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Hybrid Rendering Techniquesfor Virtual Reality (I1)
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Abstract

In this project, we combine geometry-based and
image-based rendering techniques to develop a VR
navigation system that aims to have efficiency relatively
independent of the scene complexity. The system has
two stages. The pre-processing stage includes 3D scene
partitioning, object representation selection depending on
its sdf-occlusion error, conservative  back-face
computation, and conservative visibility computation. All
aim to remove polygons that are invisible from any point
inside the cell. At run-time stage, LOD meshes are
rendered normally while depth meshes are rendered by
texture mapping with their cached images. Techniques
for run-time back-face culling and occlusion culling can
be easily included. Our experimental results have
depicted fast frame rates for complex environments with
an acceptable quality-loss.

Keywords: Virtual Reality, Visibility, Image Caching,
Image-Based Rendering, Hybrid Rendering
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2. INTRODUCTION

To take the advantages of both geometry- and
image-based rendering techniques, we introduce a hybrid
rendering scheme that aims to render a complex scene in
a constant and high frame rate with only a little or an
acceptable quality loss. The hybrid scheme consists of
two stages. pre-processing stage and run-time stage. In
the pre-processing stage, to exploit the spatial coherence,
the x-y plane of a 3D scene is partitioned into equal-sized
hexagonal navigation cells.  To reduce hole problem due
to self-occluding, each object outside a cell is represented
either by a LOD mesh or by a depth mesh depending on
its approximate self-occluding error. The object is
represented by a LOD mesh of an appropriate resolution
if its self-occluding error is over a user-specified
tolerance; otherwise by an object-based depth mesh.
The object-based depth mesh is derived from the object’s
original mesh based on the silhouette and depth variation
on the rendered image viewed from the cell center. The
resulting depth mesh is a view-dependent LOD model of
the object’'s visible part that the resolution becomes
coarser when the object is at farther distance while the
silhouette is well preserved. In consequence, for each
navigation cell, we have a set of LOD meshes and depth
meshes (together with their cached images) for objects
outside the cell. Since viewpoint is constrained in a
particular cell during the navigation, we can further
remove back-facing polygons of LOD meshes and
occluded polygons for both types of meshes for any
viewpoint inside the cell. This is accomplished by the
proposed conservative back-facing culling and a
conservative occlusion culling.

At the run-time stage, LOD meshes and depth meshes
associated with the navigation cell where current
view-point lies are rendered. The depth meshes are
texture mapped with the cached images by the proposed
hardware accelerated projective-alike texture mapping
which generates texture coordinates automaticaly.



Run-time occlusion culling for the entire scene and
back-facing culling for the objects inside the cell can be
performed to further reduce the polygon count. To
minimize the impact of the data loading while navigating
across the cell boundary, a pre-fetching scheme is also
developed to amortize the loading time to severd
previous frames.

3. RELATED WORK

With traditional visibility culling techniques, the
remaining polygons might be still too many to achieve
interactive rate. Level-of-detail (LOD) modeling has
been very useful in further reducing the number of
polygon that are visible and inside the view frustum.
Distant objects get projected to small areas on the screen
and hence can be represented with coarse meshes. Many
methods have been proposed to obtain LOD meshes; e.g.,
edge collapsing’, vertex clustering, and vertex
decimation.

Geometry-based rendering based on visibility culling
and LOD modeling alone usualy still cannot meet
interactive requirement for very complex scenes.
Image-based rendering (IBR) has been a well known
aternative. IBR takes parallax into account, and renders a
scene by interpolating neighboring reference views"’.
IBR has efficiency that is independent of the scene
complexity, and can model natural scenes using
photographs. It is, however, often constrained by the
limited viewing degree of freedom. IBR in general has
problems like folding, gap, and hole.

