O 0O o o

(1)

O b
NSC 89-2219-E-009-027-
8 08 01 90

90 10

07

30

31

Abstract

Continuous rapid growth of the Internet in recent years makes it the most probable
future integrated services network. However, current Internet architecture is inadequate in
providing real-time applications. It cannot guarantee delay bound requirements of real-time
applications. Moreover, non-real-time applications may be terminated if real-time traffic
causes congestion. Internet 2 is thus proposed to meet future needs. In order to support the
realization of future broadband Internet with guarantee of wide quality of service (QoS)
requirements, this integrated project constantly improves the results in the previous year and

further investigates the following key technologies:

A. High-capacity (Gigabit) routers: In this project, we design and develop high-capacity
routers. We have developed a prototype router, which consists of a data path module, a
gueueing module, a classifier, and a scheduler in last two years. In this sub-project, we
continue developing two key technologies including scheduling and switching. In the
prototype, we implemented SCFQ mechanism due to the consideration of implementation
complexity. However, the delay bound and fairness of SCFQ is not as good as WFQ. In new
design, we implement the FFQ to improve the performance of the scheduler. In the queueing
management of the prototype, we adopted the shared memory architecture. It has a
disadvantage that its capacity islimited for switch with many ports because of heavy memory
access. It is possible to develop a large-scale input queueing system, but there exists a
head-of-line blocking problem. In this sub-project, we investigate the CIOQ architecture. We
have developed a algorithm to emulate an output-queueing switch and evaluate the

performance of CIOQ with finite buffers

B. Measurement-based Admission Control and Congestion Avoidance Schemes for
Controlled-Load Service in Broadband Internet: Many real-time applications are capable of

adapting their transmission to the network state and can as well tolerate occasional delay

bound violations in the presence of transient network congestion. For this type of applications,
an absolutely reliable bound on packet delivery times is not required. Moreover, many
non-real-time applications such as on-line transaction processing and distributed simulation
would desire a congestion-free packet delivery service from the network. This new type of
serviceis called “ Congestion-Free Service” with the guarantee of a maximum packet loss rate.
This work considers resource allocation in the support of “Congestion- Free Service” in
Broadband Internet. First, we studied traffic characterization under different measurement
models via anayzing traffic traces collected from Nationa Taiwan University campus
network. The preliminary results show that traffic load can be approximated by the Normal
distribution. In the second part of the work, we proposed a dynamic bandwidth and queue
management scheme to support “Congestion-Free Service.” To better understand the
characteristics of the broadband Internet, we have developed atool called AppMeasure which
provides three sets of service: /PFlow, AnyTrace, and AppFlow. IPFlow provides on-line
tracking and reporting of individual IP flows. In AnyTrace, user can specify the number of
bytes of a packet to trace. It serves as a measurement base to enable all-layer traffic
accounting and analysis, and differentiated charging based on Quality of Service Appflow
tracks and reports any type of traffic specified by the user. It ams to integrate with

policy-based QoS service

C. QoS routing: This sub-project describes the implementation of a class-based QoS
routing algorithm, which is designed for low blocking probability and low overload. The
class-based QoS routing algorithm is designed in the per-pair granularity. We design a
software architecture and divide it into several modules. Then we describe what the modules
do and how they work. At least the performance evauation of the implementation is
discussed. The results show that the costs, such as processing time of path computation and
memory requirement of routing table, are expensive. The costs are what we have to pay for

QoS routing supporting.

D. Integrated Service and DiffServ Technology: Network processors are emerging as a
programmabl e alternative to the traditional ASIC-based solutions in scaling up the data-plane
processing of network services. They serve as co-processors to offload data-plane traffic from
the origina general-purpose microprocessor. In this work, we illustrate the process and
investigate performance issues in prototyping a DiffServ edge router with 1XP1200, which
consissts of one control-plane StrongARM core processor and six data-plane microengines,
and stores classification and scheduling per-flow policy rules at SRAM and packets at
SDRAM. The external benchmark shows that though the system can achieve aggregated
wire-speed of 1.8Gbps in simple IP forwarding, the throughput drops to 200~300M bps when
performing DiffServ due to the double bottlenecks of SRAM and microengines. Through
internal benchmarks, we found that performance bottlenecks may shift from one place to
another given different network services and algorithms. For simple IP forwarding services,
SDRAM is a nature bottleneck. However, it could shift to SRAM or microengines if heavy
table access or computation is involved, respectively. We also identify the design pitfall of the

hardware called the “ MAC buffer overflow”.

