are represented 
by depth mesh under the same self-occluding error 
tolerance, and depth mesh construction would be much 
faster.  Lastly, a conservative occlusion culling can 
remove invisible polygons for any view inside the cell of
all depth meshes and LOD meshes. In a result, the 
polygon count in scene navigation can be greatly reduced.

4.1. Pr e-Pr ocessing Stage
The processing steps in the pre-processing stage are:

1. Hexagonal spatial subdivision.

2. Regional conservative back-face culling.

3. Selection of object’s representation based on its 
self-occluding error estimation.

4. Depth mesh construction.

5. LOD mesh generation.

4.1.1. Hexagona l spa t ia l subdivision

In order to utilize the spatial locality of a complex scene,
the x-y plane of the scene is subdivide into N×M
hexagonal navigation cells. With the spatial subdivision, 
the scene data and viewpoints can be localized to cells, 
and, therefore, visibility culling, conservative back-facing 
and occlusion culling can be performed in preprocessing
phase.
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4.1.2. Regional conser va t ive back-face culling

For each polygon, we obtain the vector from one of six 
corner vertices of the navigation cell to the center of 
polygon, and do the dot product of the vector with 
polygon’s normal vector. If it is negative, the polygon is 
back-facing with respect to that corner vertex.  If a 
polygon is back-facing for all six vertices of the cell, the 
polygon is back-facing wrt. any point inside the cell, and 
hence should be culled. 

4.1.3. Self-occluding er r or  est imat ion

The major problem of depth mesh representation is that it 
is only the visible part of the object viewed from the cell 
center hence has limited viewing degree of freedom.  
When a new view is far from the cell center, parts that are 
invisible originally might become visible and get rendered 
as holes.  We propose a self-occluding error to estimate 
the maximum size of the hole that may appear when the 
object is represented by a depth mesh.  

As shown in Figure 1, the maximum error occurs at 
the farthest view position V’ from the cell center V.  Let 
the cell size, i.e., the length of 'VV  be c, the distant 
between object and the cell center, i.e., the length of VO
be d, and the size in depth of the object itself, i.e., the 
length of OP  be l. The length of OC is θtan*l , 
the angleθ  betweenVP and PV ' is
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The test on self-occluding error is to check if the object's 
maximum projected error s is smaller then a 
user-specified tolerance in image precision. If it is, the 
object is represented by a depth mesh; otherwise by a 
LOD mesh.
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Figure 1. The maximum self-occluding error occurs at the 
position V'.

4.1.4. Depth  mesh const r uct ion

The cached image of an object is obtained by rendering 
the object using the cell center as the center of projection 
and using the cell's side face as the projection window.  
The depth image is the cached image augmented with the 
depth values.  The simplest way to construct a depth 
mesh for an object is to use the regular-grid triangulation6

performed on the depth image, which would, however, 
results in too many redundant triangles and produces 
rubber effects caused by incorrect connections.
Furthermore, since it is performed in the image space, it 
always suffers from the precision error caused by the 
projection (from floating-point precision in world space 
into integer precision in image space).

In order to reduce the number of the triangles on a 
depth mesh while preserving most of the visual 
appearances, several properties of the depth image could 
be adopted. The most important one is to use the depth 
coherence, by that we mean pixels of similar depth 
variation are likely to be on the same surface, and a pixel 
that has a sharp depth variation from adjacent pixels
would have a high possibility to be on a contour edge. 
Moreover, the external contour edges of the rendered
object on the image are the most important visual 
appearances, and hence must be included in the depth 
mesh.  External contour edges can be easily derived by 
using the contour extraction in the field of image 
processing.  On the other hand, if we can extract all the 
internal contour edges from the depth image, rubber 
effects caused by undetected gaps (C0 discontinuity) 
between disjointed surfaces represented by a connected 
mesh and blur effects appearing at the sharp edges (C1

discontinuity) represented by a flatted mesh could be 
greatly reduced.  

In order to minimize the precision error caused by 
projection, we simplify the depth mesh in both the image 
and the object space in three steps. Firstly, we categorize 
image pixels on the depth image based on the importance 
of its visual appearance and its characteristic into four 
categories:

l external contour

l internal contour (gap) (C0 discontinuity)

l sharp edge (C1 discontinuity)

l interior

Secondly, vertices of object's original mesh are 
projected again (but do not alter the value of depth image) 
with the same projection setup of the depth image to do 
the visibility test for each vertex. If Z value of a 
projected vertex equals to the Z value at the pixel on the 
depth image, the pixel on the depth image is representing 
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the vertex of the original mesh; otherwise the vertex is 
behind other surfaces.  For the former case, a weight 
rela-tive to the category of the pixel is assigned to the 
vertex (The highest weight is assigned for external 
contour category, a lower weight is assigned for internal 
contour category, and so on.) On the other hand, for the 
later case (invisible vertex), the vertex gets zero weight.