Hierarchical image caching? is the first approach that
combines geometry- and image-based rendering aiming to
achieve an interactive frame rate for complex static
scenes. The cached texture possesses no depth
information and, in turns, limitsitslifecycle. Theimage
simplification schemes®® represent background or distant
scene using 2D cached depth meshes derived from the
rendered images for some specific views. In such
approaches, folding problems and gaps resulting from the
resolution changes can be eliminated; however, the hole
problems due to visibility and self-occluding still remain.
Moreover, digointed objects might be rendered as
connected objects, and depth meshes derived on the 2D
cached images are in pixel resolution, which might lead to
geometric inaccuracy when re-projected into 3D space.
Multi-layered impostors® are proposed to restrict visibility
artifacts between objects to a given size, and as well as a
dynamic update scheme to improve the resolution
mismatch. However, it still encountered hole problem

due to self occlusion, and an efficient dynamic update
requires a special hardware architecture.

4. PROPOSED HYBRID SCHEME

We propose an object-based depth meshes scheme to
greatly reduce the hole artifacts produced from the
occlusion between objects, as well as a self-occlusion
error estimation to restrict the hole artifacts produced
from object’'s self-occlusion in a given size. Such
estimation decides the representation of objects. Those
objects which will potentially result in holes smaller than
a user-specified tolerance are represented by depth
meshes; otherwise, by standard meshes of appropriate
LOD resolutions.

To reduce the redundancy of a regular-grid meshing,
as well as the precision error caused by the projection
from object space to image space, the depth mesh is
simplified by an edge collapsing from original mesh
based on the depth characteristic while preserving most of
the important visual appearances.

Furthermore, the regiona back-face culling for each
object from a cell could be performed before the
self-occluding error estimation and depth mesh
congtruction.  In a result, more objects are represented
by depth mesh under the same self-occluding error
tolerance, and depth mesh construction would be much
faster. Lastly, a conservative occlusion culling can
remove invisible polygons for any view inside the cell of
al depth meshes and LOD meshes. In a result, the
polygon count in scene navigation can be greatly reduced.

4.1. Pre-Processing Stage

The processing steps in the pre-processing stage are:
1. Hexagonal spatia subdivision.
2. Regiona conservative back-face culling.

3. Sdection of object’'s representation based on its
salf-occluding error estimation.

4. Depth mesh construction.
5. LOD mesh generation.

4.1.1. Hexagonal spatial subdivision

In order to utilize the spatial locality of a complex scene,
the xy plane of the scene is subdivide into AxM
hexagonal navigation cells.  With the spatial subdivision,
the scene data and viewpoints can be localized to cells,
and, therefore, visibility culling, conservative back-facing
and occlusion culling can be performed in preprocessing
phase.



4.1.2. Regional conservative back-face culling

For each polygon, we obtain the vector from one of six
corner vertices of the navigation cell to the center of
polygon, and do the dot product of the vector with
polygon’s normal vector. If it is negative, the polygon is
back-facing with respect to that corner vertex. If a
polygon is back-facing for al six vertices of the cell, the
polygon is back-facing wrt. any point inside the cell, and
hence should be culled.

4.1.3. Self-occluding error estimation

The mgjor problem of depth mesh representation is that it
is only the visible part of the object viewed from the cell
center hence has limited viewing degree of freedom.
When anew view is far from the cell center, parts that are
invisible originally might become visible and get rendered
as holes. We propose a self-occluding error to estimate
the maximum size of the hole that may appear when the
object is represented by a depth mesh.

As shown in Figure 1, the maximum error occurs at
the farthest view position V' fromthe cell center V. Let
thecell size, i.e, thelengthof VV' be c, the distant
between object and the cell center, i.e., the length of VO
be d, and the size in depth of the object itsdlf, i.e., the
lengthof OP bel. Thelengthof OC is /*tan g,
theangleg betweenvpP andV'P is g = tan "' ¢,
and swhich isthe projected sizeof OP aswell as

ocC is

s= AB , ImageRes.
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The test on self-occluding error is to check if the object's
maximum projected error s is smaler then a
user-specified tolerance in image precision. If it is, the
object is represented by a depth mesh; otherwise by a
LOD mesh.