Keywords: Broadband Internet, Quality of service, QoS routing, Gigabit router, Signaling,

Traffic measurement, Network Processor, DiffServ

A. Gigabit

SCFQ (Self-Clocked Fair Queueing) WFQ (Weighted

fair queueing) FFQ (frame-based fair queueing)

(input

gueueing) (head-of-line blocking)

ClIOQ (combined input and output-queued) buffer

€ IETF

off-line

(co-processors)

IXP1200
StrongARM
(classification) (scheduling)

(input port)

(Per-Hop Behavior)

I XP1200

ASIC

(general-purpose processor)
(Diff Serv edge router)
IXP1200

(core processor)

SRAM SDRAM
(throughput) 50Mbps
500 (flow) SRAM
(bottleneck)
(forwarding service) SDRAM

SRAM microengine

" (MAC buffer overflow)

Gigabit

Circuit

switching Packet switching

Quality of Service

Fast Ethernet

100M bps Ethernet Switch

1

2 QoS

3

4 Scheduling

5 Admission Control

6 Traffic Policing

7 Network Planning and Management

Internet Quality

of Service QoS control
(Quality of Service,
QoS)
GPS WFQ delay bound
SCFQ delay bound
FFQ
WFQ
(input-queued)
1)
(FIFO)
maximal 100% (2
(Speedup) / (input/output link)
(buffer) combined input and output-queued (CIOQ)

ClOQ

10

(QoS, quality of service) IETF
(Integrated Service)[19]
(Differentiated Service) [12]
(absolute) (delay bound) (queueing)
(Guaranteed Service)[14] [18]

vat nv vic

(admission control) (packet scheduling) (buffer management)

AppMeasure

Blocking probability and route granularity are important issues for QoS routing protocols. In
genera, finer granularity yields higher blocking probability but aso higher computational complexity.

A new agorithm proposed in [24] to show us a new thought of QoS routing after integrated the
11

researches mentioned above. This QoS routing protocol, with a novel idea of per-class forwarding
with routing marks, is designed in order to achieve the high scalability and low blocking probability.
The mechanism of the routing is based on per-pair granularity. It is shown by simulation that, with a
small number of routing marks, the routing algorithm yields competitive blocking probability as

compared to the routing algorithm that routes flows independently.

In this sub-project, we try to implement the class-based routing algorithm as an extension
to a routing daemon, named Zebra. When a router receives a QoS request, the router may
trigger following actions: path calculation, marking, and forwarding. In this project, we will
only focus on the issue of routing, i.e., the path calculation task. The path calculation will find
anew route with the least cost and abundant residual bandwidth based on Dijkstra's algorithm,

which is also adopted by OSPF

The increasing link bandwidth demands even faster nodal processing especialy for the
data-plane traffic. The nodal data-plane processing may range from routing table lookup to
various classifications for firewall, DiffServ and Web switching. The traditional
general-purpose processor architecture is no longer scalable enough for wire-speed processing
so that some ASIC components or co-processors are commonly used to offload the data-plane
processing, while leaving only control-plane processing to the original processor.

Many ASIC-driven products have been announced in the market, such as the acceleration
cards for encryption/decryption [29], VPN gateways [30], Layer 3 switches [31], DiffServ
routers [32] and Web switches [33]. While these ASICs indeed speedup the data-plane packet
processing with special hardware blocks, much wider memory buses, and faster execution
process, they lack flexibility in reprogrammability and have a long development cycle which
iIsusually monthsor even years.

Network processors are emerging as an aternative solution to ASICs for providing

scalability for data-plane packet processing while retaining reprogrammability. In this study,
12

we adopt Intel IXP1200 [34] network processor shown in Fig.l which consists of one
StrongARM core and six co-processors referred as microengines, so that developers can
embed the control-plane and data-plane traffic management modules into the StrongARM
core and microengines, respectively. Scalability concern in dataplane packet processing
could be satisfied with the four zero context switching overhead hardware contexts in each of

the six microengines and the instructions specialized for networking.

