
Available online at www.sciencedirect.com
www.elsevier.com/locate/eswa

Expert Systems with Applications 34 (2008) 2921–2936

Expert Systems
with Applications
A computing coordination based fuzzy group decision-making
(CC-FGDM) for web service oriented architecture

Min-Jen Tsai *, Chen-Sheng Wang

Institute of Information Management, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsin-Chu 300, Taiwan, ROC
Abstract

As the demands for faster data processing and enterprise computing are increasing, the traditional client/server architecture has grad-
ually been replaced by Grid computing or the peer-to-peer (P2P) model which can share the content or resources over the network. In
this paper, a new computing architecture – computing power services (CPS) – has been applied to utilize web services and business pro-
cess execution language for overcoming the issues about flexibility, compatibility and workflow management. CPS is a lightweight web
services based computing power-sharing architecture, and suitable for enterprise computing tasks which can be executed in the batch
processes within a trusty network. However, a real-time load balance and dispatching mechanism is needed for distributed-computing
architecture like CPS in order to handle computing resources efficiently and properly. Therefore, a fuzzy group decision-making based
adaptive collaboration design for CPS is proposed in this paper to provide the real-time computation coordination and quality of service.
In this study, the approach has been applied to analyze the robustness of digital watermark by filter bank selection and the performance
can be improved in the aspect of speedup, stability and processing time. This scheme increases the overall computing performance and
shows stability for the dynamic environment.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Business process execution language; Fuzzy decision-making; Web services
1. Introduction

There are widely increasing demands for faster data pro-
cessing and enterprise computing, traditional client/server
architecture has gradually been replaced by Grid comput-
ing or peer-to-peer (P2P) model (Loo, 2003) which can
share content or resources over the network. Though both
distributed-computing models are suitable to perform
distributive tasks, small medium enterprise (SME) still
encounter the issues of security, motivation, flexibility,
compatibility, and workflow management during imple-
mentation (Tsai, 2004). Therefore, computing power ser-
vices (CPS) architecture is proposed to address these
issues with assumption to deploy CPS in a trusty network.
0957-4174/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.eswa.2007.05.017

* Corresponding author. Tel.: +886 3 571 2121x57406; fax: +886 3 572
3792.

E-mail address: mjtsai@cc.nctu.edu.tw (M.-J. Tsai).
CPS is based on service oriented architecture (SOA) to
utilize web services and business process execution lan-
guage (BPEL) to overcome the issues of P2P about flexibil-
ity, compatibility and workflow management. Web services
have gained acceptance to integrate business applications
inside enterprise because of the characteristics of loosely-
coupling and open standard support. Within CPS architec-
ture, three roles are defined as the computing node, com-
puting requester and coordinator to act as the role of
service consumer, service provider, and service register in
SOA, respectively. The detailed operation will be intro-
duced in Section 2.

Since CPS aims to run tasks independently among com-
puting units which voluntarily provide their spare
resources, how to coordinate resources within a distributed
environment is crucial to system performance. Therefore,
resource allocation problem can be categorized as a deci-
sion problem by choosing the best alternatives with most
available resources like memory and CPU time for CPS.

mailto:mjtsai@cc.nctu.edu.tw


2922 M.-J. Tsai, C.-S. Wang / Expert Systems with Applications 34 (2008) 2921–2936
Group decision-making (GDM) has been an important
research area for industries and academies. Several decision
models such as the analytic hierarchy process (AHP) with
multiplicative preference relation (Saaty, 1980) and the
resolution process of GDM (RPGDM) with fuzzy prefer-
ence relation (Chiclana, Herrera, & Herrera-Viedma, 1998;
Chiclana, Herrera, & Herrera-Viedma, 2001; Kacprzyk,
1986) have shown good performance in many applications.
Since the RPGDM uses the fuzzy set (Zadeh, 1983) to
handle the uncertainties and help translating precise infor-
mation, it is similar to the uncertain behaviour of computing
nodes in CPS which allows users to start or stop program
locally. However, only RPGDM is not enough to handle
the dynamic situation for CPS and this study will develop
a novel coordinating mechanism called CC-FGDM to
implement the resource-sharing module within the CPS.

This paper will be organized as following. Section 2 will
explain the distributed architectures of CPS and RPGDM.
In Section 3, problems of load-balancing and resource
coordination will be discussed. A novel computing coordi-
nation based on fuzzy group decision-making abbreviated
to CC-FGDM is proposed in Section 4. The implementa-
tion and performance comparison of CC-FGDM is ana-
lyzed in Section 5 and conclusion will be given in Section 6.

2. Literatures review

This section will be dedicated to review related
researches in distributed-computing, CPS architecture,
computing performance benchmarking and fuzzy group
decision-making.

2.1. Distributed-computing

There are two main categories of distributed-computing
that is P2P computing and Grid computing. P2P comput-
ing depends on a central server to divide a computing task
into several tasks, which will be assigned to voluntary com-
puters for execution and returning computing results to the
central server. In Grid computing architecture, computer
network is considered as a virtual computer to shuffle
resources for computation. There are four aspects which
differs P2P computing from Grid computing.

Resource management: The resource management of
Grid computing is generally a static and hierarchical struc-
ture in which the proprietary software is needed to search
for resources. Conversely, the resources of P2P computing
are such more dynamically grouped together with high
flexibility.

Participant: Since Grid computing is originally intended
to solve complicated scientific computation with large
amount of data, it is implemented as a virtual super com-
puter by grouping computers in different geographic area
in order to provide a widespread, secure and collaborative
resource-sharing environment. Therefore, participating
computers are generally high performance mainframes or
workstations and connected in high-speed network. How-
ever, it is often required to apply for accounts in order to
use the computing resource and the strict requirement will
limit the number of participating nodes.

On the other hand, most participating nodes of P2P
computing are personal computers with different capable
computing power. Those participating nodes are directly
connected to provide their own disk space or CPU time
without account constraint. Hence, the number of partici-
pating nodes in P2P computing is often larger than the
one in Grid computing.

Reliability: Because most resources in Grid computing
environment reside on few participating nodes by a centric
and hierarchical structure, whole structure is more stable
than the one in P2P computing environment where nodes
can be in and out dynamically without constraints.