Figure 1. The maximum sef-occluding error occurs at the
position V.

4.1.4. Depth mesh construction

The cached image of an object is obtained by rendering
the object using the cell center as the center of projection
and using the cell's side face as the projection window.
The depth imageis the cached image augmented with the
depth values. The simplest way to construct a depth
meshfor an object is to use the regular-grid triangulation®
performed on the depth image, which would, however,
results in too many redundant triangles and produces
rubber effects caused by incorrect connections.
Furthermore, since it is performed in the image space, it
aways suffers from the precision error caused by the
projection (from floating-point precision in world space
into integer precision in image space).

In order to reduce the number of the triangles on a
depth mesh while preserving most of the visud
appearances, severa properties of the depth image could
be adopted. The most important one is to use the depth
coherence, by that we mean pixels of similar depth
variation are likely to be on the same surface, and a pixel
that has a sharp depth variation from adjacent pixels
would have a high possibility to be on a contour edge.
Moreover, the external contour edges of the rendered
object on the image are the most important visual
appearances, and hence must be included in the depth
mesh. External contour edges can be easily derived by
using the contour extraction in the field of image
processing. On the other hand, if we can extract all the
internal contour edges from the depth image, rubber
effects caused by undetected gaps (C° discontinuity)
between digointed surfaces represented by a connected
mesh and blur effects appearing at the sharp edges (C*
discontinuity) represented by a flatted mesh could be
greatly reduced.

In order to minimize the precision error caused by
projection, we simplify the depth mesh in both the image
and the object space in three steps. Firstly, we categorize
image pixels on the depth image based on the importance
of its visual appearance and its characteristic into four
categories:

external contour
internal contour (gap) (C° discontinuity)
sharp edge (C* discontinuity)

interior

Secondly, vertices of object's origind mesh are
projected again (but do not ater the value of depth image)
with the same projection setup of the depth image to do
the visibility test for each vertex. If Z value of a
projected vertex equals to the Z value at the pixel on the
depth image, the pixel on the depth image is representing



the vertex of the origina mesh; otherwise the vertex is
behind other surfaces. For the former case, a weight
rela-tive to the category of the pixel is assigned to the
vertex (The highest weight is assigned for external
contour category, a lower weight is assigned for internal
contour category, and so on.) On the other hand, for the
later case (invisible vertex), the vertex gets zero weight.

Lastly, weight-based edge collapsing is performed
based on the weights of vertices to simplify the object's
origina mesh. Moreover, to obtain a proper resolution
of the smplified depth mesh and preserve the visua
appearances, the edge with one of or both vertices' weight
smaller than the weight of the sharp edge category and
whose projected size smaller than a user-specified length
tolerance (in pixels) is simplified. The collapsing order
is based on the area of the projected triangle. Asaresult,
amore optimized triangle aspect ratio is obtained and tiny
triangles with respect to the view contain no important
visual appearances are removed.

Figure 4(b-e) show the simplified depth meshes at
different distances.

4.2. Run-Time Stage
In the run-time stage, we do the following steps:

1. At program start-up time, we setup alowest priority thread
for prefetching the geometry and image data of
neighboring cells.

2. Ensure that the geometry and image data for the current
navigation cell isloaded into memory.

3. Perform arun-time normal-cluster-based back-face culling
for the objects inside the current navigation cell.

4. Perform arun-time occlusion culling for al meshes.

5. Render the remaining polygons. Depth meshes are
rendered using the projective-alike texture mapping.

6. Pre-fetch data of neighboring cells when CPU load is
relative low.

4.2.1. Rendering

Objects inside the navigation cell can be seen from any
direction, it is impossible to determine the visibility
during the pre-processing stage. Those polygons inside
the navigation cell can be grouped into clusters according
to its normal® in the pre-processing stage. During the
run-time stage, we can quickly cull out the whole
back-facing cluster of polygons according to the viewing
direction and the FOV .