IXPL200
4, Network Prooessor
2 A
ROBE |
Urit < <«—>» SrongARM Cae
RAM L, & .| DRAMMamry | .
(Wpto256VIB) B Unit - <
FAM P
2 FAM Menry :
(pto8VB) < > Unit < >« P Micoengned
BoaROM |, N
(pasvB) | | | x
TFIFO LHHll RAFO L[”II_‘
. Reedy Bus
IX BusIntafaodUnit 3

AFOBLs(IXBLY 65EMVIHz
‘ X

Y
Anathe

IXP1200

Fig. 1 Hardware architecture of 1XP1200

13

Gigabit
A. FQ

FFQ
frame
frame

frame counter frame

frame

frame

state machine 1/Q

14

(finish time)

FFQ
(quantization)
FFQ
FFQ
B. CIOQ
CIOoQ corssbar
LCF/MUF output queueuing
CloQ
(service scheduling)
ClOoQ crosshar switch
phase corssbar
ClOQ

First/ Most Urgent First (LCF/MUF)

crossbar CloQ

15

(time stamp)
64
64
FFQ
HOL
buffer
Least Cushion

ClOQ

buffer

burst length L

NetFlow Cisco

AppMeasure
NetFlow IP
TOS

header

ClOQ

buffer buffer
uniform 16X16
cell correl ated
0.8 3L 4L buffer
Cisco
NetFlow

NetFlow

IP IP IP IP
AppMeasure

16

content

Application flow
B. AppMeasure

AppMeasure 1 IPHow NetFlow
IP NetF ow Cisco NetFlow
2 AnyTrace
3 AppFlow
FTP TELNET WWW
application AppMeasure
AppMeasure AppCollect
AppCollect

AppMeasure

AppMeasure
Data Mining

AppMeasure Monitor

. AppMeasure

17

. AppMeasure

18

AppMeasure AppMeasure

AppCollect AppMeasure AppCollect

user level
kernel level ~ AppCollect
Pcap Pcap
AppCollect AppCollect

(datagram) AppMeasure

AppMeasure AppMeasure

overhead
AppMeasure
AppMeasure

AppMeasure

A. Implementation Issue
A.1. Design Objectives and Scope

Our objective is to put the class-based QoS routing protocol into practice, and we try to limit the

implementation complexity. There are some important assumptions which affect the design choices.

These assumptions include:

Support for on-demand path recal culation.
Exchange QoS parameter using the metric field of LSAs.
Support per-class routing.

Interface to RSVP,

19

In addition, our implementation also relies on the following simplifying assumptions made in
[23].
I The scope of QoS route computation islimited in asingle area.
I All routersin the arearun the class-based QoS route daemon.
1 Allinterfaces on arouter are QoS capable.

I Support hop-by-hop routing only.

3.2. Software Architecture
Figure 9 shows the architecture of the class-based QoS routing daemon. The modules of QoS
routing consists of following modules:

I Interface status module maintain parameters of network status from the original OSPF.
The interface status records the residual bandwidth on the interface.

I QoS routing table module records route cost and residual bandwidth along the path as
QoS parameter in its route entry. the module stores the class-based routing table into
kernel routing table using the data structure made for ECMP.

I QoS LSAsmodule creates QoS LSAs by collecting status of al interfaces on the router
and updates the QoS parameters, route cost and residual bandwidth, recorded in the
routing table when a new QoS LSA arrives.

I Flow table (with traffic characteristics) module records the QoS request of flows. The
entry of the flow table contains flow informantion and traffic characteristics. The QoS
requirements are part of RSV P messages.

I Path selection and management module records the request of flows into the flow
table and trigger path recalculation if necessary.

I Path Recalculation module finds the least cost route according to Dijkstra algorithm.

20

CLASS-BASED ROUTING D AERION-

CORE OSFF FUNCTIONS
e
TOPOLOGY DATABASE.