Workflow management: Several workflow management
systems such as GridAnt, GSFL, Pegasus, Karajan or
GFMS (Amnuaykanjanasin & Nupairoj, 2005) have been
developed in Grid computing. However, specific propriety
languages are required to design workflow in these systems
for service coordination. Moreover, what those languages
are not compatible with each other makes interoperability
among systems impossible. Therefore, Amnuaykanjanasin
and Nupairoj (2005) proposed a common standard to
implement workflow management in Grid computing in
order to make one design running in different workflow
systems by using an open standard such as BPEL. As for
workflow management in P2P, although workflow applica-
tions are inherently distributed, most of traditional work-
flow systems are based on client–server technology in
order to satisfy the functional requirement of the system
(Yan, Yang, & Raikundalia, 2006). Therefore, only few
workflow management systems such as SwinDeW (Yan
et al., 2006) are proposed to facilitate workflow in P2P
architecture.

2.2. CPS architecture

CPS is based on the architecture of web services and it
inherits the characteristics of service oriented architecture
(SOA) which consists of three participants that are service
requester, service provider and service broker (Fig. 1). The
description of three roles will be explained as follows.

2.2.1. Role definition of CPS

The role of coordinator: The coordinator acts as a service
broker to fairly negotiate between the computing node (ser-
vice requester) and computing requester (service provider).
Its main function is to maintain a list to record the URL
and requirement of computing requester. This list will be
created when the computing requester publishes its web
service in coordinator. If computing node asks for tasks
through the coordinator, the coordinator will assign the
URL of computing requester from the list to computing
node by the round-robin order. Afterwards, the computing
node will use the assigned URL to communicate with the
computing requester directly.



Fig. 1. Diagram of CPS components.

M.-J. Tsai, C.-S. Wang / Expert Systems with Applications 34 (2008) 2921–2936 2923
In addition, the function of account and audit manage-
ment will be also implemented by the coordinator for the
authentication reason. This role is corresponding to the
role of UDDI in SOA.

The role of computing requester: Before the request, the
requesters should design their experiment processes by a
visualized BPEL development environment as shown in
Fig. 1 and publish their requirement through the coordina-
tor. In addition, it will assign tasks to computing nodes
using the workflow management capability.

The role of computing node: Computing node is respon-
sible for executing computation. The computing node
inquires coordinator to ask for tasks when it has spare
computing resource. After getting the requester’s URL of
web services, it negotiates with the requester to download
the tasks description along with the required task files.
The node then starts to execute tasks and replies results
to the requester when tasks are finished. Such scenario will
continue until all assigned tasks are completed.
2.2.2. Layer description
Tsai (2004) first systematically introduced the CPS

architecture as the five layers modules and this study will
extended the design. The five layers are power-sharing,
communication, contract, service discovery and user layers.
Excluding user layer, the other four layers comprise the
P2P power-sharing middleware which is the core of CPS.
The interaction among roles and layers of CPS are demon-
strated in Fig. 2.

The user layer: A GUI interface is provided for users in
this layer to facilitate workflow design and management.
While it is implemented at the beginning of requester for
workflow design and management, it provides a mecha-
nism for users to participate or stop in sharing their spare
resources.

The resource-sharing layer: This layer corresponds to the
description layer of web services. It describes the interac-
tion between requesters and computing nodes.

The communication layer: This layer uses the communi-
cation mechanism of web services, i.e. SOAP to bridge the
components of CPS.

The contract layer: The interaction between computing
node and requester is contracted in this layer. The contract
presented in XML format is composed of task description
and URL of requester.

The service discovery layer: This layer is implemented in
coordinator as a broker agent to match requester with
computing nodes. The coordinator does not involve in
computation and works like UDDI in SOA.
2.3. Fuzzy group decision-making

Because of the behaviour of computing nodes in CPS
which allows users to start or stop program at their
demand, RPGDM which is a fuzzy group decision-making
method will be used to handle such uncertainty during the
resource collaboration in this paper.

The RPGDM collects opinions about possible alterna-
tives to a problem from a group of experts to find their con-
sensus. If consensus level is below a predefined threshold,
experts will provide their new opinions to resolve conflicts.
Chiclana et al. (1998, 2001) proposed using three steps that



Executor

Profile

Contract

Computing Unit

User Interface

Personalized Module

Find Requester

Get Subtasks

Execute Subtasks

Response Results

Contract

Requester
Web 

Services
Instances

Contract Contract Contract

Flow Designer
Visual

Interface

TaskWorkflow

TaskUnit

Asynchronous
Control

B
PE

L
w

orkflow
controler

Invoke

Requester

ExpClient

Subtasks Generator

Subtasks Assigner

Results Collector

R
ule

controller

Queue

Results
Rule Removerequest

Coordinator

Request Register

Request Match

Request Remover

Log

Request

Log

U
ser

L
ayer

R
esource

Sharing
L

ayer
C

om
m

unication
L

ayer
C

ontract
L

ayer
D

iscovery L
ayer

SOAP
Message
Internet

C
om

puting Pow
er Sharing M

iddlew
are

Fig. 2. Diagram of CPS architecture.

2924 M.-J. Tsai, C.-S. Wang / Expert Systems with Applications 34 (2008) 2921–2936
are transformation, aggregation and exploitation phases in
whole decision-making processes. Before we introduce the
procedure of the RPGDM, we need define the decision-
making problem first.

Suppose that there exists a finite set of alternatives
A = {a1,a2, . . .,an}, n P 2. The RPGDM will select the
alternatives from best to worst using the information which
are provided by the finite set of experts E = {e1,e2, . . .,em},
m P 2. For each expert, the information is used to evaluate
preference level among elements in the alternative set.
According to Chiclana et al. (2001), the experts’ prefer-
ences over the set of alternatives may be represents by
one of four ways: a preference ordering among alternatives,
fuzzy preference relation, a multiplicative preference rela-
tion, and a utility function. While the RPGDM bases on
fuzzy preference relation to aggregate preference informa-
tion, a preference ordering among alternatives is the easiest
way to use. We will use preference ordering as the evalua-
tion way of preference by using the performance indexes
about CPU, memory, or execution time. Therefore, it is
easy to permute the preference order over alternative set
according to the values gathered by our resource coordina-
tion module.

