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Abstract

The class imbalance problem is an important issue in classification of Data mining. For example, in the applications of fraudulent
telephone calls, telecommunications management, and rare diagnoses, users would be more interested in the minority than the majority.
Although there are many proposed algorithms to solve the imbalanced problem, they are unsuitable to be directly applied on a multi-
relational database. Nevertheless, many data nowadays such as financial transactions and medical anamneses are stored in a multi-rela-
tional database rather than a single data sheet. On the other hand, the widely used multi-relational classification approaches, such as
TILDE, FOIL and CrossMine, are insensitive to handle the imbalanced databases. In this paper, we propose a multi-relational g-mean
decision tree algorithm to solve the imbalanced problem in a multi-relational database. As shown in our experiments, our approach can
more accurately mine a multi-relational imbalanced database.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Most structural data nowadays, like financial transac-
tions and medical anamneses, are stored in the multi-rela-
tional database. A multi-relational database usually
consists of numerous data sheets and each of them would
contain a number of tuples. A data sheet is also called a
relation and there are usually one target relation and several
non-target relations in a multi-relational database. Each
tuple in the target relation is composed of several attribute
values and a target class, but a tuple in the non-target rela-
tions contains only the attribute values. Therefore, a tuple
in the target relation is also called target tuple. No matter
the target or non-target relation, they all possess a primary

key and some foreign keys. The foreign key usually con-
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nects to the primary or foreign key in other relations to
make the database operations such as join or select feasible.
There are mainly two kinds of connection between the rela-
tions, which are (a) the connections between a primary key
K and some foreign keys pointing to K; (b) the connections
between two foreign keys K1 and K2 which connect to an
identical primary key K.

Unfortunately, the classification techniques of tradi-
tional data mining, such as decision trees (Quinlan,
1993), neural networks (Mitchell, 1997) and support vector
machines (Burges, 1998), are only applied for a singular
data sheet. In order to extract out the practical and valu-
able information from the relational databases, many
multi-relational classification approaches had been pro-
posed in recent years. The most widely used category of
approaches to multi-relational classification is Inductive

Logic Programming (Lavrac & Dzeroski, 1994) such as
FOIL (Quinlan et al., 1993), Golem (Muggleton & Feng,
1990), Progol (Muggleton, 1995), TILDE (Blockeel, De
Raedt, & Ramon, 1998), and CrossMine (Yin, Han, Yang,
& Yu, 2004). However, the rules mined by these methods
will be guided by the negative/major tuples. That is,
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Fig. 1. A typical decision tree.
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although it can generate a classifier with high accuracy, it is
unable to provide the rules precisely for the positive/minor

tuples. For some practical applications such as fraudulent
telephone calls and rare diagnoses, users would be more
interested in the minor tuples. Although there are also
many proposed solutions for the imbalanced problem (Jap-
kowicz & Stephen, 2002; Tsai, Lee, Chen, & Yang, 2007),
they are unsuitable to be directly applied in a multi-rela-
tional database. Thus, in this paper, we propose a multi-
relational g-mean decision tree, called Mr.G-Tree, as the
new solutions for an imbalanced multi-relational database.
As it is named, Mr.G-Tree is a decision-tree-based algo-
rithm. We focus on the decision-tree-based approaches
since decision tree has several advantages (Rastogi & Shim,
2000), which are (a) decision tree is more efficient for large
training data than neural networks which would spend a
lots time on thousands of iterations; (b) a decision tree
algorithm does not require the domain knowledge or prior
knowledge; (c) decision tree displays the good classification
accuracy compared to other techniques. For clear explana-
tion, in the paper we will use ‘‘the positive’’ or ‘‘the minor-
ity’’ to denote the minor but interesting tuples, and on the
contrary ‘‘the negative’’ or ‘‘the majority’’ to represent the
major but trivial target classes in a database.

The remainder of this paper is organized as follows. Sec-
tion 2 is the review of the related works. In Section 3, multi-
relational g-mean decision tree will be introduced. The
performance evaluation of will be shown in Section 4.
Finally, the conclusion and future research directions will
be demonstrated in Section 5.
2. Related work

In this section, we first introduce the main principle for
inducing a decision tree in Section 2.1. We then review
some approaches which were proposed to mine a multi-
relational database in Section 2.2. The imbalanced problem
will be discussed in Section 2.3.

2.1. Decision tree

A decision tree (Han & Kamber, 2001; Quinlan, 1993) is
a flow-chart-like tree structure, which is constructed by a
recursive divide-and-conquer algorithm. In a decision tree,
each internal node denotes a test on an attributes, each
branch represents an outcome of the test, and each leaf
node has an associated target class. The top-most node in
a tree is called root and each path from the root to a leaf
node represent a rule. A typical decision tree is shown in
Fig. 1. To classify an unknown example, beginning with
the root node, successive internal nodes are visited until
this example reaches a leaf node. The class of this leaf node
is then assigned to this example as a prediction. For
instance, the decision in Fig. 1 will approve a golden credit
card application if the applicant has a salary higher than
85000 and his repayment record is good.
2.2. Multi-relational classifier

In the current field of the multi-relational classification,
the most common one is Inductive Logic Programming
(ILP). The formal definition of the ILP problem is:

‘‘Given background knowledge B, positive tuples TP,
and negative tuples TN, find a hypothesis H, which is
a set of Horn clauses, such that "tp 2 TP : H [ Bj=tp

and "tn 2 TN : H [ Bj5tn’’.

