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ABSTRACT 

Real-time incident-responsive traffic control and management is vital to development of 

advanced incident management systems in ITS.  More importantly, it provides, from an academic 

point of view, the linkages between incident detection, incident management, and traffic signal 

control.  This study explores the application of a stochastic optimal control approach to real-time 

incident-responsive traffic control at isolated intersections.  In the methodology development, 

time-varying lane traffic state variables and control variables are specified to characterize 

section-wide inter-lane and intra-lane traffic states under conditions of lane-blocking incidents.  

Following specification of system states, we formulated a discrete-time nonlinear stochastic 

model which comprises four types of equations, namely (1) recursive equations, (2) measurement 

equations, (3) incident-induced delay equations, and (4) boundary constraints.  From the 

proposed stochastic model, we then developed a stochastic optimal control algorithm to update 

the time-varying control variables and lane traffic state variables in real time with lane-blocking 

incidents at isolated intersections.  To generate efficiently traffic data used in model tests, we 

employed an advanced microscopic traffic simulator, Paramics, Version 3.0, which is developed 

to model and analyze ITS traffic flow conditions.  The preliminary test results indicate that the 

proposed method can accomplish the goal of real-time incident-responsive traffic signal control.  

In addition to proposing a new methodology, we hope that this study can initiate investigation 

into real-time incident-responsive traffic control and management to achieve the final goal of 

network-wide incident-responsive traffic optimal control for incident management. 
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1. INTRODUCTION

Real-time incident-responsive traffic control and management can be a critical stage in the 

development of advanced incident management systems for two reasons.  First, it has been pointed 

out in our early related research (Sheu, Chou, and Shen, 2001) that a comprehensive incident 

management system should involve three primary mechanisms: (1) incident detection, (2) the 

prediction of incident congestion and (3) incident-responsive traffic management and control.  Such 

an ideal architecture implies that incident-responsive traffic management and control represents a 

critical functionality for reducing automatically and efficiently incident impacts on traffic flows in 

incident management systems.  Second, the development of real-time incident-responsive traffic 

control and management systems may provide the linkages between incident detection, incident 

management, and traffic signal control.  From an academic point of view, incident-responsive 

traffic control and management can be regarded as a specific field that integrates the 

aforementioned areas.  Such an integrated field is worth investigating since it extends substantially 

the applicability of the aforementioned aspects to addressing the issues related to non-recurrent 

traffic congestion in urban areas.  

To date, many studies have been devoted to exploring advanced traffic control systems in an 

effort to address diverse urban traffic congestion problems.  One common feature exhibited by the 

contemporary traffic control systems is that compared to conventional fixed time control modes, the 

advanced control systems seek to accommodate dynamically control strategies in response to a 

variety of traffic flow conditions.  The most notable of these are modes of vehicle actuated control 
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and demand-responsive control which can also serve as references for development of incident-

responsive traffic control systems in the study.  

Utilizing specific control logic together with special detector configurations, vehicle 

actuated controllers have been implemented increasingly for critical intersection control (CIC) 

which addresses, in particular, the control of an isolated intersection using special control strategies 

as well as algorithms suited to saturated flow levels (McShane and Roess, 1990).  Although they 

perform various operational functions, one distinctive feature of vehicle actuated control is that 

traffic signals are actuated primarily by traffic arrivals which are measured directly by detectors 

placed at intersection approaches.  Given parameters such as the initial interval, the vehicle interval, 

and the maximum interval, pre-set in control logic, vehicle actuated controllers execute specific 

control rules on the basis of detector observations in response to the diversity of traffic congestion 

conditions at an individual intersection. 

There exists a tremendous variety of demand-responsive intersection control systems 

proposed with the evolution of computerized technologies.  The well-known ones include the 

British SCOOT system (Hunt, Robertson, and Bretherton, 1982; Robertson and Bretherton, 1991; 

Bretherton, Wood, and Baker, 2000), the Australian SCATS system (Sims, 1979), the OPAC 

system (Gartner, 1983), and PRODYN (Henry and Farges, 1990), which are also referred to as the 

3rd generation of computer-aided traffic signal control systems.  The SCOOT system is extensively 

utilized in numerous cities around the world, and remains to be updated to improve its congestion 

management facilities.  To date, the updated version of SCOOT has been integrated with the 

INGRID automatic incident detection system and the system of VAMPIRE which is a computer 

program to operate variable message signs to execute the mechanism of congestion and incident 



4

management.  Similarly, SCATS has been installed in several major cities in Australia, New 

Zealand, Asia, and the US, and is increasingly drawing attention for its potential with respect to 

handling diverse network-wide traffic congestion problems.  From a theoretical point of view, both 

SCOOT and SCATS tend to perform incremental optimization that makes small changes around 

predetermined signal plans in response to prevailing traffic conditions; while under control 

strategies of either OPAC or PRODYN, a binary decision in terms of phase switching is made at 

each short time step.  In addition, a great number of researchers have recently proposed various 

sophisticated methodologies for improving system performance of demand-responsive control for 

cases of network-wide oversaturated cases (Eddelbuttel and Cremer, 1994; Abu-Lebdeh  and 

Benekihal, 1997; Lo, 1999).           

Despite remarkable progress made in formulating and solving diverse urban traffic 

congestion problems, the applicability of the aforementioned advanced traffic control modes to 

surface street incident cases remains arguable because of the following three major concerns.  