2.3.1. The transformation phase

As RPGDM adopts the fuzzy preference relations as a
way to aggregate preference information, we need to trans-
form our evaluating approach, preference ordering, to the
fuzzy preference relation. The fuzzy preference relation is
defined as P k

ij; 1 6 i; j 6 n; 1 6 k 6 m which describes the
degree to which an alternative ai is preferred to an alterna-
tive aj by expert ek. A transformation function presented in



M.-J. Tsai, C.-S. Wang / Expert Systems with Applications 34 (2008) 2921–2936 2925
Chiclana et al. (1998) from preference order to fuzzy pref-
erence relation is given as follows:

pk
ij ¼

1

2
1þ

ok
j � ok

i

n� 1

 !
ð1Þ

Here ok
j represents the preference order of alternative aj in

alternative set by expert ek.

2.3.2. The aggregation phase

After we transform the preference ordering for each
expert to fuzzy preference relation, an aggregating opera-
tion will be applied to get a collective preference relation
P C

ij; 1 6 i; j 6 n. The RPGDM uses fuzzy quantifiers to
represent the fuzzy majority concept, and the Ordered
Weighted Average (OWA) operator to aggregate prefer-
ence information in order to obtain P C

ij . The criteria of
majority is traditionally defined as a threshold number of
individuals, whereas fuzzy majority is a soft majority con-
cept. It is calculated via a fuzzy logic based calculus of lin-
guistically quantified propositions (Kacprzyk, 1986; Yager,
1988).

The OWA operator which was proposed by Yager
(1988) defines a family of aggregating operators between
the Min and Max operators. Before we use the OWA
operator, a weighting vector W ¼ fw1;w2; . . . ;wmg; wi 2
½0; 1�;

Pm
i¼1wi ¼ 1 must be defined to aggregate the prefer-

ence value collection fP 1
ij; P

2
ij; . . . ; P m

ijg for P C
ij . An OWA

operator of dimension m is a function with fuzzy quantifier
Q

F QðP 1
ij; P

2
ij; . . . ; P m

ijÞ ¼
Xm

k¼1

wk � pk ð2Þ

in which pk is the kth largest value in preference value col-
lection fP 1

ij; P
2
ij; . . . ; P m

ijg.
How to get a weighting vector is a key point when OWA

operator is applied. In Wiki (2006), an operator with non-
decreasing proportional quantifier Q is given by the
formula

wi ¼ Q
i
n

� �
� Q

i� 1

n

� �
; i ¼ 1; . . . ; n; where

QðrÞ ¼
0 r < a
r�a
b�a a 6 r 6 b

1 r > b

8><
>: a; b; r 2 ½0; 1�:

For example, if ‘‘at least half’’ quantifier [0, 0.5] is used, a
weighting vector of dimension 4 will be 0; 0; 1

2
; 1

2

� �
.

2.3.3. The exploitation phase

In this phase, the RPGDM uses two fuzzy ranking meth-
ods, quantifier guided non-dominance degree (QGNDD)
and quantifier guided dominance degree (QGDD) to
identify priority order of alternatives. While QGNDD
represents the degree to which each alternative is not dom-
inated by a fuzzy majority of remaining alternatives,
QGDD quantifies the dominance degree to which an alter-
native has over a fuzzy majority of the others. The QGNDD
of alternative ai will be computed by the following
expression

QGNDDi ¼ F Qð1�maxfpc
ji � pc

ijg; j ¼ 1; . . . ; n; j 6¼ iÞ
ð3Þ

As for QGDD, we compute it by

QGDDi ¼ F Qðpc
ij; j ¼ 1; . . . ; n; j 6¼ iÞ ð4Þ

With these two dominance degree, the choosing process
will use the rules as follows to obtain the priority order
of alternatives.

(1) If there exists UND element (i.e. QGNDD(ai) is
equal to 1), the ranking method QGDD will be used
to obtain the priority order.

(2) Otherwise, QGNDD is the ranking method.

3. Problem analysis

3.1. Problems of load-balancing

Since tasks are assigned randomly to computing nodes
within the distributed-computing architecture like CPS,
load unbalancing occurs during the operations among
the computing nodes. In order to improve the system effi-
ciency by reducing the executing time and dispatch the
job reasonably, load-balancing issues will be discussed in
the following:

Estimation of performance efficiency and load balance:

Since computation within the distributed-computing envi-
ronment is performed dynamically and cooperatively by
participating nodes, it is necessary to monitor the latest
load and performance efficiency in each node. Such moni-
toring is especially important for P2P like environment in
which nodes contain a wide variety of computing power,
it will not be enough to just assign tasks to the first avail-
able node but to the first appropriate and available node
after considering load in each node.

However, the estimation of node loading is not easy
since its value is a crisp and the loading comparison is rel-
ative and fuzzy.

Computing coordination: How to coordinate resources is
a critical issue and can be categorized as in dynamic or sta-
tic way. The main difference between them is whether the
latest loading status is considered during the coordination.
Static coordination such as random or round-robin order
uses predefined scheme to assign tasks without up-to-date
loading information, whereas dynamic method chooses
the best node according to the latest loading statuses.

Executing stability: Many research articles which dis-
cussed load-balancing in distributed-computing are often
focused on performance efficiency such as response time,
throughput or execution time. However, executing stability
is also important and is defined as the same task could be



Start

End

Information
Retrieval

Policy

Task
Assignment

Policy

Task
Re-assignment

Policy

Dynamic 
Weighting

Adjustment Policy

All Subtasks
have

Dispatched?

Yes

Finished
Subtasks >= 
Threshold

No

No

Check Subtasks
Dispatch Status

Yes

All Subtasks
have been
replied?

Yes

No

Fig. 3. The flow diagram of CC-FGDM.

2926 M.-J. Tsai, C.-S. Wang / Expert Systems with Applications 34 (2008) 2921–2936
finished in a tolerance time range when it is repeatedly exe-
cuted under similar conditions in a distributed-computing
environment. This feature will help the computation
requester to predict when a task will be completed.

Adaptive coordination: The common factors to evaluate
loading status are CPU usage, CPU processing time or
memory usage and they should be considered in all not
by a single factor. Therefore, the mechanism to find out
the relation between factors and task type is urgently
needed for distributed-computing. This mechanism will
adapt weighting in the formula of estimation load status
according to the task type. For example, while CPU-inten-
sive task is executed, task is assigned to those nodes with
better CPU-related factors. Conversely, memory-intensive
task is assigned according to memory-related factors.

3.2. Possible solutions

Three following mechanisms are proposed to address
the above issues in this research.