The well known ILP systems are FOIL (Quinlan et al.,
1993), Golem (Muggleton & Feng, 1990), Progol (Muggle-
ton, 1995), TILDE (Blockeel et al., 1998), and CrossMine
(Yin et al., 2004). First-order inductive learning (FOIL)
takes CN2 algorithm (Clark & Niblett, 1989) as the basis
and applies top-down and general-to-specific search to
establish numerous rules. Each rule will include as many
the positive as possible. On the contrary, Golem adopts
bottom-up and specific-to-general search, it uses the tech-
niques of RLGG (Relative Least General Generalization)
to undertake generalization among a number of specific
rules. Regarding with Progol, it is based on the AQ algo-
rithm (Michalski, 1969) and integrates the searching meth-
ods in FOIL and Golem. However, higher calculating cost
will be caused when the database is enlarged as the com-
mon disadvantage for traditional ILP approaches.

In order to reduce the time cost, TOP-down induction of
first order logical decision trees (TILDE) is proposed.
TILDE is a binary logical decision tree and based on the
C4.5 algorithm. Experiments also show that its accuracy
is definitely better than the traditional ILP approaches
(Boström, 1995). However, TILDE is inapplicable the
large-scale databases. To solve the scalability problem,
based on FOIL, CrossMine algorithm (Yin et al., 2004) is
proposed. In order to reduce the requirement of memory,
CrossMine virtually joins target relation and non-target
relation together. It propagates the primary key and the
target class in target relation to all non-target relations.
Accordingly, there are two additional columns ‘‘IDs’’ and
‘‘class labels’’ in each non-target relation. By this propaga-



Table 1
The confusion matrix

Predicted negative Predicted positive

True negative a b

True positive c c
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tion approach, CrossMine can calculate the foil gain in
each relation without joining all the relations into an indi-
vidual table and therefore the memory cost can be well
reduced. Owing to the well consideration of connections
among all relations, its accuracy performs much better
than FOIL.

2.3. Class imbalanced problem

The proposed techniques aiming at the class imbalanced
problem so far could be classified into three categories as
follows (Barandela, Sanchez, Garcia, & Rangel, 2003):

2.3.1. Sampling-based

Over-sampling and under-sampling are two main tech-
niques in this category. Over-sampling could be further
classified into random over-sampling and focused over-sam-

pling (Aha, Kibler, & Albert, 1991; Han, Wang, & Mao,
2005). Random over-sampling approach over-samples the
minority class at random until it matches the size of the
majority class. Focused over-sampling approach over-sam-
ples the minority class only with data close to the bound-
aries between the minority class and the majority class.
Similarly, under-sampling could be also classified into ran-

dom under-sampling and focused under-sampling (Deh-
meshki, Karakoy, & Casique, 2003; Derouin, Brown,
Beck, Fausett, & Schneider, 1991; Lewis & and Catlett,
1997). The former approach removes the majority class
at random until it contains as many examples as the minor-
ity class, and the latter one removes the majority examples
lying further away. The main idea of focused under-sam-
pling is to remove the noise or outlier data and to reduce
the size of majority class by sampling. The combination
of over-sampling and under-sampling has also been pro-
posed (Cohen, Hilario, Sax, Hugonnet, & Geissbühler,
2006; Zhou & Liu, 2006). However, over-sampling will
increase the training set size and therefore enlarge the com-
putational burden and the impact of noise data; under-
sampling has been proven to be ineffective since it results
in excluding some useful information (Barandela et al.,
2003; Japkowicz & Stephen, 2002).

2.3.2. Cost-based

Cost-Modifying approach (Pazzani et al., 1994;
Zadrozny & Elkan, 2001) reduces the relative misclassifi-
cation cost of the majority class (or increasing that of the
minority class) to make it correspond to the size of the
minority class. However, it is hard for a user to assign a
proper cost when he/she is unfamiliar with the domain
knowledge (Japkowicz & Stephen, 2002).

2.3.3. Imbalance-insensitive

This approach is more attractive and has been proven to
be more effective than the above two approaches (Jap-
kowicz & Stephen, 2002). The main idea of this technique
is to develop an approach that is insensitive to the imbal-
ance problem. Proposed techniques including example
weighting, rule removing, attribute correlation analysis,
etc. (Anto, Susumu, & Akira, 2000; Ezawa, Singh, & Nor-
ton, 1996; Fawcett & Provost, 1996; Kubat, Holte, & Mat-
win, 1998; Lawrence, Burns, Back, Tsoi, & Giles, 1998).
Among the proposed imbalance-insensitive approaches,
some of them are limited to specific dataset and some take
a lot of training time due to the natural property of neural
network. Comparatively, SHRINK (Kubat et al., 1998) is
applicable to most applications with numeric attribute data
and eliminates the disadvantage described above.
SHRINK was developed by the principle of BRUTE (Rid-
dle, Segal, & Etzioni, 1994), it searches for the most accu-
racy for not only the minority, but also the majority
simultaneously by the use of g-mean to reach the best par-
tition. However, its shortcoming is to only take care of
numeric attribute and search for the best interval in a single
one to each attribute. Once if the positive are distributed in
two extremities of attribute values, SHRINK will have a
poor accuracy.
3. Multi-relational g-mean decision tree algorithm

Although there are many multi-relational database min-
ing classifiers as described in Section 2.1, they can not solve
the imbalanced problem. Furthermore, the proposed algo-
rithms to solve the imbalanced dataset are unsuitable to be
directly applied on a multi-relational database either. Thus,
in this paper, we propose the Multi-relational g-mean deci-
sion tree, called Mr.G-Tree, to solve this problem. Without
loss of generality, only the case that there are two target
classes in a database will be discussed in our paper. If more
than two target classes are involved, the target class with
the smallest ratio or the interesting one can be identified
as the minority, and the rest will be regarded as the
majority.
3.1. G-mean based classification model