First, incident effects on lane traffic maneuvers may lead to instability of the traffic flow 

system.  Incident-induced intra-lane and inter-lane traffic maneuvers including vehicular queuing 

and mandatory lane changing in blocked lanes seem to be considerably different from those in 

incident-free cases.  Consequently, such abnormal time-varying patterns of lane traffic states may 

precipitate more complicated traffic operational problems such as extreme congestion, gridlock, and 

secondary accidents.  Therefore, the steady-state traffic flow condition that is extensively assumed 

in numerous published signal control technologies does not hold anymore.  Details of these related 

issues can also be found in our previous research (Sheu and Ritchie, 1999 and 2001; Sheu, Chou, 

and Shen, 2001). 
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Second, although the above advanced control systems may meet expectations better than 

traditional fixed-time control systems, their functionality in terms of responding to sudden 

changes in traffic flow patterns appears incomplete, particularly in case of incident-induced 

traffic congestion.  This issue can be extensively found in those published demand-responsive 

control systems, including the up-to-date SCOOT system which must rely, to a great extent, on 

other sophisticated systems such as INGRID, ASTRID and VAMPIRE to achieve the purpose of 

incident management.  Therefore, it does not seem to have enough evidence, at least, to prove 

that published advanced control technologies perform well in response to diverse incident-

induced traffic congestion conditions in real time. 

The last concern is that the issue on real-time prediction of incident effects on traffic 

congestion such as incident-induced delays and queue lengths remains unsolved, which may cast 

doubt on the applicability of the developed optimization-based control strategies such as SCOOT 

and SCATS to incident cases.  Note that such objective functions as minimizing delays and 

queue lengths have been extensively used in developing the optimization-based control 

algorithms.  During optimization, these objective functions are assessable only when the time-

varying delays and queue lengths are predictable.  That is also one of our major reasons for 

conducting previous research with respect to real-time prediction of incident effects on traffic 

congestion (Sheu, Chou, and Shen, 2001; Sheu, Chou, and Chang, 2001) in advance of 

developing real-time incident-responsive traffic control technologies in this study.            

Besides, literature in some related fields including queue-length prediction and incident 

management may be also worth reviewing (Bretherton and Bowen, 1991; Rouke and Bell, 1991; 

Cremer and Henninger, 1993; Michalopoulos and Jacobson, 1993; Sellam and Boulmakoul, 1994; 
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Bretherton, Wood, and Baker, 2000; Harwood, 2000).  Dedicated discussion on the early literature 

can be found elsewhere (Sheu and Ritchie, 1999; Sheu, 2001), and herein, is not further detailed in 

consideration of the scope of this study.  For instance, the architecture of incident management may 

need to involve other elaborate technologies such as automatic incident detection (AID), route 

guidance, dynamic traffic assignment (DTA), and detector data acquisition, and they all need to be 

further elucidated.        

This study aims to explore new methodology for the use of real-time incident-responsive 

local signal control.  The primary objective of the proposed control strategy is to minimize the 

incident impacts on the traffic flows at an isolated intersection under conditions of lane-blocking 

incidents occurring either on the roadway between two successive intersections or within an 

intersection.  To achieve the study purpose, we propose a prototype of a stochastic optimal control 

approach which involves modeling stochastic optimal control systems and a real-time control 

algorithm in response to various traffic congestion problems in case of lane-blocking incidents on 

surface streets.  The most distinctive feature exhibited by the proposed control method is that 

incident-induced inter-lane and intra-lane traffic states as well as incident impacts, either in the 

temporal domain or in the spatial domain, on traffic congestion can be estimated in real time, and 

then used as the parameters in the time-varying objective function to serve specific control purposes 

during lane-blocking incidents at isolated intersections.  Note that the applicability of the proposed 

method is tentatively limited to real-time incident-responsive local signal control in an attempt to 

prevent over-congestion at an isolated intersection under conditions of lane-blocking incidents.  

Correspondingly, the philosophy of local optimization is utilized.  Issues with respect to network-

wide incident-induced congestion events such as queue overflow and gridlock cases are not 
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addressed in the current research scenario due to the necessity of more sophisticated technologies 

based on system-optimization control principles. 

2. SPECIFICATION OF SYSTEM STATES

Incidents investigated in this study are classified into two categories: (1) arterial lane-

blocking incidents (i.e., incidents occurring on the roadway between two adjoining intersections), 

and (2) intersection incidents (i.e., incidents occurring within a given intersection).  In order to 

estimate in real time lane traffic states as well as decision variables for the two typical incident 

cases, specific detector configurations using pairs of point detectors are proposed as shown in Fig. 1. 

 The area within any given pair of detector stations is defined as a detection zone in this study.  

Given a lane-blocking incident occurring in a detection zone, raw lane traffic data collected from 

the upstream and downstream detector stations of the detection zone are employed for traffic state 

estimation as well as stochastic signal optimal control in the proposed method.  Therefore, as 

shown in Fig. 1, two successive detection zones are set for each link of the intersection in response 

to arterial incidents and intersection incidents on a given link.         

Fig. 1. Illustration of the proposed detector configurations

Time-varying raw lane traffic data collected from any given pair of point detector stations 

(upstream and downstream detectors) are the input data of the proposed approach.  Given the 

aforementioned detector configurations, lane traffic data collected from any pair of detector stations 

at each time step are used for system state estimation, where a time step corresponds to a time unit 

of data sampling.  In this study, 10-sec. traffic count data are used in model tests.
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Four groups of time-varying traffic variables are then specified in the system to characterize 

incident-induced inter-lane and intra-lane traffic maneuvers under real-time stochastic optimal 

control.  They are (1) basic lane traffic states which can be estimated directly from raw traffic data 

collected from point detectors, (2) space-based incident impacts on traffic congestion (e.g., queue 

lengths in blocked lanes, and the number of moving vehicles in lanes adjacent to blocked lanes), (3) 

time-based incident impacts on traffic congestion (e.g., stop delays and acceleration/deceleration 

delays), and (4) decision variables for stochastic optimal control.  They are specified in detail as 

follows.