Performance benchmark: To use dynamic coordination,
the latest performance information must be evaluated
before making decision. Performance information can be
collected by three ways that are standard performance
benchmark, performance evaluation strategy and system
performance indexes. Standard performance benchmark
such as SPEC CPU2000 uses specific core set of programs
to accurately get loading information. However, it spends
too much time to perform the benchmark testing which is
not practical in a P2P like environment. For example,
SPEC CPU2000 is time consuming operation by executing
a core set of programs (Null & Lobur, 2003). Similarly,
performance evaluation strategy uses evaluating strategy
and experiments to get more loading information but still
spends too much time to perform benchmark. Compared
to previous approaches, system performance indexes which
can be obtained directly from the computing units are more
appropriate in distributed-computing.

Fuzzy group decision-making: Since system performance
indexes provide useful knowledge about system loading
and each index has its own view about the system, it is nat-
ural to designate these indexes as a group of experts to
decide which node is the best to assign the task. Besides,
nodes can join CPS voluntarily to provide resources for
executing tasks by allocating spare memory and CPU time.
Therefore, resource coordination problem can be catego-
rized as a group decision-making problem for choosing
the best nodes with most available resources.

Regression and correlation analysis: Since the task type
can be CPU-intensive or memory-intensive, weighting for
each performance index can not be same for different task
type while making coordination decision. Moreover, con-
tribution of each index to overall performance is varied.
Thus, regression and correlation analysis will be applied
to decide weighting of each index by using historical and
latest loading information in order to improve the perfor-
mance stability. Such analysis and weighting adjustment
should be dynamically performed during the resource
coordination.
4. Fuzzy group decision-making coordinating mechanism

According to the discussion in previous sections, the
mechanism of computing coordination-based on fuzzy
group decision-making abbreviated to CC-FGDM is pro-
posed and applied to CPS in this paper. In order to offer
the flexibility during the implementation, CC-FGDM will
be implemented by three separate modules which first inte-
grates RPGDM as the decision-making rule, system perfor-
mance indexes as the benchmarks, and coefficients of
correlation and determination to decide weighting of
indexes. The CC-FGDM mechanism is operated by four
policies that are information retrieval strategy, task assign-
ment strategy, task reassignment strategy and dynamic



M.-J. Tsai, C.-S. Wang / Expert Systems with Applications 34 (2008) 2921–2936 2927
weighting adjustment strategy. Fig. 3 illustrates the flow
diagram and relationship among these strategies.

4.1. Information retrieval strategy

The purpose of information retrieval strategy is to mon-
itor the loading of each node and detect whether a node is
available by using the following indexes.

• CPU-relative indexes
– CPU clock rate

Normally, CPU is benchmarked by clock rate in
hertz. It means how many instructions are executed
per second. The higher CPU value means better per-
formance in general.

– CPU usage percentage
This index depicts CPU’s processing time versus idle
time. The higher value means CPU has higher
loading.

• Memory-relative indexes
– Memory usage percentage

This index shows usage percentage of physical mem-
ory in a node. The higher value means higher usage of
memory.

• Other indexes
– Average execution time

The higher value of this index entails that a task has
longer execution time. It reflects directly the latest
performance of a node.
4.2. Task assignment strategy

This strategy which is a core part of CC-FGDM uses
loading records from information retrieval strategy to
assign task to the most appropriate node. It integrates
RPGDM (Chiclana et al., 1998, 2001) to make group deci-
sion and will go through four phrases including problem
definition, transformation, aggregation and exploitation
to choose the best node. The following section will explain
the operation of these four phrases.

1. Problem definition phrase
Since this research models resource coordination as the
problem of finding the best alternative according to
opinions from a group experts, the alternative set A

and the expert set E will be defined as

A ¼ favailable computing nodesg

E ¼ fCPU clock rate; CPU usage percentage; memory

usage percentage; average task-executing timeg

2. Transformation phrase
The purpose of this phrase is to transform different rep-
resentation of preference from experts with varied back-
ground to the same representation in order to calculate
consensus degree among them. Since system perfor-
mance indexes are considered as experts in this research
which are rational and intuitively represented by numer-
ical value, preference between two indexes will be repre-
sented by ordering according to their values. However,
the proposed group decision-making method uses fuzzy
preference relation to aggregate preference, formula (1)
will be used in this phrase to transform preference from
ordering to fuzzy relation.

3. Aggregation phrase
In order to get consensus degree among experts, fuzzy
preference of individual expert will be aggregated to
form a fuzzy composite preference relation. There are
two aggregating actions in this phrase to get better
result. The first action is to aggregate preference from
the first three elements in the expert set E, whereas the
other action is then to aggregate result of the first action
with preference evaluated by average task-executing
time. The two actions are described in details as follows.
The first aggregation: Before the threshold of dynamic
weighting adjustment is reached, this action is to aggre-
gate preferences evaluated by CPU clock rate, CPU
usage percentage and memory usage percentage by
RPGDM aggregating method. It will use OWA opera-
tor with identity quantifier Q(r) = r to aggregate prefer-
ences. That means equal weighting [1/3,1/3,1/3] will be
initially applied to aggregation.
If threshold is reached, dynamic weighting adjustment
strategy will be called to calculate weights for those
three indexes. Then, the following formula will be used
to aggregate preferences from indexes.

F ðP 1
ij; P

2
ij; . . . ; P m

ijÞ ¼
Xm

k¼1

wk � pk
ij;

W ¼ fw1;w2; . . . ;wmg; wi 2 ½0; 1�;
Xm

i¼1

wi ¼ 1

where pk
ij means fuzzy preference relation given by

expert ek preferring alternative ai over aj.
The second aggregation: The OWA operator with
identity quantifier will be used to aggregate result of
the first action with preference evaluated by average
task-executing time.

4. Exploitation phrase
This phrase will rank computing nodes by QGNDD and
QGDD methods in which formula (3) and (4) correspond-
ingly are used to obtain QGNDD and QGDD values. In
general, a node with higher value is better to assign more
tasks. Therefore, while a node with the lowest value will be
assigned one task, the other nodes will be assigned as
many tasks as multiple of the lowest value.

4.3. Task reassignment strategy

In Stallings (2003), task moving strategy is proposed to
move tasks from high-loading nodes to low-loading nodes



2928 M.-J. Tsai, C.-S. Wang / Expert Systems with Applications 34 (2008) 2921–2936
in order to prevent nodes overwhelmed. However, if the
number of tasks to move is far beyond loads which a desti-
nation node can afford, thrashing node will activate another
movement to lower loads of that node to make overpower-
ing condition worse. Hence, task reassignment strategy is
needed to address this issue. The purpose of task reassign-
ment strategy is to make whole project finished as soon as
possible by allocating a running task to another node with
less average executing time. It will not stop running a task
in one node but try to running it in another node.