The confusion matrix in Table 1 was a widely used
matrix to illustrate different classification measurements.
In this matrix, a means the number of the negative that
is accurately classified, b is the number that the negative
is classified into the positive, c denotes the number that
the positive is classified into the negative, and d signifies
the number of the positive that is accurately classified.
The traditional accuracy is defined as (a + d)/
(a + b + c + d). However, to handle the imbalanced prob-
lem, g-mean in Eq. (1) was introduced to represent the
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average proportion for the accuracy of the minority and
the majority (Rastogi & Shim, 2000).

g ¼ fða� dÞ=½ðaþ bÞ � ðcþ dÞ�g1=2
: ð1Þ

As stated in Section 2.3, the shortcomings of SHRINK are
(a) it establishes only a best interval for each attribute; (b)
it is inapplicable to the categorical attribute. These two
properties would reduce the predicted accuracy when there
are categorical attributes in the training data and when the
minority distribute over several intervals of an attribute
(Tsai et al., 2007). In order to build a classifier which can
handle the imbalanced data more accurately, based on
g-mean measurement, we establish a best interval for each
numeric attribute and a best subset for each categorical
attribute in every internal node o. Each best interval/best
subset of the attribute i denotes a test for a tuple. To give
higher importance to a test with smaller error, each test
is associated with a weight as in Eq. (2) according to its
g-mean value gi

wi ¼ log½gi=ð1� giÞ�: ð2Þ

Then all of them are combined as a splitting function as
shown in Function 3 for an internal node of Mr.G-Tree.

SF ðoÞ ¼
X

i

hi � wi; ð3Þ

In Eq. (3), hi = 1 if the value of attribute i falls in this inter-
val and hi = �1 otherwise. However, to ensure that all
weight is larger than 0, the test with gi < 0.5 is discarded.

The best interval of a numeric attribute is defined as
[1/2(aip + minai), 1/2(aiq + maxai)], where minai and maxai,
respectively denotes the minimal and maximal attribute
value of the interval with the maximal g-mean, aip is the
attribute value of tuple p with the order prior to the tuple
with attribute value minai, and aip is the attribute value of
tuple q with the order posterior to the tuple with attribute
value maxai. The reason is that when predicting the unseen
data, the output hi of an example with attribute value lies in
the [aip,minai] and [aiq,maxai] is unclear. To deal with cat-
egorical attribute, we adopt Set Theory to establish the best
subset. First, for each categorical attribute, we classify all
tuples by their target classes and establish a corresponding
power set. Each power set would contain 2k-2 subsets,
where k is the number of values in this categorical attri-
bute. For each subset, the tuples belonging to it are regard
Procedure Leaf_Node(n) 
Begin
For each leaf node 

If NP ≤(NN ×TP) / TN then 
The target class of this node is negati

Else 
The target class of this node is positiv

End if 
End

Fig. 2. The pseudo code of the hand
as the positive, and are regard as the negative otherwise.
Finally, the g-mean of each subset is computed and the sub-
set with the maximal g-mean is selected as the best subset.
However, when a categorical attribute contains many val-
ues, the computational cost for a categorical attribute by
our approach would be nontrivial. To solve this problem,
when the number of values in a categorical attribute is lar-
ger than 10, we use a simpler approach. That is, for each
value, the tuples belonging to it are regard the positive,
and are regard as the negative otherwise. As a result, there
are only k subsets when k is larger than 10.

In addition, when a leaf node is not pure, most decision
tree algorithms will assign this leaf node a negative class if
there are more negative instances in this node. However,
such a method may reduce the accuracy of the positive that
the users are interested in. Thus, in order to mine the posi-
tive more accurately, when assigning the target class to a
leaf node, Mr.G-Tree adds in the consideration of the
imbalanced problem as shown in Definition 2. Fig. 2 repre-
sents the corresponding pseudo code.

Definition 1. Given a training dataset T that includes both
the minority and majority. For any leaf node Ni on Mr.
G-Tree, assume that NP represents the number of the
minority in Ni, NN represents the number of the majority
in Ni, TP represents the number of all the majority in T,
and TN represents the number of all the majority in T; if
NP 6 (NN · TP)/TN, then the target class of leaf node Ni

will be negative, and vice versa.

Example 1. To make readers understand our approach
mentioned in this section more clearly, here we take the sin-
gle-relational database in Table 2 as an example. This data-
base contains 20 tuples in which 2 tuples are the positive
and 18 ones are the negative and the column BMI denotes
‘‘body mass index’’. The Mr.G-Tree trained from Table 2 is
illustrated in Fig. 3. In the Node 1 of Fig. 3, the best inter-
val of Attribute ‘‘age’’ is [48, 66] and its g-mean is [(13/
18) · (2/2)]1/2 = 0.85, consequently the weight of this best
interval is log [0.85/(1 � 0.85)] = 0.75. Similarly, the best
interval, g-mean, and weight of Attribute ‘‘BMI’’ is
[13,18], 0.85, and 0.75, respectively. As for the subsets
and the corresponding g-mean of Attribute ‘‘sport’’ and
‘‘smoking’’ in Node 1, we detail them in Table 3 in which
S(i) denote a subset that contains the attribute-value i.
Obviously, the best subset Attribute ‘‘sport’’ is [occasional,
ve; 

e; 

ling of leaf nodes in Mr.G-Tree.