Basic lane traffic states are the elements used to characterize section-wide inter-lane and 

intra-lane traffic maneuvers in the presence of a lane-blocking incident, and to derive in particular 

the other groups of variables.  In the study, four types of basic lane traffic states, shown as follows, 

are specified

1) )(kpm
ij which is the mandatory lane-changing fraction from blocked lane i to adjacent lane j in 

link m at time step k;

2) )(kr m
j corresponding to the proportion of vehicles present in adjacent lane j of link m which can 

pass the detector station downstream to the detection zone at time step k;  

3) )(kr m
l  representing the proportion of vehicles present in independent lane l of link m which can 

pass the detector station downstream to the detection zone at time step k, where an independent 

lane is referred to as a lane which is neither the blocked lane nor the lane adjacent to the 

blocked lane; and
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4) )(kr m
ij  corresponding to the proportion of vehicles conducting lane changes from blocked lane i

to adjacent lane j which pass the downstream detector in adjacent lane j at time step k.

In the aforementioned lane traffic state variables, subscriptions i, j and l are positive integers 

representing lane codes, and their values range from 1 to N, where N corresponds to the total 

number of lanes within the detection zone; k is a non-negative integer ranging from 0 to infinity; 

subscription m represents a code for a given link connecting to the targeted intersection.  

Two groups of time-varying lane traffic variables are primarily involved in the system to 

characterize space-based incident impacts on traffic congestion.  They are (1) queue lengths in 

blocked lanes, and (2) lane traffic loads in either adjacent lanes or independent lanes. 

Time-varying queue lengths specified in the system can be further classified into three types 

of variables.  They are (1) the number of vehicles queuing in blocked lane i of link m at time step k

( )(kqm
i ), (2) the number of vehicles queuing in adjacent lane j of link m at time step k during red 

intervals ( )(kqm
j ), and (3) the number of vehicles queuing in independent lane l of link m at time 

step k during red intervals ( )(kqm
l ).  Utilizing the aforementioned basic lane traffic states, we can 

denote )(kqm
i , )(kqm

j  and )(kqm
l  respectively by:

[ ] 







−+−= ∑

∈∀ Jj

m
ij

m
i

m
i

m
i kpkakkqkq )(1)()1|()(                                                                                  (1)

)()1|()( kakkqkq m
j

m
j

m
j +−=                                                                                                            (2)

)()1|()( kakkqkq m
l

m
l

m
l +−=                                                                                                            (3)
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where )(ka m
i , )(ka m

j , and )(ka m
l represent the lane traffic counts collected from the upstream 

detectors in blocked lane i, adjacent lane j, and independent lane l , respectively at time step k; 

)1|( −kkqm
i , )1|( −kkqm

j , and )1|( −kkqm
l correspond to the queue length in blocked lane i, 

adjacent lane j, and independent lane l, respectively at the beginning of time step k. 

Compared to queue lengths which characterize the intra-lane traffic states in terms of static 

vehicles, lane traffic loads which are defined as the numbers of vehicles, excluding queuing 

vehicles, moving in either adjacent lanes or independent lanes within a detection zone characterize 

the intra-lane traffic states in terms of moving vehicles.  In order to distinguish the lane traffic loads 

of adjacent lanes ( )(km
jδ ) which are influenced considerably by the traffic conditions in blocked 

lanes from the lane traffic loads in independent lanes ( )(km
lδ ), they are expressed respectively as:    

)](1[)]()1|([)](1[)()]()1|([)( krkakkkrkpkakkk m
j

m
j

m
j

m
ij

m
ij

m
i

m
i

m
j −×+−+−××+−= δδδ                  (4)

)](1[)]()1|([)( krkakkk m
l

m
l

m
l

m
l −×+−= δδ                                                                                      (5)

where )(km
jδ and )(km

lδ represent the lane traffic loads in adjacent lane j and in independent lane l, 

respectively on link m at time step k, and similarly, )1|( −kkm
jδ and )1|( −kkm

jδ are their early 

estimates, respectively, at time step k-1.

In contrast to the space-based incident impacts on traffic congestion including the 

aforementioned time-varying traffic states of queue lengths and traffic loads, delays can be regarded 

as significant variables indicating the incident impacts on traffic congestion in the temporal domain. 

 In the study, three major types of delays are specified.  They are (1) the stopped delay caused by 
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either the vehicles queuing in blocked lane i or in red intervals, (2) the approaching delay caused by 

either vehicular lane changing from blocked lane i to adjacent lane j or queuing in blocked lane i, 

and (3) travel-time delay in any independent lane.  The following details the denotations of these 

delays.  

In the presence of a surface street lane-blocking incident, the stopped delay can be the result

of either the lane blockage or the red interval, and thus, four variables of time-varying stopped 

delays are specified:  

tkd m
i =)(                                                                                                                                            (6)

)()( kRk m
i

m
i =ψ                                                                                                                                   (7)

)()( kRk m
j

m
j =ψ                                                                                                                                   (8)

)()( kRk m
l

m
l =ψ                                                                                                                                   (9)

where )(kd m
i  corresponds to the stopped delay caused by the queuing vehicles in blocked lane i of 

link m at time step k; )(km
iψ , )(km

jψ , and )(km
lψ  represent the stopped delays in blocked lane i, 

adjacent lane j, and independent lane l, respectively on link m at time step k during a given red 

interval; )(kRm
i , )(kRm

j , and )(kRm
l correspond to the lengths of the time-varying red intervals 

associated with blocked lane i, adjacent lane j, and independent lane l, respectively on link m at 

time step k; and t represents the length of a time step.  