4.4. Dynamic weighting adjustment strategy

This strategy is implemented during the first aggregation
of task assigning strategy when threshold of dynamic
weighting is reached. At that time, weighed average opera-
tion but not OWA is used to sum up preference of each
expert. Before using this strategy, weighting to each expert
will be decided by coefficient of correlation and coefficient
of determination.

While all the tasks have been processed and replied to
the requester, the whole processes are completed.

5. Implementation and performance analysis

5.1. Implementation

In this study, CC-FGDM will be implemented on CPS
architecture. Fig. 4 depicts relationship among five layers
of CPS after adding CC-FGDM with QOS mechanisms
which are marked by bolder lines.

1. ‘‘Generate QoS’’ module in computing power-sharing
layer
‘‘Generate QoS’’ module built into client program in
computing node is in charge of executing information
retrieval strategy to report the latest load of a node.
The report enveloped by XML protocol is sent out per
2 min.

2. QoS message in communication layer
QoS message is the loading information retrieved by
‘‘Generate QoS’’ module. This message marked up by
XML is shown in Fig. 5. In addition to report the load
information, this message also serves as the heartbeat
message to notify the computation requester that the
node is alive and available.

3. ‘‘QoS information’’ data table in discovery layer
A new data table ‘‘QoS information’’ is added into data-
base in coordinating unit to record QoS message from
computing node. ‘‘Computation coordination’’ module
will use this data table to execute task assignment strategy.

4. ‘‘Computation coordination’’ module in computing
power-sharing layer
‘‘Computation coordination’’ module is responsible for
executing task assignment, task reassignment and
dynamic weighting adjustment strategy of CC-FGDM.
The threshold of activating dynamic weighting is default
to 30 in the experiment. ‘‘Computation coordination’’
module will use the fuzzy group decision-making method
in Section 4.2 to rank alternatives and assign tasks.

5.2. Performance analysis

5.2.1. Experimental procedures and environment
In order to test the performance of CC-FGDM, a digital

watermarking algorithm with wavelet filter bank selection is
performed (Tsai, 2004). Discrete wavelet transform (DWT)
based watermark algorithm makes use of filters to filtrate
and construct the signals of a digital image. Among filters,
analysis filters are used for distinguishing between the low
frequency signals and the high frequency signals in a digital
image; synthesis filters are used for constructing image based
on the low frequency signals and the high frequency signals.
Those filters are selected by the following formulas:

h0ð�zÞg0ðzÞ þ h1ð�zÞg1ðzÞ ¼ 0;

h0ðzÞg0ðzÞ þ h1ðzÞg1ðzÞ ¼ 2:

The decomposition structure is shown as Fig. 6. After the sig-
nals of a digital image with size of m by n pass through the
two filters, h0 and h1, the low and high frequency will be dis-
tinguished. Hence, the size of two frequency signals must do
downsizing for keeping the size in m by n. In Fig. 7, on the left
side, it analyzes the image by rows; and on the right side, it
analyzes the image by columns. Through process of decom-
position, the image will be restructured as Fig. 7. In general,
the decomposition process will be repeated for four or five
times by using different analysis filters.

The DWT-based digital watermark algorithm consists
of decomposition, embedding, reconstruction, and detec-
tion procedures (Cox, Kilian, Leighton, & Shamoon,
1997; Tsai, Wang, Yang, & Yang, 2006). Through the com-
parison of original watermark and embedded watermark
from the attacked image, a similarity function based on
correlation statistics is calculated and the authority of the
digital image can be verified. By using the algorithm, digital
copyright properties can be well protected and the owner-
ship information can be preserved under attacks.

In Fig. 8, it is a decomposition example of Lena image
using DWT. The watermark was embedded in the band 9
as circled area. Because filter is a key component of DWT-
based digital watermark algorithm, large volume of com-
puting power is required to search the best filter among lots
of filter groups. Therefore, this filter bank selection experi-
ment is an appropriate case implementation for CC-FGDM
in CPS.

The wavelet filter-evaluation algorithm tests total 76,177
filters which are grouped into several tasks with 100 filters
in each task. Each task is to extract the watermark from a
watermarked raw image and JPEG2000 image by different
filters and to calculate the correlation coefficient of two
images.

Since CPS is aimed to provide computing resources by
using existing computers in the trusty intranet, experiments



Profile

Contract

Computing Unit

User Interface

Personalized Module

Contract

Requester
Web

Services
Instances

QoS Contract QoS

Flow Designer
Visual

Interface

Task Workflow

TaskUnit

Asynchronous
Control 

B
PE

L
w

orkflow
controler

Requester

ExpClient

Subtasks Generator

Subtasks Assigner

Results Collector

R
ule

controller

Queue

Results

Rule
Remove request

Coordinator

Request Register

Request Match

Request Remover

Log

Request

Log

U
ser

L
ayer

Pow
er

Sharing
L

ayer
C

om
m

unication
L

ayer
C

ontract
L

ayer
D

iscovery L
ayer

SOAP
Message
Internet

P2P Pow
er Sharing M

iddlew
are

Find Requester

Get Subtasks

Execute Subrtasks

Response Results

Generate QoSQoS

TaskUnit

Computation Coordination

CC-FGDM Strategies

Invoke

QoS
QoS Information

Fig. 4. CPS architecture with CC-FGDM.

M.-J. Tsai, C.-S. Wang / Expert Systems with Applications 34 (2008) 2921–2936 2929
are designed to use five computers with different hardware
specification as shown in Table 1. All experiments will use
the same computer nodes under different condition to par-
ticipate in computation environment.

Results of executing experiment by four coordinating
algorithms whose meanings are shown in Table 2 will be
compared and analyzed in the following section. Mean-
while, CPS with fuzzy coordination mechanism will be
implemented with fixed weighting and dynamic weighting,
respectively, by using CC-FGDM in this paper.

CPS with WFCFS Coordination uses WRRS algorithm
(Wang, Doherty, & Dyck, 2002; Wiki, 2006; Zheng, Shu, &
Chen, 2005) which is an algorithm to solve an issue of
nodes on varied hardware platforms. It assigns tasks
according to computing capability by giving different
weighting. The more capability a node has, the more
weighting it is given and tasks is assigned in each service
round. At first, initial weighting IW(Ni) is set by hardware
capability. During the runtime, initial weighting will be
adjusted according to loading of node which is represented
by the following parameters:

• Usage rate of CPU: Cpu(Ni)%.
• Usage rate of memory: Memory(Ni).



