O U oo

NSC
89

89

90

2219

90

E

(1)

15

009

31

022



(co-processors)

(1)
(i

NSC 89-2219-E-009-022

89 8

ASIC

(general-purpose processor)

router)

(DiffServ edge
IXP1200
IXP1200
StrongARM

(core processor)

(scheduling)
SDRAM
(input
50Mbps

(classification)
SRAM

port) (throughput)

(Per-Hop Behavior) 500

(flow)

(bottleneck)

SRAM

(forwarding service) SDRAM

SRAM

overflow)

IXP1200

microengine
IXP1200

" (MAC buffer

SRAM SDRAM

1

90 7 31

Abstract

Network processors are emerging as a
programmable aternative to the traditiona
ASIC-based solutions in scaling up the
data-plane processing of network services.
They serve as co-processors to offload
data-plane traffic from the origind
general -purpose microprocessor. In this work,
we illustrate the process and investigate
performance issues in prototyping a DiffServ
edge router with 1XP1200, which consissts of
one control-plane StrongARM core processor
and six data-plane microengines, and stores
classification and scheduling per-flow policy
rules at SRAM and packets at SDRAM. The
external benchmark shows that though the
system can achieve aggregated wire-speed of
1.8Gbps in simple IP forwarding, the
throughput drops to 200~300Mbps when
performing DiffServ due to the double
bottlenecks of SRAM and microengines.
Through internal benchmarks, we found that
performance bottlenecks may shift from one
place to another given different network
services and agorithms. For simple IP
forwarding services, SDRAM is a nature
bottleneck. However, it could shift to SRAM
or microengines if heavy table access or
computation is involved, respectively. We
also identify the design pitfall of the
hardware called the “MAC buffer overflow”.

Keywords: Network Processor, DiffServ,
IXP1200, scalability, SRAM, SDRAM
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Fig. 2. Detailed DiffServ packet flow in IXP1200

The increasing link bandwidth demands
even faster nodal processing especialy for
the data-plane traffic. The nodal data-plane
processing may range from routing table
lookup to various classifications for firewall,
DiffServ and Web switching. The traditional
general-purpose processor architecture is no
longer scalable enough for wire-speed
processing so that some ASIC components or
co-processors are commonly used to offload
the data-plane processing, while leaving only
control-plane processing to the origind
processor.

Many ASIC-driven products have been
announced in the market, such as the
acceleration cards for encryption/decryption
[1], VPN gateways [2], Layer 3 switches [3],
DiffServ routers [4] and Web switches [5].
While these ASICs indeed speedup the
data-plane packet processing with specia
hardware blocks, much wider memory buses,
and faster execution process, they lack
flexibility in reprogrammability and have a
long development cycle which is usually
months or even years.

Network processors are emerging as an
aternative solution to ASICs for providing
scalability for data-plane packet processing
while retaining reprogrammability. In this
study, we adopt Intel 1XP1200 [6] network
processor shown in Fig.1 which consists of
one StrongARM core and SiX CO-processors
referred as microengines, so that developers
can embed the control-plane and data-plane
traffic management modules into the

StrongARM  core and  microengines,
respectively.  Scalability concern  in
data-plane packet processing could be
satisfied with the four zero context switching
overhead hardware contextsin each of the six
microengines and the instructions specialized
for networking.

SDRAM
(up to 256MB)

SRAM
(upto8MB)
Boot ROM
(up ot 8MB)

%

FIFOBus(IXBus) 66/85MHz
] I
IXP1200

Fig. 1 Hardware architecture of IXP1200

In this work, we first explain the need of
network processors for today’s complex
applications, and introduce the architecture
and packet flow in XP1200 shown in Fig. 2.
Then we detail the mapping of DiffServ onto
IXP1200, as shown in Fig. 3. There are two
most important modules in DiffServ,
classifier and scheduler, which are
implemented with Multi-dimensional Range
Matching [7] and Deficit Round Robin [8].
Finally we have externa and interna
benchmarks in order to find the bottlenecks
in our implementation and possible design
pitfalls of IXP1200.
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The results of external benchmarks, as in
Fig. 4, Fig. 5 and Fig. 6, have shown that our
implementation can support well the PHBs in
DiffServ at an aggregated throughput of
290Mbps. .We aso identify the MAC buffer
overflow which is described below. Fig. 7
shows a diagram of packet reception. As we
can seein Fig. 1, the rest of MPs, which are
basic data units in IXP1200, are transferred
from MAC buffer, RFIFO to SDRAM after
the SOP (Start Of Packet) is classified.
However, if SOP cannot be processed in time
and the buffer is not large enough, the
incoming MPs of the same packet could fill
up the whole buffer and thus result in a
packet drop, and then 100% packet |oss.

Since both the slow classification and
small buffer contribute to the MAC buffer
overflow, we propose three solutions to avoid
the two necessary conditions. They are (1).
faster classification, (2). larger MAC buffer
size, and (3). move the MPs into SDRAM
before classification.
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In both external and internal benchmarks,
we identify the double bottleneck of both
exclusve SRAM access and the lack of
computing power in microengines inside the
Range Matching DiffServ, as shown in Table
1. That is, the Range Matching DiffServ
could still suffer from the other bottleneck
after one of them is solved. Three methods
are proposed to solve the bottleneck of
SRAM accesses that leads to the low
utilization of receiver microengines. First is
to divide one large SRAM into many smaller
banks a different interfaces. This could
shorten the queuing delay of requests in the
command queue if the requested addresses
are in different memory banks. Second, we
may adopt a new memory architecture, for
example, RAMBUS DRAM (RDRAM) [9]
in 1Q2000 [10] that has a peak bandwidth of
up to 1.6GBps which is two to three times of



what SRAM supports. Third, an additional
cache can be used to reduce the number of
memory accesses because the traffic in the
same time period usually shows locality in
lookups of policy and routing tables.

While the SDRAM is the bottleneck in
IP forwarding [11], we observe that the
bottleneck may shift from one functiona unit
to another depending on the specific service,
algorithm and the way input traffic is
alocated to threads, as shown in Table 1. We
aso find that the SRAM bottleneck does not
necessarily occur at 100% utilization, it could
even occur at 55% when the access is bursty.

Table 1. Bottlenecks in DiffServs of two
algorithms

Service or traffic allocation Bottleneck
Linear search SRAM
Range matching :
Single input port SRAM
8x100M input ports ME
1 gigabit port ME
8x100M and 1 gigabit SRAM

This study investigates the feasibility of
using network processors (IXP1200 in our
study) as an alternative platform for DiffServ
applications, compared with the traditional
general-purpose processor and the ASIC's.
From the external benchmark we can see that
IXP1200 supports an aggregated of 1.8Gbps
for simple forwarding service, although, it
degrades to 200~300Mbps when performing
DiffServ. However, it does outperform the
general-purpose processor solution.

We had aso submitted this paper to
INFOCOM’02 in the hope of sharing the

development  experience in  network
Processors.
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