The approaching delays are classified into the following three categories: 
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1) )(kd m
ii corresponds to the deceleration delay caused by an unit vehicle approaching from 

blocked lane i to the end of the vehicles queuing in blocked lane i of link m at time step k, and is 

given by:

[ ]
















−−×−= t

uku
kkqseMinkd m

i
m
i

m
i

m
i

m
ii ,

)0(
1

)(
1)1|(.)(                                                             (10)

where )(kem
i  corresponds to the distance between the upstream detector station and the incident 

site in blocked lane i on link m; s is defined as the average vehicle length; )(kum
i  represents the 

speed detected in blocked lane i of link m at time step k via the upstream detector station; and 

)0(m
iu  corresponds to the highest speed detected in lane i in incident-free cases. 

2) )(kd m
ij represents the approaching delay caused by an unit vehicle which conducts mandatory 

lane-changing from blocked lane i to approach the downstream detector station in adjacent lane j of 

link m at time step k, and is given by:

{ }
{ } 











+−
×

= tdt
kukuMin

tkukuMax
Minkd mcm

i
m
j

m
i

m
jm

ij ,
)(,)(.

)(,)(.
.)(                                                                     (11)

where dmc means the time spent by an unit vehicle on conducting mandatory lane changing behavior, 

and is predetermined in this study; and )(kum
j  is the speed estimated by the upstream detector 

station in adjacent lane j of link m at time step k.  

3) )(kd m
jj  is defined as the approaching delay caused by an unit vehicle which approaches the 

downstream detector station from adjacent lane j at time step k, and is given by:
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
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Travel time delay is viewed as one of the factors in determining the stochastic optimal 

control strategies of the proposed method.  In the study, the time-varying delay in a given 

independent lane l of link m at time step k ( )(kd m
l ) is given by:









×







−= te

uku
Minkd m

lm
l

m
l

m
l ,

)0(
1

)(
1.)(                                                                                     (13)

where )(kem
l  corresponds to the detector spacing of the detection zone associated with independent 

lane l on link m; )(kum
l  represents the speed detected in independent lane l of link m at time step k

via the upstream detector station; and )0(m
lu  corresponds to the highest speed detected in lane l in 

incident-free cases.

Time-varying decision variables are introduced to determine phase switching as well as the 

length of a green time interval associated with a given phase in the process of stochastic optimal 

control.  In the system, the generalized form of the time-varying decision variable associated with a 

given phase λ at time step k ( )(kλΩ ) is given by:

t
kGk )()( λ

λ =Ω                                                                                                                                 (14)

where )(kGλ  is referred to as the length of green time associated with phase λ  at time step k.  The 

time-varying decision variable represents, in reality, a time-varying proportion of the green time to 

the length of a time step, and thus, it has upper and lower bounds, namely 1 and 0, respectively.  In 

the proposed method, the time-varying decision variable is calculated dynamically at each time step 

in response to incident impacts in real time. 
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3. SYSTEM MODELING 

In order to characterize the time-varying state variables specified previously under 

conditions of stochastic optimal control, a discrete-time nonlinear stochastic model is proposed.  

The proposed stochastic model primarily comprises four groups of dynamic equations, namely (1) 

recursive equations, (2) measurement equations, (3) delay-aggregation equations, and (4) boundary 

constraints.  These equations are presented respectively as follows.

3.1 Recursive Equations

The recursive equations denote the relationships between the next-time-step and current-time-

step basic lane traffic states in the stochastic system on the assumption that these time-varying lane 

traffic states follow Gaussian-Markov processes.  The generalized form of the recursive equations 

is given by:

[ ] [ ] )(,)(,)(,)(,)()1( kwkkkxLkkkxfkX ττττ λλ −Ω−+−Ω−=+                                         (15)

In Eq. (15), X(k+1) is a ( ) 13
1

×
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



 +∑
=

M

m

m
l

m
j nn  time-varying vector of basic lane traffic states at time 

step k+1, where m
jn and m

ln are defined as the number of adjacent lanes and the number of 

independent lanes  on link m, respectively; M represents the total number of the links connecting to 

the targeted intersection; [ ]ττ λ −Ω− kkkxf ,)(,)( represents a ( ) 13
1

×






 +∑
=

M

m

m
l

m
j nn  time-varying 

vector of basic lane traffic states at time step k; τ is referred to as a time-lag index used to estimate 

basic lane traffic states during the periods of phase switching, and is elucidated later in this 



15

subsection; )( τ−kx  represents a set of state variables estimated at time step τ−k ; 

[ ]ττ λ −Ω− kkkxL ,)(,)(  is a ( ) ( )



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33 noise matrix which is dependent 
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Note that 
jλΩ and 

lλΩ shown in Eq. (17) represent the time-varying decision variables associated 

with phase λ under which the traffic movements in adjacent lane j and independent lane l, 

respectively are permitted at time step k.  In [ ]ττ λ −Ω− kkkxL ,)(,)( , )(11 τ−kml , )(22 τ−kml , 

)(33 τ−kml , and )(44 τ−kml , take the following forms, respectively.
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In order to deal with the issue of discontinuity of system state estimation in any signal 

transition step, a time-lag index τ is introduced in formulating the above-mentioned recursive

equations, where a signal transition step is defined as a time step during which the traffic control 

signal turns either from GREEN to RED or from RED to GREEN.  In [ ]ττ λ −Ω− kkkxf ,)(,)( , 

the value of τ is determined by one of the following four conditions.
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Condition 1: If time step k+1 is a signal transition step during which the traffic signal turns from 

GREEN to RED (see Fig. 2), then τ=0. 