Lastly, weight-based edge collapsing is performed 
based on the weights of vertices to simplify the object's 
original mesh.  Moreover, to obtain a proper resolution 
of the simplified depth mesh and preserve the visual 
appearances, the edge with one of or both vertices' weight 
smaller than the weight of the sharp edge category and 
whose projected size smaller than a user-specified length 
tolerance (in pixels) is simplified.  The collapsing order 
is based on the area of the projected triangle.  As a result, 
a more optimized triangle aspect ratio is obtained and tiny 
triangles with respect to the view contain no important 
visual appearances are removed.

Figure 4(b-e) show the simplified depth meshes at 
different distances.

4.2. Run-Time Stage
In the run-time stage, we do the following steps:

1. At program start-up time, we setup a lowest priority thread 
for pre-fetching the geometry and image data of 
neighboring cells.

2. Ensure that the geometry and image data for the current 
navigation cell is loaded into memory.

3. Perform a run-time normal-cluster-based back-face culling 
for the objects inside the current navigation cell.

4. Perform a run-time occlusion culling for all meshes. 

5. Render the remaining polygons. Depth meshes are 
rendered using the projective-alike texture mapping.

6. Pre-fetch data of neighboring cells when CPU load is 
relative low.

4.2.1. Render ing

Objects inside the navigation cell can be seen from any 
direction, it is impossible to determine the visibility 
during the pre-processing stage.  Those polygons inside 
the navigation cell can be grouped into clusters according 
to its normal5 in the pre-processing stage. During the 
run-time stage, we can quickly cull out the whole 
back-facing cluster of polygons according to the viewing 
direction and the FOV.

Although there are considerable overheads, it is a 
beneficial approach to reduce the polygons sent into 
graphic pipeline by applying a run-time occlusion culling 
for a densely occluded environment. To perform the 

culling, we generate an occlusion map similar to the idea 
proposed in Ref. 10.  Only LOD meshes, depth meshes, 
and original meshes inside the navigation cell whose 
projected area larger than a pre-specified threshold are 
selected to be occluders.  Though this approach of
occluder selection is not optimized, it is advantageous not 
to spend too much time on selecting occluders.

5. EXPERIMENTS

Our test scenes are two statuary parks, one is consists of 
358 objects with 970,254 polygons (sparse scene), and 
another is consists of 956 objects with 2,265,978 
polygons (dense scene) on an area of 2400×2000. 

The test platform is a PC with an AMD TB 1.2Ghz 
CPU, 512MB main memory, and an nVidia GeForce3 
with 64MB DDR RAM graphics accelerator.

5.1. Cell Size and Self-Occluding Er r or  
Consider at ion
Several settings of the combination of different cell size 
(50 and 100) and self-occluding error tolerance (1-, 3-, 
and 5-pixel) are used in our experimental test.

As we can expect, the higher self-occluding error we 
can tolerate, the more objects are represented by depth 
meshes.  In the case of cell size 50 and 1-pixel error 
tolerance, 54.0% objects are represented by depth meshes, 
while it is 63.9% for 3-pixel error tolerance.  However, 
with no doubt, image quality for 3-pixel tolerance is 
lower than that of 1-pixel tolerance.

Since we want to identify how much benefit and 
image quality-loss comes from the depth mesh 
representation alone, we use original meshes instead of 
LOD meshes to represent those objects with the 
self-occluding error exceeding the tolerance. Such that, 
when cooperating with LOD techniques the performance 
would be even better.錯誤! 書籤的自我參照不正確。
Table 1 lists the polygon number of regional back-face 
culled LOD meshes, depth meshes, polygons inside a cell, 
the number of objects represented by depth mesh, the 
average frame rate, and average image quality under 
different settings. Under 60° FOV, three view windows 
should be rendered, such that, half of the LOD meshes, 
half of the depth meshes and all meshes inside the cell are 
the potential visible polygons.  All of them show that, 
more polygons are simplified for the higher error 
tolerance setting with the cost of higher quality-loss.  
That is, our proposed scheme provides a tradeoff between 
the performance and image quality.  Note that, under the
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Figure 2. (a) is the original mesh of a horse captured at two cells away (at distance 173), and (b-e) are depth meshes generated at 6, 7, 9 
and 10 cells away.

same self-occluding tolerance, a larger cell size would not 
produce much poorer image quality, mainly due to the 
fact that the selection of object's representation is 
designed to ensure the bounded self-occluding error.  
Hence, the cell size has little impact on the image quality 
under our proposed scheme.  However, as the cell size 
increases, more objects are represented by LOD meshes, 
more objects are put inside the navigation cell, and the 
number of potential visible polygons increases also, so 
the number of polygons increases dramatically.  As a 
result, worse performance will be found.