Fig. 5. XML message format.

Fig. 6. The decomposition structure.

Fig. 7. The pyramid of DWT based watermark.

Fig. 8. An example of decomposition using DWT.

2930 M.-J. Tsai, C.-S. Wang / Expert Systems with Applications 34 (2008) 2921–2936
• Current network flow: T(Ni).
• Access rate of the disk I/O: Io(Ni)%.
• Response time: Rt(Ni).
• Processing amount: Pr(Ni).
The loading of node Load(Ni) is evaluated according
to these items of information by formula as follows. pi

in formula is weighting for different parameters andPn
i¼1pi ¼ 1.



Table 1
Hardware specification of five computing nodes in the experiment

Nodes CPU clock rate (GHz) Memory (MB)

A 2.4G (Pentium 4) 1024
B 3.2G (Pentium 4) 512
C 1.0G (Pentium 3) 256
D 3.2G (Pentium 4) 512
E 0.67G (Pentium 3) 384

Table 2
Comparison of coordinating mechanism

Coordinating
mechanism

Description

CPS w/o
coordination

There is no coordinating algorithm in this
mechanism. Each computing node is assigned a
task each time. After finishing the task, it will
request for another task from the requester. This
mechanism is similar to first-come-first-served
algorithm

CPS w/coordination A simple coordinating algorithm is used in this
mechanism. This algorithm has 180-s threshold to
decide whether task reassignment strategy should
be activated or not

CPS w/WFCFS
coordination

This mechanism uses WRRS (weighted round-
robin scheduling) algorithm to assign tasks

CPS w/fuzzy
coordination

This algorithm is proposed in CC-FGDM to let
requester of CPS dynamically assign task
according to load information of computing nodes

M.-J. Tsai, C.-S. Wang / Expert Systems with Applications 34 (2008) 2921–2936 2931
LoadðNiÞ ¼ p1 � CpuðN iÞ%þ p2 �MemoryðNiÞ
þ p3 � T ðNiÞ þ p4 � IoðNiÞ%þ p5 �RtðNiÞ
þ p � PrðN Þ ð5Þ
6 i

Fig. 9. The weighting plots of sys
According to load Load(Ni), the following formula is used
to adjust initial weighting to get interim weighting W(Ni)

W ðN iÞ ¼ A � IWðNiÞ þ B � ðLoadðNiÞ � IWðNiÞÞ1=4 ð6Þ

By using formula (5) and (6) to adjust weighting dynami-
cally, number of tasks to assign is decided according to
weighting. For example, if there are three nodes named
A, B, C with weighting 4, 3, 2, respectively, the number
of tasks assigned to node A, B, C will be 4, 3, 2 in
round-robin order AABABCABC.
5.2.2. Experiment I

The purpose of this experiment is to observe how tasks
are assigned according to loading of computing nodes by
adjusting weight of performance parameters. The only
mechanism of CPS w/fuzzy coordination by dynamic
weighting is used in this experiment to justify the object.

There are 762 tasks assigned to computing nodes in
which SuperPI (2005) program is running randomly to sim-
ulate as a normal work load in the experiment. SuprerPI
consumes the CPU usage at a random ratio which could
take up to 100% of the usage as the maximum ratio. In
order to observe how tasks are assigned, computing node
D in Table 1 is selected to monitor the operation of assign-
ment and weight-adjustment. The experimental results are
plotted in Fig. 9 which depicts weighting for system perfor-
mance parameters that are CPU clock rate, CPU usage rate
and memory usage rate in the experiment. Fig. 10 shows
the relation between loading of computing node D and
quantity of assigned tasks.

Since DWT-based algorithm is a CPU-intensive task, it is
demonstrated that the performance parameters of CPU
clock rate and CPU usage rate are given more weight in
tem performance parameters.



Fig. 10. The relation between loading of computing node D and quantity of assigned tasks.

2932 M.-J. Tsai, C.-S. Wang / Expert Systems with Applications 34 (2008) 2921–2936
Fig. 9. That is to say these values and quantity of tasks can be
recorded and graphed to demonstrate their correlation. To
further explore their relationship, CPU usage ratio and
memory usage ratio are shown in Fig. 10 and it is true that
the quantity of assigned tasks will be decreased if CPU usage
ratio is close to 100% when SuperPI program is executed in
computing node. This illustrates that the proposed coordina-
tion mechanism is capable of dynamically adjusting quantity
of tasks according to the loading of computing node.

In addition, the BEPL capability can be demonstrated in
Fig. 11 which shows concurrent parallel processing. The
requester can use the visualized workflow control to mon-
itor the whole processes. It is a big advantage for the infor-
mation management.
5.2.3. Experiment II
Experiment II is to compare the performance of different

coordination schemes mentioned in Table 2. When CPS w/
Fuzzy Coordination is used, two weighting schemes are com-
pared, one is the fixed weighting of [1/3, 1/3,1/3] and the
other one is the dynamic weighting. It is assumed here that
all computing nodes are dedicated to perform the assigned
tasks in Experiment II. The experiment is composed of four
sub-experiments in which there are 50, 100, 200, and 300
tasks, respectively, needed to be assigned for execution. Each
sub-experiment will be run three times for getting average
results in Fig. 12. The difference of execution time and system
performance is tabulated in Table 3.

Form Fig. 12 and Table 3, the proposed method of CPS
w/fuzzy coordination by dynamic weighting does not have
too much advantage in execution time over other methods
except in 100-tasks sub-experiment. The reason to have just
little advantage is that when computing node is dedicated
to computation, execution time is more dependent on hard-
ware features like CPU clock rate. Therefore, coordination
mechanism specialized in allocating resource does not per-
form well since it costs extra expense in doing the compu-
tation before assigning the tasks.
5.2.4. Experiment III
The objective of Experiment III is also to compare the

performance among different coordination methods except
SuperPI program will be executed randomly in computing
node. The purpose to use SuperPI is to simulate the normal
working situation of computing nodes which share their
extra resource for CPS. Same condition in Experiment II
is applied here and Fig. 13 is depicting the graph of execu-
tion time vs. number of task for different coordinating
methods, whereas Table 4 is showing the execution time
comparison between CPS w/fuzzy coordination by dynamic
weight with other four coordination methods.