Fig. 2. Signal condition (1)

Condition 2: If time step k+1 is a signal transition step during which the traffic signal turns from 

RED to GREEN (see Fig. 3), then τ=τ1-1, 

Fig. 3 Signal condition (2)

where τ1 is the time lag corresponding to the number of time steps between the transition step 

(RED to GREEN) and the full-green time step one step prior to the last transition step (GREEN 

to RED), counting this previous full-green time step (e.g., τ1=5 in Fig.3).

Condition 3: If time step k+1 is the first full-green time step of the current green interval (see Fig. 4), 

then, τ=τ1.

Fig. 4. Signal condition (3)

In Fig. 4, τ1  has the same definition as above, and is equal to 5.

Condition 4: For all other steps, τ=0.

3.2 Measurement Equations

The measurement equations denote the time-varying relationships between the measured lane 

traffic counts and the basic lane traffic states.  The generalized form of the measurement equations 

is expressed as: 
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[ ] )(,)()( kvkkxhkZ +=                                                                                                                  (24) 

where Z(k) is a ( ) 1
1

×
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
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j nn  time-varying vector which expresses the relationships between the measured lane 
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represents the error terms of the collected traffic counts at time step k.  Z(k), h[x(k), k] and v(k) are 

given respectively by:
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where )(kzm
j  and )(kzm

l correspond to the lane traffic counts collected from the downstream 

detectors in adjacent lane j and independent lane l, respectively on link m at time step k; )(kvm
j  and  
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)(kvm
l  are the Gaussian error terms associated with )(kzm

j and )(kzm
l , respectively; )(khm

j  and 

)(khm
l  denote the components of )(kzm

j  and )(kzm
l , respectively, and can be further expressed as:
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j ×−++××−+= δδ                      (28)

[ ] )()1|()()( krkkkakh m
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m
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m
l

m
l ×−+= δ                                                                                             (29)

3.3 Delay-Aggregation Equations

The delay-aggregation equations govern the mechanism of updating time-based incident 

impacts under the circumstances of stochastic optimal control by estimating aggregated delays in 

real time.  The generalized form of the delay-aggregation equations is given by:

[ ] )(,)()( kYkkxGkD =                                                                                                                     (30)

where D(k) is a [ ] 1233
1
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m
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m
i nnn  time-varying aggregated delay vector in which each 

element corresponds to the aggregate associated with a given delay variable shown in Vector Y(k); 

G[x(k), k] is a [ ] [ ]
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233233  time-varying traffic matrix in 

which each element represents the number of vehicles associated with a given type of delay; Y(k) is 

a [ ] 1233
1

×






 ++∑

=

M

m

m
l

m
j

m
i nnn  time-varying disaggregated delay vector which comprises all types of 

the specified delay variables.  D(k), G[x(k), k], and Y(k) can be expressed respectively as:



20

Mm
m

l

m
jj

m
ij

m
ii

m
l

m
j

m
i

m
i

kd

kd
kd
kd

k
k
k
kd

kD

,...2,1
)(

~

)(
~

)(
~

)(
~

)(~
)(~
)(~
)(

~

)(

=






































−−−−

−−−−
=

ψ
ψ
ψ

                                                                                                                  (31)

[ ]

Mm
m

m

m

m

m

m

m

m

kg
kg

kg
kg

kg
kg

kg
kg

kkxG

,...2,188

77

66

55

44

33

22

11

)(0000000
0)(000000
00)(00000
000)(0000
0000)(000
00000)(00
000000)(0
0000000)(

),(

=
































=                  (32)

Mm

m
l

m
jj

m
ijj

m
ii

m
l

m
j

m
i

m
i

kd

kd

kd
kd

kk
kk
kk

kd

kY

l

j

i

l

j

i

i

,...2,1
)(

)(

)(
)(

)()](1[
)()](1[
)()](1[

)(

)(

=







































Ω

−−−−

Ω

Ω
Ω

−−−−
Ω−
Ω−
Ω−
Ω

=

λ

λ

λ

λ

λ

λ

λ

λ

ψ
ψ
ψ

                                                                                                 (33)

where the element in G[x(k), k] can be further expressed as:
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3.4 Boundary Constraints

In order to yield feasible solutions efficiently in the procedures of real-time estimation of 

system states, four boundary conditions are incorporated in the proposed model, and denoted by 

four boundary constraints.  The generalized forms of the boundary constraints are shown as follows:

0 ≤ X(k+1) ≤ 1                                                                                                                                  (42)

0 ≤ Y(k) ≤ t·1                                                                                                                                    (43)

0 ≤ Ωλ(k) ≤ 1, λ∀                                                                                                                            (44)

[ ] max,
0

min, )( g

n

g TtkT ≤×+Ω≤ ∑
=

λ

ε
λ ε                                                                                                  (45)

where X(k+1) and Y(k) are, as indicated by Eqs. (16) and (33), vectors of basic lane traffic states and 

disaggregated delays, respectively; )(kλΩ , as defined previously, is a time-varying decision 

variable associated with a given phase λ; λn is the total number of the sequential time steps which 
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belong to a given phase λ; min,gT and max,gT represent the minimum and maximum intervals of green 

time, respectively.