Table 2
A training database

Patient Age BMI Sport Smoking Diagnosis

1 41 12 Daily Yes Health
2 64 14 Occasional Yes Cancer
3 57 17 Occasional No Health
4 27 30 Daily Yes Health
5 31 25 Daily Yes Health
6 35 28 Daily Yes Health
7 37 15 Daily Yes Health
8 49 17 Never Yes Cancer
9 52 15 Never No Health

10 60 15 Occasional No Health
11 47 28 Daily Yes Health
12 23 26 Daily Yes Health
13 33 32 Never Yes Health
14 28 33 Occasional Yes Health
15 45 19 Never Yes Health
16 68 26 Occasional Yes Health
17 72 19 Never Yes Health
18 62 21 Daily Yes Health
19 56 16 Occasional No Health
20 24 20 Occasional Yes Health

Fig. 3. The classification model constructed by using Table 2.
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never] and the g-mean and weight of this subset is [(8/
18) · (2/2)]1/2 = 0.67 and log [0.67/ (1 � 0.67)] = 0.31,
respectively. Note that since the g-mean of the best subset
S(yes) in Attribute ‘‘smoking’’ is less than 0.5, it is not used
in Node 1. Finally, we can get the splitting function SF(o)
in each node o in Fig. 3 is
Table 3
The power set and corresponding g-mean of Attribute (a) ‘‘sport’’ and (b)
‘‘smoking’’ in Node 1 of Fig. 3

(a) Subset S(d, o) S(o, n) S(d, n) S(d) S(o) S(n)

G-mean
ffiffiffiffiffiffiffiffiffiffiffi
4

18� 1
2

q ffiffiffiffiffiffiffiffiffiffiffi
8
18� 2

2

q ffiffiffiffiffiffiffiffiffiffiffi
6
18� 1

2

q ffiffiffiffiffiffiffiffiffiffiffi
9

18� 0
2

q ffiffiffiffiffiffiffiffiffiffiffi
12
18� 1

2

q ffiffiffiffiffiffiffiffiffiffiffi
14
18� 1

2

q

(b) Subset S(yes) S(no)

G-mean
ffiffiffiffiffiffiffiffiffiffiffi
4

18� 2
2

q ffiffiffiffiffiffiffiffiffiffiffi
10
18� 0

2

q

SF ð1Þ: 0:75� hage½48; 66� þ 0:75� hBMI ½13; 18�
þ 0:31� hsport½occasional; never�;

SF ð2Þ: 0:66� hsmoking½yes�:
3.2. Handling an imbalanced multi-relational database

In order to mine the multi-relational database and avoid
the shortcomings of waste memory by joining all data-
sheets to a single one, Mr.G-Tree extended the concepts
of propagation introduced in CrossMine to virtually link
the target relation and non-target relation together. Yet,
CrossMine will generate redundant target classes in each
non-target relation, which will result in the incorrect
g-mean calculated. For example, assuming there are two
tuples t1 and t2 in target relation R1 and both of them link
to the tuple a1 in non-target relation R2. If applying Cross-
Mine, tuple a1 will possess two target classes simulta-
neously, affecting the original distribution of target
classes in non-target relation R2. If g-mean is calculated
by such propagation outcomes, the unreal values for all
attributes in R2 will be obtained owing to two target classes
of a1 are considered. Take the attribute ‘‘smoking’’ in
Table 4 as the example, there are only 9 tuples in non-
target relation ‘‘Physical’’, but if taking the propagation
method proposed in CrossMine, the number of tuples will
be increased to 18 and then the original class distribution in
non-target relation ‘‘Physical’’ will be changed.

In order to solve this problem, Mr.G-Tree introduces
the g-mean Tuple ID propagation algorithm, also known
as GTIP algorithm. GTIP maintains the original data dis-
tribution in each non-target relation by restoring the num-
ber of target classes of each tuple to a single one as
described in Definition 2.

Definition 2. Given a non-target relation R 0 and assume
that each tuple ti in R 0 contain two additional columns
‘‘IDs’’ and ‘‘class labels’’ after the propagation. If the class
labels of a tuple are all the positive, this tuple will be
regarded as a positive tuple; if the class labels of a tuple are
all the negative, it will be regarded as a negative tuple; if
tuple ti contains both positive and negative class labels, this
tuple would contains CP/(CP + CN) positive class and
CN/(CP + CN) negative class, where CP and CN, respec-
tively represents the numbers of the positive and that of the
negative in the class labels column.

By Definition 2, GTIP can prevent the original distribu-
tion of target class in non-target relation from the distor-
tion and the inaccurate g-mean. Fig. 4 is the pseudo code
of GTIP algorithm. Here we again take Table 4c as an
example. The result of GTIP is shown in Table 5.

In addition, semantic links is always a major issue in the
research field of Multi-relational database. The research
shows that the relations with longer semantic links will
become less important in the Multi-relational database
(Liu, Yin, & Han, 2005). Thus, in order to design a classi-
fier suitable for the multi-relational database, Mr.G-Tree



Table 4
A relational database in which (a) the connection between two relations ‘‘Patient’’ and ‘‘Physical’’; (b) the details of relation ‘‘Patient’’; (c) the details of
relation ‘‘Physical’’

(a) Patient Physical

Patient-id Physical-id
Condition-id ! Condition-id
Age BMP
Sport Smoking
Class label