Unlike in Experiment II, proposed coordinating method
has achieved better performance in execution time than
other methods. Over 10% of improvement in execution time
is gotten when proposed method is compared with method
without using coordination or method with WFCFS algo-
rithm. Since SuperPI program is executed randomly as a
background job, execution time will be more dependent
on coordinating capability of methods to deal with the
uncertainty of loading by SuperPI. The experiment results
demonstrate CC-FGDM by dynamic weight has the best
coordinating capability among other methods.
5.2.5. Experiment IV

Except execution time, the stability of distributed-com-
puting architecture is also important because it can provide
the range of the expected execution time for users. There-
fore, this experiment is implemented to compare stability



Fig. 11. The visualized work flow control by using BPEL.

M.-J. Tsai, C.-S. Wang / Expert Systems with Applications 34 (2008) 2921–2936 2933
of different coordinating schemes. There are 300 tasks
assigned for executing 20 times in this experiment. Besides,
CPS w/fuzzy coordination method will be implemented by
using fixed weight [1/3, 1/3,1/3] and dynamic weight in
order to compare the stability under different weighting
condition. While the average and standard deviation of
execution time of experiments are tabulated in Table 5,
Fig. 14 displays the detailed execution time for compari-
son. According to standard deviation, CPS w/fuzzy coordi-
nation method by fixed or dynamic weighting has smaller
deviation than other two methods.

In addition, it is observed that CPS w/fuzzy coordination
method by dynamic weighting has better stability because its
weighting is decided by real-time execution data which is the
up-to-date loading information from computing nodes.
5.2.6. Analysis
After scrutinizing results of above experiments, it is

found that proposed CC-FGDM with dynamic weighting
has better performance and is more stable than other mech-
anism no matter whether experiment is executed in the ded-
icated computing or disturbed-computing environment
under SuperPI.

In addition, the architecture provides mechanism for
dispatching computational job requests through a central
coordinator. The scheduling of the jobs listed in the coor-
dinator is done by CC-FGDM. The scalability of the sys-
tem with multiple brokers or coordinators is possible
since the layered structure of web services. The requester
can assign the sub-tasks to different computing units while
it keeps track the availability with the computing units.
CC-FGDM allows the requester to re-assign the tasks for
different computing units thorough the contact establish-
ment. Under such approach, CPS could be easily extended
for multiple coordinators and multiple requesters.

6. Discussion and conclusion

6.1. Discussion

Impact of coordinating mechanism to requester: CC-
FGDM goes through fuzzy transformation, aggregation
and exploitation phrases to get the best alternative accord-
ing to preferences over alternatives from experts. If number
of experts is m and number of alternatives is n, number of
comparison in each phrase will be mn(n � 1), mn(n � 1)
and n(n � 1), respectively. By using representation of time
complexity will be O(mn2). Because set of alternative is
defined as available nodes, the more nodes are involved,
the longer executing time is. When clock rate of CPU
and one comparative operation is assumed to 2.0 GHz
and two clock time, time to finish one comparative opera-
tion will be 1 ns. Therefore, when 105 nodes are ranked,
several 10 s are necessary. Comparison with 180 s on aver-
age when one task is executed in DWT-based operation,
executing time for coordinating 105 nodes is very apparent.
However, CPS is supposed to be run in a trusty network of
SME where there are generally <10,000 nodes, so the time
consumed to coordination will be several 10 ms which are
really short compared to 180 s.

Impact of coordinating mechanism to coordinator: XML
QoS message is used to report loading information from
computing node to requester routinely in CC-FGDM.
Although such information is important to coordination,
whether it will impact operation in computing node is nec-
essary to discuss from system and network aspect.

From system aspect, loading parameters such as clock
rate of CPU, CPU usage and memory usage in XML
QoS message are directly came from performance indexes
of system. They can be easily gotten by one memory access
instruction. As for executing time, it is necessary to record
start and end time to get executing duration, two memory
access instructions are needed to do subtraction operation
which has little impact to system.

From the network point of view, one XML message as
shown in Fig. 5 requires only 256 bytes and is sent out



Fig. 12. Execution time vs. number of tasks for different coordinating methods.

Table 3
Difference of execution time and performance for different coordinating methods

Quantity of tasks Difference (s) and increased (%)

CPS w/fuzzy coordination
(1/3,1/3,1/3) vs. CPS w/fuzzy
coordination (dynamic weight)

CPS w/WFCFS coordination
vs. CPS w/fuzzy coordination
(dynamic weight)

CPS w/coordination vs. CPS
w/fuzzy coordination
(dynamic weight)

CPS w/o coordination vs. CPS
w/fuzzy coordination
(dynamic weight)

Difference Increased (%) Difference Increased (%) Difference Increased (%) Difference Increased (%)

50 35.3 3 346.7 22 181 12 163.3 11
100 9.3 0.2 193 6 �90 �3 �34 �2
200 213.3 4 138.3 2 72.7 2 216.7 4
300 116.7 2 343.7 4 263.7 3 737 9

Fig. 13. Execution time vs. number of tasks for different coordinating methods when SuperPI is implemented.

2934 M.-J. Tsai, C.-S. Wang / Expert Systems with Applications 34 (2008) 2921–2936



Table 4
Difference of execution time and performance for different coordinating methods

Quantity of tasks Difference (s) and increased (%)

CPS w/fuzzy coordination
(1/3,1/3,1/3) vs. CPS w/fuzzy
coordination (dynamic weight)

CPS w/WFCFS coordination
vs. CPS w/fuzzy coordination
(dynamic weight)

CPS w/coordination vs.
CPS w/fuzzy coordination
(dynamic weight)

CPS w/o coordination vs.
CPS w/fuzzy coordination
(dynamic weight)

Difference Increased (%) Difference Increased (%) Difference Increased (%) Difference Increased (%)

50 48.3 3 335 17 37 2 132.3 7
100 185 5 770.3 20 207.3 6 394.3 10
200 378.3 5 779 11 294 4 678.3 10
300 526 5 2001 18 615.3 6 2162.7 20

Table 5
Statistic comparison of execution time

Statistic CPS w/o coordination CPS w/coordination CPS w/ WFCFS CPS w/fuzzy (1/3,1/3,1/3) CPS w/fuzzy (dynamic weight)

Average 12,722.1 12,110.65 13,508 11,992 11,538
Standard deviation 1385.8 578.4 885.82 375.4 243.2

Fig. 14. Execution time of tasks assigned for running 20 times.