4. REAL-TIME STATE ESTIMATION AND STOCHASTIC CONTROL

The primary purpose of the proposed incident-responsive traffic signal control is to 

minimize the incident impacts on traffic flows at the isolated intersection, and correspondingly, to 

minimize the differences between the ideal and the estimated values of the basic lane traffic states 

in the presence of a lane-blocking incident at the intersection.  Therefore, we have the objective 

function (ξ ):
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33  time-varying diagonal, 

positive-definite weighting matrix associated with the estimation vector of the basic lane traffic 

states (X(k)), and that of the decision variables ( )(kΩ ), respectively; N corresponds to the total 

number of time steps in terms of incident duration, and is pre-determined in the study; from a 

theoretical point of view, N  can be estimated via other external technologies such as incident 

prediction models (i.e., methods used to characterize incidents), and practically, the condition that 

the estimate of N is not less than its real value should hold in the optimization process; )(* kX  and 

)(* kΩ  are the time-varying target vectors associated with X(k) and )(kΩ , respectively.  Note that 

each element in )(* kX  represents the ideal value of a given basic lane traffic state that can relieve 

incident-induced traffic congestion to the greatest extent, and conveniently, it is set to be 1 in this 
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study; the elements of )(* kΩ  are set to be the same as the elements of )1( −Ω k  to serve the 

purpose of minimizing the cost caused by signal phase switching.  

To perform the functionality of real-time incident-responsive traffic control utilizing the 

proposed stochastic model, we develop a stochastic optimal control algorithm.  The primary 

computational steps involved in the proposed algorithm include (1) an extended Kalman filter, (2) 

truncation and normalization, (3) incident impact prediction, and (4) calculation of time-varying 

decision variables.  The following steps summarize the proposed recursive estimation logic.  

Step 0.  Initialize system states and the input raw traffic data.  Given 0=k  and 0=τ , system 

states including (1) the basic lane traffic states )0|0(X , (2) the covariance matrix of the state 

estimation error )0|0(Φ , and (3) the weighting matrix )0(
*

1
λQ  are initialized.  In addition, let the 

phase with green time ( *λ ) be assigned to the lane group which involves blocked lane i by setting 

t=Ω )0(*λ
.  Note that the total number of phasing (Θ ) together with lane groups associated with 

the specific phases are also pre-specified in this step. 

Step 1.  Compute prior estimates of lane traffic state variables ( )|1( kkX + ) and the covariance 

matrix of the state estimation error ( )|1( kk +Φ ) respectively by:

[ ]ττ
λ

−Ω−=+ kkkxfkkX ,)(,)()|1( *                                                                                           (47)

[ ] [ ]TT kkkxLkQkkkxLkFkkkFkk ττττ
λ

λ
λ

−Ω−−Ω−+Φ=+Φ ,)(,)()(,)(,)()()|()()|1( *

*

* 1     (48)

where matrix )(kF T is the transpose matrix of )(kF ; )(kF is given by:

)|()()(
],)(,)([

)(
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τττ

λ

τ∂
ττ∂

−−=−−
−Ω−

=
kkxkxkX

kkkxf
kF                                                                        (49)
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Step 2. Calculate the Kalman gain by:

[ ] 1
2 )1()1()|1()1()1()|1()1(

−
++++Φ+++Φ=+ kQkHkkkHkHkkkK TT                               (50)

where )1(2 +kQ is pre-specified in the algorithm based on the covariance matrix of v(k+1); and 

H(k+1) is denoted by: 

( ) ( )[ ]
( )kkX

kkkxhkH
|1

1,|11
+

++=+
∂

∂                                                                                                       (51)

Step 3. Update the prior estimates of the basic lane traffic states ( )1|1( ++ kkX ) by:

)|1()1()|1()1|1( kkZkKkkXkkX +∆+++=++                                                                       (52)

where ∆Z(k+1|k) is given by:

[ ]1,)|1()1()|1( ++−+=+∆ kkkxhkZkkZ                                                                                  (53)

Step 4. Truncate the estimates of disaggregated delays and basic lane traffic states variables by 

employing boundary constraints.

Step 5.  Normalize mandatory lane-changing fractions such that:

∑
∈∀

≤+
Jj

m
ij kp 1)1(                                                                                                                          (54)

Step 6.  Update the covariance matrix of the state estimation error ( )1|1( ++Φ kk ) as:

[ ] )|1()1()1()1|1( kkkHkKIkk +Φ++−=++Φ                                                                         (55)

Step 7.  Update the time-based and space-based incident impacts using the estimates of basic lane 

traffic states at the end of time step k+1.
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Step 8.  Determine the phase number *λ with green time, and associate *λ with the time-varying 

weighting matrix )1(1 +kQ (i.e., )1(
*

1 +kQλ ).  In this step, each lane group associated with a given 

phase λ  is scanned. )1(
*

1 +kQλ  and *λ  are then determined by the following rule:
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where )1(
*

1 +kλσ is given by:
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Step 9.  Calculate the decision-variable vector )1( +Ω k .  From the principles of stochastic optimal 

control, the estimates of the basic lane traffic states ( )1|1( ++ kkX ) produced by the extended 

Kalman filter are fed back through the optimal gain matrix E(k+1) to minimize the pre-specified 

cost function (see Eq. (46)) by:

)1()1|1()1()1( +++++−=+Ω kkkXkEk η                                                                                (58)