(b) Patient (c) Physical

Patient-id Condition-id Age Sport Class Physical-id Condition-id BMP Smoking

1 12 41 Daily Health 21 24 22 Yes
2 14 64 Occasional Cancer 22 14 16 Yes
3 17 57 Occasional Health 23 17 16 Yes
4 26 27 Daily Health 24 14 18 Yes
5 26 31 Daily Health 25 15 24 No
6 28 35 Daily Health 26 15 21 No
7 15 37 Daily Health 27 28 20 No
8 17 49 Never Cancer 28 28 25 No
9 15 52 Never Health 29 26 14 No
10 15 60 Occasional Health
11 24 47 Daily Health
12 24 23 Daily Health
13 24 33 Never Health
14 33 28 Occasional Health
15 19 45 Never Health
16 26 68 Occasional Health
17 19 72 Never Health
18 14 62 Daily Health
19 16 56 Occasional Health
20 20 24 Occasional Health
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takes the semantic link into account and defines a non-tar-
get relation as the effective relation or non-effective relation

as shown in Definition 3. While constructing each node,
Mr.G-Tree will only propagate the IDs and class labels
to an effective relation and then calculate the best inter-
vals/subsets of all attributes in the effective relation. In
other words, the tuples used to build the node in an upper
layer will be closer to the target relation, which can solve
the problem of weaker semantic links.

Definition 3. Assume that the length of semantic links
between a non-target relation and the target relation is l,
and the depth of Mr.G-Tree is d (the depth of root node is
0). While constructing a node in k-layer of Mr.G-Tree, a
Procedure GTIP(R’) 
Begin

For each non-effective relation R’ /* a non-eff
For each primary key and foreign-key k

If R’ can connect to a relation R th
R’.k then 

Propagate IDs and class label
End if 

For each tuple ti in relation R’
Assign tuple ti with CP / (CP+CN) posi

class;
Return the new target class to each tupl

End

Fig. 4. The pseudo code of g-mean
non-target relation is defined as an effective relation if
l 6 d, and is defined as a non-effective relation otherwise.
3.3. The detailed step of Mr.G-Tree

Integrating the methods mentioned in Sections 3.1 and
3.2, we detail the steps of multi-relational g-mean decision
tree as follows. Fig. 5 is the pseudo code of Mr.G-Tree.

1. Performing GTIP algorithm to all effective relation.
2. Calculating the best interval or best subset of each

attribute in every effective relation and compute the
g-mean.
ective will be defined in Definition 3 
 in R’
at contain the column “class labels” via

s from R to R’;

tive class and CN / (CP+CN) negative 

e; 

tuple ID propagation algorithm.



Procedure Traintree(D) 
Begin

Initial Mr. G-Tree’s current depth d = 0; 
If D is pure or each weight wi = 0 in D then 

Return;
Else

If the Mr.G-Tree get deeper then d = d + 
Initial Left_D =φ , Right_D =φ ;

End if
For each non-effective relation R’

Call GTIP(R’);
For each effective relation R

For every attribute i
If the attribute is numeric then 

Sort all examples according the v
For each positive example j

Calculate the interval; 
Calculate the g-mean gi of the i
Select the best interval whose g

If gi < 0.5 then discard this 
Elseif gi = 1 then wi = 1; 
Else wi = log[gi / (1-gi)]
End if 

Else
Building the corresponding power
For each subset 

Classify all examples to the co
Calculate the g-mean gi of this
Select the best subset whose g

If gi < 0.5 then discard this
Elseif gi = 1 then wi = 1; 
Else wi = log[gi / (1-gi)]
End if 

End if 
Classification function SF = hi ×wi; 

For each training example t∈D
If SF(t) ≥ 0 then 

Left_D = Left_D ∪t;
Else

Right_D = Right_D ∪t;
End if 

Traintree (Left_D);
Traintree (Right_D);
Call Leaf_Node(D);

End

Fig. 5. The pseudo co

Table 5
The propagation results of Table 4c by using GTIP

Physical

Physical-id Condition-id BMP Smoking IDs Class labels

21 24 22 Yes 11, 12, 13 c:0, h:1
22 14 16 Yes 2, 18 c:1/2, h:1/2
23 17 16 Yes 3, 8 c:1/2, h:1/2
24 14 18 Yes 2, 18 c:1/2, h:1/2
25 15 24 No 7, 9, 10 c:0, h:1
26 15 21 No 7, 9, 10 c:0, h:1
27 28 20 No 6 c:0, h:1
28 28 25 No 6 c:0, h:1
29 26 14 No 4, 5, 16 c:0, h:1
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3. Discarding the attribute if its best g-mean is less than
0.5.

4. Calculating the weight of every attribute as wi=
log [gi/(1 � gi)].

5. Let hidenote the output function of attribute i. If an
attribute value lies in the best interval then hi = 1;
hi = �1 otherwise.

6. Combining the output function and weight of all the
attributes to generate the splitting function in each
node o as SF(oÞ ¼

P
ihi � wi.

7. A tuple is allotted to the left child node if the SF is
greater than 0; otherwise, to the right one.

8. When other relations are able to link to an effective
relation through primary key and foreign key, the
data in the column of IDs and class labels will be
1; 

alue of this attribute; 

nterval [1/2(aip + minai), 1/2(aiq + maxai);
i is the maximal; 

attribute; 

 set; 

rresponding subset by their class; 
 subset; 
i is the maximal; 
 attribute; 

de of Mr.G-Tree.



Fig. 6. The Mr.G-Tree constructed by using the relational database in
Table 4.

Table 6
The details of two real multi-relational databases

Id

Database Financial (1) Mutagenesis (2)

# Non-target relation 7 3
# Attribute in target relation 4 4
# Positive tuples in target relation 76 64
# Total tuples in target relation 400 2
# Tuples in all relations 75,982 15,218
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propagated to this relation. After that, setting the
relation as the effective one.