M.-J. Tsai, C.-S. Wang / Expert Systems with Applications 34 (2008) 2921–2936 2935
per 2 min, it does not use too much bandwidth when
DWT-based computation does not return large size of
result. However, if a task indeed returns large size of result,
a steady and route message like XML QoS message will
disturb each other. Moreover, it will make requester think
computing node is not available (busy). Since CC-FGDM
will be executed only when computing node has returned
result and its queue is empty, this means loading informa-
tion is just needed when coordination is underway without
considering heartbeat function of XML message. Hence,
when bandwidth is shrinking, length of time to send
XML message can be prolonged to alleviate network
congestion.

Impact of weighting to performance and stability:

RPGDM used in CC-FGDM depends on OWA to aggre-
gate preferences over alternatives to prevent extreme pref-
erence of one expert. Therefore, selection of OWA
operator is very important in RPGDM. However, system
performance indexes are defined as experts in this research
which are rational and impartial, so weight for each expert
can be dynamically calculated by coefficient of correlation
and determination to improve the overall executing perfor-
mance and stability. This mechanism is justified by the
experimental results.

6.2. Conclusion

The mechanism of computing coordination-based on
fuzzy group decision-making (CC-FGDM) is proposed in
this paper. It integrates the resolution process of group



2936 M.-J. Tsai, C.-S. Wang / Expert Systems with Applications 34 (2008) 2921–2936
decision-making (RPGDM) to coordinate resource in shar-
ing environment within a trusty network. CC-FGDM is
implemented on web-service based computing power-shar-
ing architecture with the capability to handle the real-time
load balance and dispatching with quality of service. The
experimental results illustrate that executing time and
stability of proposed mechanism improve the overall per-
formance in the disturbed computing environment. There-
fore, CPS with CC-FGDM is applicable in enterprise
network to efficiently utilize available computing nodes to
reduce total executing time and provide more stability for
computation-intensive tasks.

Acknowledgements

This work was supported by the National Science Coun-
cil in Taiwan, Republic of China, under Grants NSC94-
2416-H009-018 and NSC95-2416-H009-027. The authors
like to thank Chi-Le Chen and Po-Yu Yang for data collec-
tion and simulation works.
References

Amnuaykanjanasin, P., & Nupairoj, N. (2005). The BPEL orchestrating
framework for secured grid services. International Conference on

Information Technology: Coding and Computing, 1, 348–353.
Chiclana, F., Herrera, F., & Herrera-Viedma, E. (1998). Integrating

three representation models in fuzzy multipurpose decision making
based on fuzzy preference relations. Fuzzy Sets and Systems, 97(1),
33–48.

Chiclana, F., Herrera, F., & Herrera-Viedma, E. (2001). Integrating
multiplicative preference relations in a multipurpose decision-making
model based on fuzzy preference relations. Fuzzy Sets and Systems,

122(2), 277–291.
Cox, I. J., Kilian, J., Leighton, F. T., & Shamoon, T. (1997). Secure spread
spectrum watermarking for multimedia. IEEE Transactions on Image

Processing, 6(12), 1673–1687.
Kacprzyk, J. (1986). Group decision-making with a fuzzy linguistic

majority. Fuzzy Sets and Systems, 18(2), 105–118.
Loo, A. W. (2003). The future of peer-to-peer computing. Communications

of the ACM, 46(9), 57–61.
Null, L., & Lobur, J. (2003). The essentials of computer organization and

architecture. Sudbury, MA: Jones & Bartlett Publishers, Inc.
Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-

Hill.
Stallings, William (2003). Computer organization and architecture: Design-

ing for performance (6th ed.). NJ, Prentice Hall: Upper Saddle River.
SuperPI, (2005). <http://www.super-computing.org/> Accessed Decem-

ber, 2005.
Tsai, M. J. (2004). Filter bank selection for the ownership verification of

wavelet based digital image watermarking. In Proceedings of the 2004

International Conference on Image Processing, Vol. 5. pp. 3415–3418.
Tsai, M. J., Wang, C. S., Yang, P. Y., & Yang, C. Y. (2006). A

collaborated computing system by web services based P2P architec-
ture. Lecture Notes in Computer Science, 3865, 194–204.

Wang, Y., Doherty, J. F., & Dyck, R. E. (2002). A wavelet-based
watermarking algorithm for ownership verification of digital images.
IEEE Transactions on Image Processing, 11(2), 77–88.

Wiki (2006). Weighted round-robin scheduling. <http://kb.linuxvirtual-
server.org/wiki/Weighted_Round-Robin_Scheduling> Accessed June
2006.

Yager, R. R. (1988). On ordered weighted averaging aggregation
operators in multicriteria decision making. IEEE Transactions on

Systems Man and Cybernetics, 18(1), 183–190.
Yan, Jun, Yang, Yun, & Raikundalia, G. K. (2006). SwinDeW-a p2p-

based decentralized workflow management system. IEEE Transactions

on Systems, Man and Cybernetics, 36(5), 922–935.
Zadeh, L. A. (1983). A computational approach to fuzzy quantifiers in

natural languages. Computing and Mathematics with Applications, 9(1),
149–184.

Zheng, Shijue, Shu, Wanneng, & Chen, Guangdong (2005). A load
balanced method based on campus grid. IEEE International Sympo-

sium on Communications and Information Technology, 2, 1516–1519.

http://www.super-computing.org/
http://kb.linuxvirtualserver.org/wiki/Weighted_Round-Robin_Scheduling
http://kb.linuxvirtualserver.org/wiki/Weighted_Round-Robin_Scheduling

	A computing coordination based fuzzy group decision-making (CC-FGDM) for web service oriented architecture
	Introduction
	Literatures review
	Distributed-computing
	CPS architecture
	Role definition of CPS
	Layer description

	Fuzzy group decision-making
	The transformation phase
	The aggregation phase
	The exploitation phase


	Problem analysis
	Problems of load-balancing
	Possible solutions

	Fuzzy group decision-making coordinating mechanism
	Information retrieval strategy
	Task assignment strategy
	Task reassignment strategy
	Dynamic weighting adjustment strategy

	Implementation and performance analysis
	Implementation
	Performance analysis
	Experimental procedures and environment
	Experiment I
	Experiment II
	Experiment III
	Experiment IV
	Analysis


	Discussion and conclusion
	Discussion
	Conclusion

	Acknowledgements
	References