The depth mesh simplification can simplify about 
94% polygons in average, and, the farther object is, the 
greater simplification ratio is.  On the other hand, in 
general, the larger size a cell has or the nearer object is, 
the fewer back-facing rate is.  At the time of writing this 
report, we are still working on several minor bugs of this 
pre-processing occlusion culling program; therefore, we 
have no information about how many percentage of 
polygons could be culled.

5.2. Per for mance
We use the setting of cell size 50 and 3-pixel 
self-occluding error tolerance for the further testing for 
the dense scene.  Three rendering configurations are 
used to do the performance comparison:

l A: (Pure geometry) The original meshes of the scene are 
rendered using the traditional graphics pipeline.

l B: (Pure geometry w/ view frustum culling) Same as A, 
but with software view frustum culling.

l C: (Proposed scheme w/o run-time occlusion culling) 
The scene is rendered by proposed scheme with view 
frustum culling but without run-time occlusion culling.

Table 2 lists the performance of each configuration.  
Configuration C spends additional time on loading 

neighboring cell data at the first frame, such that, there is 
a low peak at the first frame. Our proposed scheme w/o 
run-time occlusion culling has about 20.4 speedup factor 
compare to the pure geometric rendering while yields an 
average SNR about 22.2dB (13.6× under 1-pixel error 
tolerance and yields an SNR about 26.5dB.)  It shows 
that our proposed method provides a faster rendering with 
an acceptable quality-loss while configuration B is hardly 
to achieve interactive frame rate for such complex scene.  

Figure 3 depicts the frame rate of every rendering 
frame on the same navigation path under these three 
rendering configurations. 

As mentioned before, the overhead of run-time 
occlusion culling is un-negligible, and our test scene is 
not a densely occluded environment, our experiment is, 
w/ runtime occlusion culling, it is slower than C but still 
outperforms B.

6. DISCUSSION & FUTURE WORK

In this project, we have proposed a hexagonal spatial 
subdivision and a hybrid rendering scheme for navigating 
complex scenes.  Such scheme can achieve a smooth, 
navigation with no apparent popping effects at an almost 
constant and interactive frame rate for a very complex 
scene. By cooperating with LOD meshes and 
object-based depth meshes, parallax error, crack, hole, 
rubber effect, and popping effect can be minimized.  
Further-more, with visibility preprocessing, polygons 
invisible from a region will never be sent into graphics
pipeline.  A tradeoff between performance and quality 
requirement can be easily made by specifying the 
self-occluding error tolerance.

When constructing the depth mesh in both object and 
image space, a special affair should handle with care.  

(a) 2 cells away. (b) 6. (c) 7. (d) 9. (e) 10.
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The rasterization engine of graphics hardware may render 
small polygon specially, such that a vertex may not 
projected into the same image pixel, in a result, a wrong 
weight may retrieved.  

As the future works, we will improve the depth mesh 
construction and simplification to have a better simplified 
depth mesh.  For handling more complicated and 
extremely large scale scene, distant objects that are close 
to each other can clustered together to generate a single 
depth mesh.  Such that, the amount of textures could be 
reduced and an approximated occlusion culling is done on 
the fly.  Moreover, we will try to exploit the data 
coherence between neighboring cells to improve our 
pre-loading scheme.
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Table 1.  The average potential visible polygon no. for a cell, the average frame rate, and image quality under the different settings.

Polygon on. of regional
back-face culled LOD
mesh

Polygon no. of 
depth mesh

Polygon no. of
inside mesh

Polygon no. of 
potentially visible 
polygons

No. of objects 
represented by 
depth mesh

Average 
frame rate 
(fps)

Image quality 
(SNR(dB))

sparse scene (358 objects, 970,254 polygons)

size 50, 1-pixel 198,830 27,579 2,278 115,483 183.5 30.0 26.4
size 50, 3-pixel 80,875 43,086 2,278 64,258 221.5 42.8 23.9
size 50, 5-pixel 50,921 48,843 2,278 52,160 231.5 48.9 23.2

size 100, 3-pixel 152,796 35,745 8,452 102,723 207.4 36.0 24.9
dense scene (956 objects, 2,265,978 polygons)

size 50, 1-pixel 433,054 69,293 5,281 256,455 516.2 20.0 26.5
size 50, 3-pixel 179,805 102,501 5,281 146,434 610.7 29.9 22.2

Table 2.  Performance under the three configurations.

A B C
Frame time(ms) 680.3 268.1 33.4
Frame rate(fps) 1.47 3.73 29.9
Speed up 1.0×(baseline) 2.54× 20.4×

0
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20

30
40
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1 26 51 76 101 126 151

Conf. A Conf. B Conf. C

Figure 3. The frame rate (fps) under the three configurations on the same navigation path.
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