In Eq. (58), E(k+1) and )1( +kη  are denoted respectively by: 

[ ] )1()2()1()1()1()2()1()1(
1

2 ++++++++=+
−

kFkSkBkQkBkSkBkE TT                             (59)

[ ] [ ])1()1()1()1()1()1()1()2()1()1( *
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1
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+Ω++++++++++=+
−

kkQkXkQkBkQkBkSkBk T λη   (60)

where matrix )2( +kS should satisfy the Riccati equation shown as follows:
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)1()1()2()1()1()2()1()1()1(
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1 ++++−+++++=+ kEkBkSkFkFkSkFkQkS TTλ               (61)

, and matrix B(k+1) can be further expressed as:
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ττ∂ λ                                                                                           (62)

Step 10. Check the current phase associated with green time *λ  using the boundaries of the 

minimum and maximum green time intervals ( min,gT and max,gT ) as follows: if the sum of the green 

time associated with the phase *λ is less than the minimum green time min,gT (i.e.,  

min,
0

*

* )( gTtk <×
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τ , and the rest of the green time 

at a given time step be assigned to the lane group with the second-worst traffic congestion by using 

Eq. (57); if max,
0

*

* )( gTtk >×



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τ , and similarly 

assign the rest of the green time at the given time step to the lane group with the second-worst 

traffic congestion.  

Step 11.  Check incident status by conducting the following rules: 

If the incident is removed, then stop the control algorithm.  Otherwise, input the next-time-step raw 

traffic data; let the time step index k=k+1, and then go back to Step 1 to continue the control 

algorithm.

5. NUMERICAL STUDY

The purpose of this numerical study is to initialize investigation into the feasibility of the 

proposed signal control method in terms of responding, in real time, to incident impacts on traffic 
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congestion at isolated intersections.  In addition to verifying the performance of the proposed 

incident-responsive control method, testing the capability of the proposed stochastic model with 

respect to estimating valid incident-induced traffic states used for incident-responsive traffic control 

is also important in the study.  Studies with respect to calibrating and testing the proposed model in 

an effort to ensure the model’s capability of characterizing incident-induced lane traffic states as 

well as incident impacts have been previously completed.  Details can be found in our previous 

research (Sheu and Ritchie, 2001).  The following focuses on presenting our preliminary evaluation 

of system performance in incident-responsive traffic control.  

Owing to the difficulty in collecting enough real incident-related traffic data for diverse 

incident cases, simulation data generated from Paramics, Version 3.0 which is a microscopic 

traffic simulator particularly promising for modeling and analyzing Intelligent Transportation 

Systems (ITS) under faster-than-real-time conditions were used in the numerical study.  The 

Paramics simulator was calibrated prior to this study.  Efforts spent in evaluating, qualitatively 

and quantitatively, the Paramics simulator can also be found in our early related research 

(Abdulhai, Sheu, and Recker, 1999).  It may also detail our reasons of using the Paramics 

simulator in the study.  Furthermore, the Paramics programmer which is an application 

programming interface (API) for traffic modeling was used as an assistant tool for generating as 

well as collecting time-varying lane traffic data during incidents.  

To simulate diverse lane-blocking incidents at isolated intersections, a small traffic network 

comprising five intersections was built via Paramics.  Figure 5 illustrates graphically the scheme of 

the study network, where each intersection represented by a specific node in Fig. 5 was coded with 

an integer value for its identification.  Lane-blocking incidents were mainly generated on the link 
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between nodes 1 and 3.  The output data simulated from Paramics, including lane traffic counts, 

lane-changing fractions, queue lengths, and delays were collected at each 10-sec. time step.

Fig. 5.  The scheme of the simulation network

Seventy-two lane-blocking incident cases associated with diverse incident position on the 

link, the lanes blocked, and traffic flow conditions were simulated in this study.  Out of the 72 

lane-blocking incidents, 54 simulated incidents occurred on the main segment of the link and the 

rest were located at the approach.  Each simulation event in the study was set to be 30 minutes, 

including the first 5 minutes for warming up, the next 20 minutes for incident duration, and the 

rest for incident removing.  Table 1 summarizes the characteristics of the simulated incidents 

designed in the numerical study.

Table 1.  Characteristics of simulated incidents designed in the numerical study

To evaluate the system performance with respect to the improvements in reducing 

incident impacts in the spatial domain and the temporal domain, four types of state-derived 

incident-impact measures including TD(k), AD , SQ(k), and SP(k) are utilized, and defined as 

follows.  TD(k) is referred to as the time-varying system delay at a given time step k, and given 

by the sum of all the elements of D(k) (see Eq. (31)). AD  is defined as the average system delay 

during a given incident, and given by:
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                                                                                                                          (63)
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where A(k) represents the sum of lane traffic counts collected at the upstream detector station at 

time step k; N, as defined previously, is the incident duration.  In contrast with TD(k) and AD , 

SQ(k) and SP(k) are two space-based incident-impact indexes, and given respectively by:
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%100
)(
)()( ×=

kA
kSQkSP                                                                                                               (65)

where J and L represent the total number of the adjacent lanes and that of the independent lanes, 

respectively.  It is worth mentioning that the aforementioned four types of incident-impact 

measures were proposed elsewhere (Sheu et al., 2001) for the use of real-time incident impact 

prediction, and herein, they were conveniently used to evaluate the performance of the proposed 

control method.   