9. Repeating the steps from 1 to 8 until all the nodes are
pure or can not be further spilt.

10. Assigning the target class to each leaf node according
to Definition 2.
Table 7
The parameters of synthetic multi-relational database generator

Name Description Parameter

jRj Number of relation x

T Number of tuples in each relation y

Imbalance The percentage of positive tuples in target
relation

z%

Tmin Minimal number of tuples in each relation 50
Amin Minimal number of attributes in each relation 2
Amax Maximal number of attributes in each relation 5
Vmin Minimal value in each attribute 2
Vmax Maximal value in each relation 1000
Fmin Minimal number of foreign keys in each relation 2
Fmax Maximal number of foreign keys in each

relation
5

3.4. An example of Mr.G-Tree

Here, we clearly introduce the process of Mr.G-Tree by
using Table 4 again. In the beginning, Mr.G-Tree calcu-
lates the best interval/subset and the corresponding g-mean
of Attribute ‘‘age’’ and ‘‘sport’’ in the effective relation
‘‘Patient’’. As described in Example 1, the best interval of
the numeric attribute age sport is [48, 66] and the corre-
sponding g-mean is 0.85; as for the categorical attribute
‘‘sport’’, its best subset is [occasional, never] and 0.67 for
g-mean. The weight for those two attributes is respectively
wage = 0.75 and wsport = 0.31. Hence, the splitting function
in the root node of Mr.G-Tree is

SFð1Þ ¼ 0:75� hage½48;66� þ 0:31� hsport½occasional;never�:

Since the non-target relation ‘‘Physical’’ can link to effec-
tive relation ‘‘Patient’’ through foreign key ‘‘condition-
id’’, Mr.G-Tree will propagate the data in the column
‘‘IDs’’ and ‘‘class labels’’ to the relation ‘‘Physical’’ in the
next loop. The propagation results have been shown in
Table 5. In the meanwhile, the relation ‘‘Physical’’ will be
set as effective one. Next, Mr.G-Tree calculates the g-mean
of Attribute ‘‘age’’, ‘‘sport’’, ‘‘BMP’’, and ‘‘smoking’’ from
all effective relation. The result comes that the g-mean of
Attribute ‘‘age’’ and ‘‘sport’’ are both less than 0.5, so
the two attributes are discarded. However, the best interval
of the numeric attribute ‘‘BMP’’ is [15,19] and the corre-
sponding g-mean is 0.84; as for the categorical attribute
‘‘smoking’’, its best subset is [yes] and 0.77 for g-mean.
The weight for those two attributes is wsmoking = 0.52 and
wBMP = 0.72, respectively. Hence, the splitting function in
Node 2 of Mr.G-Tree is

SFð2Þ ¼ 0:52� hsmoking½yes� þ 0:72� hBMP½15; 19�:
Finally, taking use of the rules described in Definition 2 to
assign the target class to all leaf nodes, we can get the
Mr.G-Tree as illustrated in Fig. 6.
4. Experimental analyses

In this section, the software and hardware environment
and the experimental databases for our experiments will be
shown in Section 4.1. The measurement for evaluation of
an imbalanced database will be introduced in Section 4.2.
Finally, the comparisons among TILDE, CrossMine and
Mr.G-Tree are illustrated in Sections 4.3 and Section 4.4.
4.1. The experimental environment and databases

We implemented our Mr.G-Tree and two state-of-the-
art multi-relational classifiers TILDE and CrossMine in
Microsoft Visual C++ 6.0 for performance analysis. All
experiments in this paper are implemented under the Win-
dows 2000 professional on a PC equipped with Intel Pen-
tium IV 3.0 GHz CPU and 512 MB DDR memory. Our
experimental databases can be divided into 2 parts as
follows.
4.1.1. Real multi-relational databases

Two real multi-relational databases: Financial database
and Mutagenesis database which had been used in Cross-
Mine (Yin et al., 2004) are again applied. Financial data-
base includes 1 target relation, 7 non-target relations and
75982 tuples; Mutagenesis database contains 1 target rela-
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tion, 3 non-target relations and 15,218 tuples. The details
of the two databases are listed in Table 6.
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4.1.2. Synthetic multi-relational databases
To have further experimental analysis, we code a data

generator to generate proper synthetic multi-relational dat-
abases (Quinlan et al., 1993). Each synthetic multi-rela-
tional database contains one target relation and several
non-target relations. Table 7 is the related parameter of
our data generator. Five parameters: Tmin, Amin, Amax,
Vmin and Fmin, will be fixed by referencing the settings
applied in CrossMine.
2

Databases

1

Fig. 7. The comparison of the accuracy of the positive in two real
relational databases.
4.2. The measurement

Since the accuracy which is widely used to evaluate a
classifier is not a proper metric (Joshi, 2002); in this paper,
we use the accuracy of the minority as shown in Eq. (4),
where c and d have been described in Table 1, to evaluate
the accuracy of a classifier on the minority.
accuracyþ ¼ d=ðcþ dÞ; ð4Þ

Furthermore, ZR and ZP (Joshi, 2002) in Eqs. (5) and (6)
are utilized to evaluate the overall accuracy between Clas-
sifier A and B. In Eqs. (5) and (6), RA, RB, PA, and PB,
respectively represents the recall of Classifier A, the recall
of Classifier B, the precision of A and that of B; nc denotes
the total number of the positive, nA

0 is the number of the po-
sitive predicted by A, nB

0 is the number of the positive pre-
dicted of B, R = (RA + RB)/2, and P = [(nA

0 � P AÞ +
(nB

0 � P BÞ]/(nA
0 þ nB

0 Þ.