Although there are considerable overheads, it is a
beneficial approach to reduce the polygons sent into
graphic pipeline by applying a run-time occlusion culling
for a densely occluded environment. To perform the

culling, we generate an occlusion map similar to the idea
proposed in Ref. 10. Only LOD meshes, depth meshes,
and origina meshes inside the navigation cell whose
projected area larger than a pre-specified threshold are
selected to be occluders. Though this approach of
occluder selection is not optimized, it is advantageous not
to spend too much time on selecting occluders.

5. EXPERIMENTS

Our test scenes are two statuary parks, one is consists of
358 objects with 970,254 polygons (sparse scene), and
another is consists of 956 objects with 2,265,978
polygons (dense scene) on an area of 2400x2000.

The test platform is a PC with an AMD TB 1.2Ghz
CPU, 512MB main memory, and an nVidia GeForce3
with 64MB DDR RAM graphics accelerator.

5.1. Cell Size and Self-Occluding Error
Consideration

Several settings of the combination of different cell size
(50 and 100) and self-occluding error tolerance (1-, 3-,
and 5-pixel) are used in our experimental test.

As we can expect, the higher self-occluding error we
can tolerate, the more objects are represented by depth
meshes. In the case of cell size 50 and 1-pixel error
tolerance, 54.0% objects are represented by depth meshes,
while it is 63.9% for 3-pixel error tolerance. However,
with no doubt, image quality for 3-pixel tolerance is
lower than that of 1-pixel tolerance.

Since we want to identify how much benefit and
image quality-loss comes from the depth mesh
representation alone, we use original meshes instead of
LOD meshes to represent those objects with the
self-occluding error exceeding the tolerance.  Such that,
when cooperating with LOD techniques the performance
would be even better.&ﬁ?f:u %;@‘E@E’lﬂ%ﬁ%ﬂ\jfp“é o
Table 1 lists the polygon number of regional back-face
culled LOD meshes, depth meshes, polygonsinside a cell,
the number of objects represented by depth mesh, the
average frame rate, and average image quality under
different settings. Under 60° FOV, three view windows
should be rendered, such that, half of the LOD meshes,
half of the depth meshes and all meshes inside the cell are
the potential visible polygons. All of them show that,
more polygons are simplified for the higher error
tolerance setting with the cost of higher quality-loss.
That is, our proposed scheme provides a tradeoff between
the performance and image quality. Note that, under the



(a) 2 cells away. (b) 6. (c) 7.

(d) 9. (e) 10.

Figure 2. (a) isthe original mesh of ahorse captured at two cells away (at distance 173), and (b-€) are depth meshes generated at 6, 7, 9

and 10 cells away.

same self-occluding tolerance, alarger cell size would not
produce much poorer image quality, mainly due to the
fact that the selection of object's representation is
designed to ensure the bounded self-occluding error.
Hence, the cell size has little impact on the image quality
under our proposed scheme. However, as the cell size
increases, more objects are represented by LOD meshes,
more objects are put inside the navigation cell, and the
number of potential visible polygons increases also, so
the number of polygons increases dramatically. As a
result, worse performance will be found.

The depth mesh simplification can simplify about
94% polygons in average, and, the farther object is, the
greater simplification ratio is. On the other hand, in
genera, the larger size a cell has or the nearer object is,
the fewer back-facing rateis. At the time of writing this
report, we are still working on several minor bugs of this
pre-processing occlusion culling program; therefore, we
have no information about how many percentage of
polygons could be culled.

5.2. Performance

We use the setting of cell size 50 and 3-pixel
self-occluding error tolerance for the further testing for
the dense scene. Three rendering configurations are
used to do the performance comparison:

® A: (Pure geometry) The origina meshes of the scene are
rendered using the traditional graphics pipdine.