In addition to using the aforementioned incident-impact indexes to measure directly the 

system performance under the proposed incident-responsive control, these measures were further 

compared with simulations under the two-phase vehicle actuated control which mimicked the 

full-actuated control mode with the following settings on each of two phases:

• detector setback: 100ft

• initial interval: 14 sec

• maximum green: 40 sec

• yellow change: 3 sec

• red clearance: 2 sec
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Herein, %100×
Γ

Γ−Γ

inc

incact  is used to indicate the relative improvements in reducing incident 

impacts, where actΓ  and incΓ represent the average values of a given incident-impact index under 

vehicle actuated control and incident-responsive control, respectively.  The results of the 

comparisons are summarized in Table 2, and graphically illustrated in Fig. 6.

Table 2.  Comparisons of system performance
(incident-responsive control vs. vehicle actuated control)  

Fig. 6.  Summary of the relative improvements in incident-impact reduction

The results indicated in Table 2 and Fig. 6, overall, revealed that the proposed control 

method performed better than vehicle actuated control strategies under diverse incident-induced 

congestion cases.  This generalization is agreeable for the following reasons.  It is noted that the 

proposed control method accommodates, in real time, signal timing to the time-varying estimates 

of section-wide inter-lane and intra-lane traffic states; however, the functionality of the actuated 

control mode relies, to a great extent, on the raw traffic data such as traffic counts and 

occupancies which may not be able to characterize appropriately incident-induced lane traffic 

states at the incident site.  Moreover, it is hard to find any related logic rules and settings that are 

involved in the existing actuated control modes in response to a variety of traffic flows under 

incident conditions.  Consequently, the vehicle actuated controllers simulated in the study failed 

to respond to incident cases.  

Besides, some findings from our observations in the numerical tests are provided for 

further discussion as follows.  
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First, under low-volume traffic conditions, the proposed method achieves more 

significant reductions in incident impacts than that for high-volume incident cases.  The major 

reason inferred from the result is that under low-volume traffic conditions, vehicles queuing in 

blocked lanes may conduct lane changing more easily than that in high-volume cases during the 

phase with green time, and thus, the proposed control strategy that assigns dynamically green 

time to the lane group with blocked lanes in response to time-varying changes in incident impacts 

seems to perform better in low-volume incident cases than in high-volume incident cases.  Such a 

finding may also imply that it seems very promising to well control incident impacts via 

appropriate incident-responsive control strategies right after the occurrence of an incident, and 

apparently, the fulfillment of this idea must rely on other related technologies such as real-time 

automatic incident detection (AID) algorithms.     

Second, in contrast with low-volume incident cases, traffic over-congestion caused by 

incidents may remain a critical issue in the proposed incident-responsive control method as well 

as any demand-responsive control technologies.  We found that the improvements in the system 

performance shown in Fig. 6 turned out to be insignificant when traffic volume vacillates around 

the value 750 veh/hr.  This may motivate our further interest in finding out the suitable range of 

traffic volume to which the proposed incident-responsive method can be applied.  Furthermore, 

integrating system optimization control strategies with the instrumentality of either restricting the 

total entry flow or re-routing vehicles in the specific incident-affected zone warrants more 

research to address incident-induced over-congestion cases.  

Finally, the function of real-time estimation of incident-induced intra-lane and inter-lane 

traffic states as well as incident impacts provided by the proposed control method is worth 
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mentioning in the evaluation of system performance.  Compared to either vehicle actuated 

controllers or published signal control modes, the proposed control method exhibits its unique 

capability in terms of elaborately characterizing incident-induced lane traffic states as well as 

time-varying incident impacts in the process of real-time signal control.  Note that the 

aforementioned functionality can make available the proposed control method with benefits not 

only for efficiently responding to diverse incident-induced traffic congestion cases, but also for 

monitoring incident characteristics in real time.   

6. CONCLUSIONS AND RECOMMENDATIONS

This paper has presented a stochastic optimal control-based method in response to lane-

blocking incidents at isolated intersections.  The proposed control approach performs incident-

responsive traffic signal control by means of minimizing a time-varying function cost which is 

measured on the basis of comparing the real-time estimates of inter-lane and intra-lane traffic states 

with their ideal values.  To achieve the greatest reduction of incident impacts on traffic congestion 

in real-time via stochastic optimal control-based technologies, we specified four groups of time-

varying lane traffic variables, and then proposed a discrete-time nonlinear stochastic model as well 

as a real-time incident-responsive signal control algorithm.  

Our preliminary test results revealed the applicability of the proposed method to real-time 

traffic signal control for the cases of intersection incidents as well as arterial incidents.  Results 

presented in the study also suggested the relative advantages of the proposed control method 

compared with specified vehicle actuated control.  More importantly, the proposed approach may 

indicate its potential in terms of characterizing incident-induced intra-lane and inter-lane traffic 
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states together with incident impacts in real time in the procedure of real-time incident-responsive 

control, and by contrast, published advanced traffic control systems appear incomplete in providing 

such functionality to monitor the control performance in real time when an incident occurs. 

Nevertheless, further tests as well as modifications may be necessary to verify the 

robustness of the proposed incident-responsive control method, and its applicability to diverse 

incident cases on surface streets.  More complicated cases such as multi-lane-blocking incidents, 

queues spilling back to the upstream detectors, and incidents occurring within intersections seem 

to be challenging cases for further studies.  Further comparison of the output of the proposed 

control method with that of other advanced signal control algorithms on the same basis of 

incident-induced traffic congestion can also help to demonstrate the potential advantages of the 

proposed method.  Moreover, efforts on either integrating the proposed control method with 

automatic incident detection (AID) systems or extending it for network-wide system optimal 

control seem to be necessary for the development of advanced incident management systems. 
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