ZR ¼
RA � RBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Rð1� RÞ=nc
p ð5Þ

ZP ¼
P A � P Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pð1� P Þð1=nA
0 þ 1=nB

0 Þ
p

:

ð6Þ
If ZR P 1.96, the overall accuracy of RA is better than
RB(denoted by RA� RB). If jZRj < �1.96, the overall
accuracy of RB is better than RA(denoted by RA� RB).
If jZRj<1.96, there is no significant difference between Clas-
sifier A and B and will be denoted by RA � RB. The way to
use the ZP to evaluate two classifiers is similar. By using ZR

and ZP, we can compare two classifiers in the aspect of
overall accuracy as follows.
Table 8
The comparison of overall accuracy in two real relational databases

Database-id Classifier ZR

1 Mr.G vs. TILDE 2.348
Mr.G vs. CrossMine 2.159

2 Mr.G vs. TILDE 2.07
Mr.G vs. CrossMine 1.054
(a) If (RA� RB and PA � PB) or (RA� RB and
PA� PB) or (RA � RB and PA� PB), then the over-
all accuracy of Classifier A is better than the Classifier
B (A > B).

(b) The method of judgment for (B > A) is identical to
the one mentioned above.

(c) If (RA � RB and PA � PB), that will be A � B.
(d) It may happen that one metric is significantly better

but the other is significantly worse. If (RA� RB

and PA� PB) or (RA� RB and PA� PB), F-mea-

sure as shown in Eq. (7) would be utilized as the
way for the accuracy judgment. However, since
F-measure does not have any probabilistic interpre-
tation, we cannot apply any significance test to its
value. So we use a heuristic such that the improve-
ment in F-measure by at least 1% is required to call
a classifier is better.
F -measure ¼ ð2� P A � RAÞ=ðP A � RAÞ ð7Þ
4.3. The comparison among TILDE, CrossMine and

Mr.G-Tree on real multi-relational databases

In this section, we apply two real multi-relational dat-
abases to compare the accuracy of the positive and the
overall accuracy among TILDE, CrossMine and Mr.
G-Tree. Fig. 7 is the comparison of the accuracy of the
positive in two real relational databases and Table 8 is
the comparison of overall accuracy. In Table 8, the com-
parison is marked in bold if the Condition d mentioned
ZP F-measure Overall accuracy

�0.722 40 vs. 31.69 Mr.G > TILDE
�2.149 40 vs. 41.32 Mr.G � CrossMine
�1.181 71.43 vs. 57.14 Mr.G > TILDE
�0.731 71.43 vs. 69.72 Mr.G � CrossMine
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Fig. 8. The comparison of the accuracy of the positive on different
number of relations.
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Fig. 9. The comparison of the accuracy of the positive on different
number of tuples.
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in Section 4.2 is met and consequently the F-measure is
used to compare the classifiers. All experiments related to
the overall accuracy in the following will be presented in
the same way. From Fig. 7, it is clear that Mr.G-Tree per-
forms much better than TILDE and CrossMine in predict-
ing the positive. From Table 8, it can be noted that the
overall accuracy of Mr.G-Tree is greater than TILDE
and is comparable to CrossMine.

4.4. The comparison among TILDE, CrossMine and

Mr.G-Tree on synthetic multi-relational database

In Section 4.3, the number of relations in two real dat-
abases is less than 10. However, in a real case, there might
be a lot of relations in a multi-relational database. In order
to evaluate if the accuracy of each classifier will be influ-
enced when the number of relations is increased, we fix
the variable y and z in Table 7, respectively as 500 and
10% to generate 4 synthetic multi-relational databases.
Fig. 8 shows the comparison for the accuracy of the posi-
tive; Table 9 is the comparison of overall accuracy. Note
that, since TILDE combines all relations into a single
one, when the number of relations is large, it will cause
the shortage of memory space and then be infeasible. Such
a condition is occurred in our experiments when the
Table 9
The comparison of overall accuracy on different number of relations

Number of relations Classifier ZR

10 Mr.G vs. TILDE 3.141
Mr.G vs. CrossMine 1.714

20 Mr.G vs. TILDE 3.262
Mr.G vs. CrossMine 2.824

50 Mr.G vs. TILDE 3.079
Mr.G vs. CrossMine 2.67

100 Mr.G vs. TILDE –
Mr.G vs. CrossMine 3.231
number of relation is over 50 and we mark this condition
by ‘‘–’’ in Table 9 since ZR and ZP are both incomputable.
All experiments related to the comparison of overall accu-
racy between Mr.G-Tree and TILDE in the following will
be presented in the same way. From Fig. 8, it is found that
the accuracy of the positive in Mr.G-Tree is always higher
than TILDE and CrossMine. In Table 9, it is worth to note
that as the number of relations is larger than 10, the overall
accuracy of Mr.G-Tree is always better than TILDE and
CrossMine.

Next, we turn to fix the variable x and z, respectively as
20 and 10% to generate 5 databases for the analysis of the
accuracy in each classifier when the tuples are getting
increased. The results are illustrated in Fig. 9 and Table
10. As from Fig. 9, it is found that the accuracy of the posi-
tive in Mr.G-Tree is always higher than TILDE and Cross-
Mine no matter how many tuples there are. From Table 10,
it is shown that among the overall accuracy of TILDE,
CrossMine and Mr.G-Tree, none is always better than
the other two. In other words, Mr.G-Tree displays a com-
parable overall accuracy to TILDE, CrossMine. Similarly,
when the tuples in every relation are over 1000, we are
unable to show the accuracy of TILDE in Fig. 9 and
Table 10.
ZP F-measure Overall accuracy