PERIODIC PATH
CATCTL ATION-

EUILD AWMD SEMD

FLOW TAELE INTEEFACE |

| ry STATUS.

| QOS LEAs«

|| PATH SELECTION

|| & MANAGEMENT. v

: ry QoS

| PATH .| ROUTHNG
| REC ALCTL ATION. TABLE-
| INTERFACE

5 TO RSVPe

i F Y

+ h 4

) RSVPD. [KERNEL ROUTE TABLE-

Performance Evaluation

B.1. Methodology

In this section, we will evaluate the performance of our implemetation. We explore three different
dimensions in our comparisons. @) processing cost, b) memory requirement, and c) message
generation and reception cost.

We construct a network topology to accomplish the experiment. The topology can be expanded
by repeating a basic building block. The basic building block consists of 4 routers and 5 transit
networks and is shown in Figure 10. The N x N mesh topology is constructed by repeating the basic
block along two dimensions. We can control the network size by simply changing N. We set up the

mesh topol ogy by creating pseudo router LSASs in our implementation.

21

O

Funtters ., Traveit vebarorks

O
AN

Fig. 3. Processing time for path computation

12000

10000 //'
3000
/ —— (JoS routing table
6000 ,
/ —=— SPF routing table
4000 rf’//
2000

D 1 1 1 1
44 &0 120 160 200

Metwork Size

Time(microseconds)

B.2. Stand-Alone Cost

It is important to measure the cost of our implementation. Among the router cost, processing time
and routing table size can be measured on a single router. The cost measured on a single router is
called stand-alone cost. To measure the traffic amount of L SAs exchange, we need at |east two routers

and monitor the packets of L SAs on the link connected to the two routers.

B.2.1 Processing time of Routing Table Computation
Figure 11 shows the comparison of processing time used by QoS routing and standard SPF tree

calculation. The standard SPF routing algorithm runs Dijkstra to find the SPF tree, and so does the

22

class-based QoS routing algorithm. The result provides that the sum of reciproca bandwidth is good to

be the cost function of the class-based QoS routing algorithm.

B.2.2. Memory Requirements of the QoS Routing Table

Figure 12 shows the comparison of memory requirements of QoS routing table with full paths,
QoS routing table within one path and standard SPF routing table. To provide accuracy of QoS
routing, we maintain the lists of nexthops in each route entry. It results that the memory used to store

the QoS routing table is much greater than the standard SPF routing table. It's necessary to record the

nexthops to provide accuracy.

Fig4. Memory eguirement of routing table

250000
200000 e QoS routing table with
Q /"/ 1 path
= 150000 /./ —=— (JoS routing table with
2 100000 4 paths
g /1/ —a— standard SPF routing

50000 table

,[:] 1
44 & 120 160 200

Metwork Size

23

Fig 5. The traffic of LSAs exchange

50000
40000 /
ebLL / —+— (08 LSAs traffic
20000 / —=— SPF L.SAs traffic
10000 (=

D 1 | 1 1
40 &0 120 160 200

maximum bandwidth
requirementibytes/sec)

network size

B.2.3. Link State Advertisements Generation and Receiption

Asseen in figure 13, the curves of the QoS LSAs traffic and the standard SPF LSAs traffic
are closed to each other. The major difference between the two kind of trafficistheir
frequency. We always monitor the QoS LSAs traffic on the link but the SPF LSAstrafficis
seen for two or three times. Thus, the frequency of the QoS LSAs generation is much higher
than the SPF LSAs. However, even the maximum LSAs traffic amount is still alittle fragment

of the whole bandwidth of alink. The influence of the LSAs traffic can be ignored.

In this work, we first explain the need of network processors for today’s complex
applications, and introduce the architecture and packet flow in 1XP1200 shown in Fig. 14.
Then we detail the mapping of DiffServ onto 1XP1200, as shown in Fig. 15. There are two
most important modules in DiffServ, classifier and scheduler, which are implemented with
Multi-dimensional Range Matching [35] and Deficit Round Robin [36]. Finally we have
external and internal benchmarks in order to find the bottlenecks in our implementation and

possible design pitfalls of 1XP1200.