® B: (Puregeometry w/ view frustum culling) Sameas A,
but with software view frustum culling.

® C: (Proposed scheme w/o run-time occlusion culling)
The scene is rendered by proposed scheme with view
frustum culling but without run-time occlusion culling.

Table 2 lists the performance of each configuration.
Configuration C spends additional time on loading

neighboring cell data at the first frame, such that, there is
alow peak at the first frame. Our proposed scheme w/o
run-time occlusion culling has about 20.4 speedup factor
compare to the pure geometric rendering while yields an
average SNR about 22.2dB (13.6x under 1-pixel error
tolerance and yields an SNR about 26.5dB.) It shows
that our proposed method provides a faster rendering with
an acceptable quality-loss while configuration B is hardly
to achieve interactive frame rate for such complex scene.

Figure 3 depicts the frame rate of every rendering
frame on the same navigation path under these three
rendering configurations.

As mentioned before, the overhead of run-time
occlusion culling is un-negligible, and our test scene is
not a densely occluded environment, our experiment is,
w/ runtime occlusion culling, it is slower than C but till
outperforms B.

6. DISCUSSION & FUTURE WORK

In this project, we have proposed a hexagonal spatial
subdivision and a hybrid rendering scheme for navigating
complex scenes. Such scheme can achieve a smooth,
navigation with no apparent popping effects at an almost
constant and interactive frame rate for a very complex
scene. By cooperating with LOD meshes and
object-based depth meshes, parallax error, crack, hole,
rubber effect, and popping effect can be minimized.
Further-more, with visihility preprocessing, polygons
invisible from a region will never be sent into graphics
pipeline. A tradeoff between performance and quality
requirement can be easily made by specifying the
self-occluding error tolerance.

When constructing the depth mesh in both object and
image space, a special affair should handle with care.



The rasterization engine of graphics hardware may render
small polygon specially, such that a vertex may not
projected into the same image pixel, in a result, a wrong
weight may retrieved.

As the future works, we will improve the depth mesh
construction and simplification to have a better simplified
depth mesh.  For handling more complicated and
extremely large scale scene, distant objects that are close
to each other can clustered together to generate a single
depth mesh.  Such that, the amount of textures could be
reduced and an approximated occlusion culling is done on
the fly. Moreover, we will try to exploit the data
coherence between neighboring cells to improve our
pre-loading scheme.
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Tablel. Theaverage potentia visible polygon no. for acell, the average framerate, and image quality under the different settings.

Polygon on. of regional

Polygon no. of No. of objects Average

backfececlled LOD ggg{ﬁ?ﬂ;‘: of ﬁﬂﬁ%or::; of gglt;ggﬁsly visible Lﬁﬁg by gg;;e rete '(QNB%G(SE)B‘)”V
sparse scene (358 objects, 970,254 polygons)
size 50, 1-pixel 198,830 27,579 2,278 115,483 183.5 30.0 26.4
size 50, 3-pixel 80,875 43,086 2,278 64,258 221.5 42.8 23.9
size 50, 5-pixel 50,921 48,843 2,278 52,160 2315 48.9 23.2
size 100, 3-pixel 152,796 35,745 8,452 102,723 207.4 36.0 24.9
dense scene (956 objects, 2,265,978 polygons)
size 50, 1-pixel 433,054 69,293 5,281 256,455 516.2 20.0 26.5
size 50, 3-pixel 179,805 102,501 5,281 146,434 610.7 29.9 22.2

Table2. Performance under the three configurations.

A B C
Frame time(ms) 680.3 268.1 334
Frame rate(fps) 1.47 3.73 29.9
Speed up 1.0x(baseline) 2.54x% 20.4x

= = Conf. A

Figure 3. Theframerate (fps) under the three configurations on the same navigation path.
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