�7.487 23.48 vs. 25.34 Mr.G � TILDE
�2.853 23.48 vs.26.11 Mr.G < CrossMine

0.328 24.13 vs. 13.47 Mr.G > TILDE
0.754 24.13 vs. 14.12 Mr.G > CrossMine

�0.708 18.6 vs. 16.49 Mr.G > TILDE
1.285 18.6 vs. 8.43 Mr.G > CrossMine

– 36.78 vs. – Mr.G > TILDE
1.22 36.78 vs. 20.74 Mr.G > CrossMine



Table 10
The comparison of overall accuracy on different number of tuples

Number of tuples Classifier ZR ZP F-measure Overall accuracy

200 Mr.G vs. TILDE 1.803 �0.663 20.3 vs. 14.99 Mr.G � TILDE
Mr.G vs. CrossMine 1.035 �0.152 20.3 vs.17.74 Mr.G � CrossMine

500 Mr.G vs. TILDE 2.881 �0.167 28.78 vs. 16.82 Mr.G > TILDE
Mr.G vs. CrossMine 2.582 0.091 28.78 vs. 21.23 Mr.G > CrossMine

1000 Mr.G vs. TILDE 6.548 �2.105 20.83 vs. 21.53 Mr.G � TILDE
Mr.G vs. CrossMine 5.521 �2.861 20.83 vs. 22.66 Mr.G � CrossMine

2000 Mr.G vs. TILDE – – 24.52 vs. – Mr.G > TILDE
Mr.G vs. CrossMine 3.523 �4.246 24.52 vs. 26.2 Mr.G � CrossMine

5000 Mr.G vs. TILDE – – 21.19 vs. – Mr.G > TILDE
Mr.G vs. CrossMine 6.065 �11.77 21.49 vs. 32.75 Mr.G > CrossMine
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Fig. 10. The comparison of the accuracy of the positive on different
imbalanced levels.
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Ultimately, for the evaluation of the imbalanced prob-
lem, we fix variable x and y in Table 8, respectively as 20
and 500 to produce 5 databases. The corresponding imbal-
anced level of 5 databases is 1%, 5%, 10%, 20% and 40%.
As illustrated in Fig. 10, the accuracy of the positive in
Mr.G-Tree is better than TILDE and CrossMine apart
from 40% as its imbalanced level. This result is not sur-
Table 11
The comparison of overall accuracy on different imbalanced levels

Imbalance (%) Classifier ZR

1 Mr.G vs. TILDE 0.982
Mr.G vs. CrossMine 0.982

5 Mr.G vs. TILDE 2.45
Mr.G vs. CrossMine 2.139

10 Mr.G vs. TILDE 3.601
Mr.G vs. CrossMine 3.331

20 Mr.G vs. TILDE 2.9
Mr.G vs. CrossMine 2.362

40 Mr.G vs. TILDE �7.681
Mr.G vs. CrossMine �7.66
prised and demonstrates the ability of Mr.G-Tree to
mine an imbalanced multi-relational database. Table 11
shows that among the overall accuracy of TILDE, Cross-
Mine and Mr.G-Tree, none is always superior to the other
two.
5. Conclusion and future research directions

Currently, the structural data are all stored in the rela-
tional database, so the techniques of traditional data min-
ing are not workable any more. Although there have been a
number of multi-relational data mining classifiers pro-
posed, such as TILDE, FOIL, CrossMine and so on, those
approaches are unable to well handle the imbalanced prob-
lem. Hence, Mr.G-Tree algorithm is proposed in this paper
as the solutions. In order to build a classifier which can
handle the imbalanced problem more accurately, Mr.
G-Tree hierarchically pick up the positive by using g-mean
mentioned in Section 3.1. Then, Mr.G-Tree makes the min-
ing in a multi-relational database feasible by using GTIP
algorithm proposed in Section 3.2 to propagate necessary
information to all non-target relations. More importantly,
GTIP algorithm keeps the g-mean reasonable after the
ZP F-measure Overall accuracy

�0.843 10.44 vs. 8.69 Mr.G > TILDE
�0.713 10.44 vs.8.13 Mr.G > CrossMine

�4.358 23.01 vs. 27.14 Mr.G < TILDE
�2.874 23.01 vs. 24.42 Mr.G � CrossMine

�6.073 37.66 vs. 42.15 Mr.G < TILDE
�4.135 37.66 vs. 39.97 Mr.G � CrossMine

�6.288 46.15.vs. 53.35 Mr.G < TILDE
�3.835 46.15 vs. 49.34 Mr.G � CrossMine

0.122 62.14 vs. 85.29 Mr.G < TILDE
1.636 62.14 vs. 81.68 Mr.G < CrossMine
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propagation. Finally, by taking the semantic link into
account, Mr.G-Tree can accurately and efficiently mine
the imbalanced multi-relational databases. In the aspect
of experimental analysis, since the accuracy which was
widely used to evaluate a classifier is not a proper metric
for the imbalanced datasets; in this paper, not only the
accuracy of the positive is applied to evaluate the predic-
tion ability of a classifier on the minority, but also ZR

and ZP and F-measure is utilized to evaluate the overall
accuracy. The results shown in Section 4 demonstrate that
Mr.G-Tree can reach better classification accuracy of the
positive than TILDE and CrossMine. Also, it shows com-
parable consequence on the overall accuracy.

However, Mr.G-Tree currently is only suitable for
the database containing two target classes. Although
Mr.G-Tree can set the most minor target class as the posi-
tive and the rest as the negative under the condition of mul-
tiple target classes, this way will change the original data
distribution and consequently influences the mining results.
Therefore, we will expand Mr.G-Tree in future to make it
can accurately manage the databases contain multiple tar-
get classes. Another line of future work is incremental
Mr.G-Tree that considers the additions, deletions, and
updates of tuples.
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