24

1. Poll MAC huffer and set the rec_rdy

flag of the port
Thread0 of MEO
SDRAM | [N+ ! *éﬂ? 2. Poll rec_rdyof the port
«-8 | SDRAM trarsfer 3. Issue areference to Rx State Machine

| registers () 4 Move one MPtoRFIFO

|

| . 5. 1f SOP, move half of the MP(header)

SRAMtransfer registers to SRAM xfer regs for classification,
(8) halfto SDRAM
6. Load rules into SRAMXfer regs

(classification iteration)

T T
PerF-ﬁgg | 3 12 7. Policing, merking, routing table lookLp
_V g eI andenqueue (after classificatior)

State 8. Store the packet header to SDRAM
| Mechire | | ReadyBus 9. Storethe rest of the MPs to SDRAM
Sequencer) .
T ‘1 “““ 10. DRR scheduling and then transmit to
TFIFO, MAC buffer
* If SOP, process from 1 to 8, otherwise
from1to4, thenskipto9

Fig. 14. Detailed DiffServ packet flow in IXP1200.

SrongARM
recaiver threed 8 threadsfor 8 10/100 ports (microengined, 1) leaky
., 8threadsfor 1 Gigaport (microengine2,3) bucket

RX tirJner
v I
—3 nextpac —| ipverify —»|dassfication —> | policing| |
| notloP v
' packet store < | enqueue [« | Imetch |« | marking | !
A 4

; 1 threadsfor 10/100 ports (microengine4)
schegullng scheduler threed 7 threads for 1 Gigaport (microengine 5)
v

TX —» | Tx_ReadAssgnment —»| Txfill

—— 3threadsfor 10/200 ports (microengine 4)
u tter threed 3threadsfor 1 Gigaport (microengine5)

- - = ————
R —

Fig. 15. Data-plane architecture of DiffServ edge router over 1 XP1200.

The results of external benchmarks, asin Fig. 16, Fig. 17 and Fig. 18, have shown that our
implementation can support well the PHBs in DiffServ at an aggregated throughput of

290Mbps. .We aso identify the MAC buffer overflow which is described below. Fig. 19 shows
25

a diagram of packet reception. As we can see in Fig. 1, the rest of MPs, which are basic data
units in IXP1200, are transferred from MAC buffer, RFIFO to SDRAM after the SOP (Start
Of Packet) is classified. However, if SOP cannot be processed in time and the buffer is not
large enough, the incoming MPs of the same packet could fill up the whole buffer and thus
result in a packet drop, and then 100% packet |oss.

Since both the slow classification and small buffer contribute to the MAC buffer overflow,
we propose three solutions to avoid the two necessary conditions. They are (1). faster

classification, (2). larger MAC buffer size, and (3). move the MPs into SDRAM before

classification.

180

160

o T USRS T T

ik e | Lilil 1

120

100 |

| ‘

80 [

Throughput (pps)

60
—+—100%

—=—50%

40

20

1 22 43 64 85 106 127 148 169 190 211 232 253 274 295 316 337 358 379 400 421 442 463 484
Flow index

Fig. 16. Flow fairnesstest (Len=64bytes, 500 flows, BW=74400/500=148pps, hormal case).

26

Throughput (Mbps)

70000

60000 -
——FEF

50000 - AFL
—_
2 —— AF2
= 40000 | AF3
= p
(=R
<
S
3 30000 F
<
|_

20000

10000 |

0 :'\\\

1 6 11 16 21 26 31 36 41 46 51 5 61 66 71 76 8L 8 91 96

Load (%) at input port x4

Fig. 17. Priority and bandwidth control test (Len=64byte, EF=62500pps)

350

300 |

——=——2FEm2ME

————gFEmn 2 NE

—®—1Giga on 2 ME

250 | — s ri0m

200

150 |

100

50 | *~—

4\’\’\.

1 4 7] 128 512
Number of policy rules

Fig. 18 Aggregated throughput (Len=64bytes, worst case)

27

RFIFO

0
©)
o

-r——1

SDRAM «-- MP&EOP ___

«

-t -

Classification

process

Receiver

Fig. 19. Receiving process of a packet

In both external and internal benchmarks, we identify the double bottleneck of both
exclusive SRAM access and the lack of computing power in microengines inside the Range
Matching DiffServ, as shown in Table 1. That is, the Range Matching DiffServ could still
suffer from the other bottleneck after one of them is solved. Three methods are proposed to
solve the bottleneck of SRAM accesses that leads to the low utilization of receiver
microengines. First is to divide one large SRAM into many smaller banks at different
interfaces. This could shorten the queuing delay of requests in the command queue if the
requested addresses are in different memory banks. Second, we may adopt a new memory
architecture, for example, RAMBUS DRAM (RDRAM) [37] in 1Q2000 [38] that has a peak
bandwidth of up to 1.6GBps which is two to three times of what SRAM supports. Third, an
additional cache can be used to reduce the number of memory accesses because the traffic in
the same time period usually shows locality in lookups of policy and routing tables.

While the SDRAM is the bottleneck in IP forwarding [39], we observe that the
bottleneck may shift from one functional unit to another depending on the specific service,
algorithm and the way input traffic is alocated to threads, as shown in Table 1. We aso find
that the SRAM bottleneck does not necessarily occur at 100% utilization, it could even occur

at 559 when the accessis bursty.

28

Table 1. Bottlenecks in Diff Servs of two algorithms

Service or traffic allocation Bottleneck
Linear search SRAM
Range matching :
Single input port SRAM
8x100M input ports ME
1 gigabit port ME
8x100M and 1 gigabit SRAM

29

Gigabit

FFQ
ClOQ
buffer
AppMeasure
DiffServ
LXP1200
DiffServ

SCFQ

ClOQ LCF/MUF

output queueing

AppMeasure

GNU Zebra

ASIC
1.8Gps

200~300M bps

30

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Hui Ahang, “ Service Discipline for Guaranteed Performance Service in Packet
-Switching Networks,” Proceedings of |1EEE, vol. 83, no.10, Oct., 1995.

A .K. Parekh and R.G. Gallager, “A Generalized Processor Sharing Approach to Flow
Control — The Single Node case,” Proc. INFOCOM ' 92, vol. 2, May 1992, pp. 915-24.

J.C.R. Bennett and Hui Zhang, “WF?Q: Worst-case Fair Weighted Fair Queueing,” in
Proc. IEEEINFOCOM ' 96, San Francisco, CA, Mar. 1996, pp. 120-128.

S.Jamaloddin Golestani, “ A self-clocked Fair Queueing Scheme for Broadband
Applications,” in Proc. IEEE INFOCOM ' 94, Toronto, CA, June 1994, pp. 636-646.

Dimitrios Stiliadis and Anujan Varma, “ Frame-based Fair Queueing: A New Traffic
Scheduling algorithm for Packet-Switch Networks,” Tech. Rep.UCSC-CRL-95-39, July
18, 1995.

Dimitrios Stiliadis and Anujan Varma, “ Latency-rate servers:. A general model for
anaysis of traffic scheduler algorithms,” Tech. Rep. UCSC-CRL-95-38, U.C. Santa Cruz,
Dept. of computer Engineering, July 1995.

David A. Patterson, John L. Hennessy, “ Computer Organization & Design, The
Hardware/Software Interface,” 2nd Edition, Morgan Kaufmann, 1998.

A. Varmaand D. Stiliadis, “Hardware Implementation of Fair Queuing Algorithms for
Asynchronous Traffic Mode Networks,” |EEE Communi cations Magazine, vol. 35, no.
12, Dec. 1997, pp. 54-68.

B. Prabhakar and N. McKeown, “On the Speedup Required for Combined Input and
Output Queued Switching,” Computer Systems Lab, Technical Report CSL-TR-97-738,
Stanford University.

[10.]Karol, M. Hluchyj, and S. Morgan, “Input Versus Output Queueing on a Space Division

Switch,” IEEE Trans. Commun., vol. 35, pp. 1347-1763, Dec.

[11.]N. McKeown, V. Anantharam, and J. Walrand, “Achieving 100% Throughput in an

Input-queued Switch,” Proc. IEEE INFOCOM'96, pp. 296-302.

[12.]S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, “An Architecture for

Differentiated Services’, IETF RFC 2475, Dec. 1998.

[13.]C.S. Chang and J.A. Thomas, “ Effective Bandwidth in High-Speed Digital Networks,”

|EEE Journal on Selected Areasin Communications, Vol. 13, No. 6, pp. 1091-1100,
August, 1995.
31

[14.]1D. D. Clark, S. Shenker, L. Zhang, “ Supporting Real-Time Applications in an Integrated
Services Packet Network: Architecture and Mechanism”, SIGCOMM’ 92, 1992.

[15.] S. Floyd, “Comments on Measurement- Based Admissions Control for Controlled- Load
Services’, Technical Report, 1996. http://www.aciri.org/floyd/admit.html

[16.]R. Guerin, H. Ahmadi, and M. Naghshineh, “Equivaent Capacity and Its Application to
Bandwidth Allocation in High-Speed Networks’, IEEE Journa on Selected Areasin
Communications, Vol. 9, No. 7, pp.968-981, Sep. 1991.

[17.]S. Jamin, P. B. Danzig, S. J. Shenker, and L. Zhang, “A Measurement- Based Admission
Control Algorithm for Integrated Service Packet Networks’, IEEE/ACM Transactions on
Networking, Vol. 5, No. 1, pp.56-70, Feb. 1997.

[18.] S. Shenker, C. Partridge, and R. Guerin, “ Specification of Guaranteed Quality of
Service’, IETF RFC2212, Sep. 1997.

[19.]J. Wroclawski, “The Use of RSVP with IETF Integrated Services’, IETF RFC 2210, Sep.
1997.

[20.] “Cisco IOS NetFlow Technical Documents”,
http://www.cisco.com/warp/public/732/Tech/netflow/netflow techdoc.shtml

[21.] The RSVP project, http://www.isi.edu/div7/rsvp/

[22.] The Zebra project, http://www.zebra.org/

[23.] G.apostolopoulos, R. Guerin, and S. Kamat, “ Implementation and Performance
M easurements of QoS Routing Extensions to OSPF,” Proceedings of IEEE
INFOCOM'99, New York, NY, March 1999.

[24.] Yun-Wen Chen, Ren-Hung Hwang, and Ying-Dar Lin. “Multipath QoS Routing with
Bandwidth Guarantee,”

[25.] RFC 2676, “ QoS Routing Mechanisms and OSPF Extensions,” Jan 1998.

[26.] RFC 2205, R.Braden Ed, L.Zhang, S.Berson, S.Herzog, and S.Jamin, “Resource
ReSerVation Protocol (RSVP),” Sep. 1997.

[27.]RFC 2328, JMoy, “OSPF Version 2,” April 1998.

[28.] Internet Draft, R.Braden, D.Hoffman, “RAPI -- An RSV P Application Programming
Interface Version 5,” August 1998.

[29.] NetScreen Appliances,
http://www.netscreen.com/internati onal/products/appliances.html#ns5

[30.] Intel NetStructure VPN Gateway Family,
32

http://www.intel.com/network/idc/products/vpn gateway.htm.

[31.]Intel Layer 3 Switching, “High speed LAN routing in an affordable switching solution,”
http://www.intel.com/network/tech _brief/layer 3 switching.htm.

[32.] eQoS Solutions for Service Providers using Riverstone Networks Switch Routers,
http://www.riverstonenet.com/technology/egos.shtml.

[33.] Technical report on Hardware-Based Layer5 load balancer,
http://www.nwfusi on.com/research/2000/0501feat2.html.

[34.] Intel Electronic Design Kit,
http://devel oper.intel.com/desi gn/edk/product/ixp1200 edk.htm.

[35.] T.V. Lakshman, and D. Stiliadis, “High-Speed Policy-based Packet Forwarding Using
Efficient Multi-dimensional Range Matching,” ACM SIGCOMM’ 98.

[36.] M. Shreedhar, and G. Varghese, “Efficient Fair Queuing Using Deficit Round-Robin,”
IEEE/ACM Transactions on Networking, June 1996, val. 4, no. 3, pp. 375-385.

[37.] Data Sheets of RDRAM, http://www.rambus.com/devel oper/support_rdram.html

[38.]1Q2000 Network Processor, VITESSE Corp,
http://www.vitesse.com/products/cateqories.cim?amily id=5& category 1d=16

[39.]T. Spalink, S. Karlin, L. Peterson, “Evaluating Network Processors in IP Forwarding,”
Technical Report TR-626-00, Computer Science, Princeton University, Nov. 1999.

33

	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8
	page9
	page10
	page11
	page12
	page13
	page14
	page15
	page16
	page17
	page18
	page19
	page20
	page21
	page22
	page23
	page24
	page25
	page26
	page27
	page28
	page29
	page30
	page31
	page32
	page33

