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Abstract

Continuous rapid growth of the Internet in recent years makes it the most probable
future integrated services network. However, current Internet architecture is inadequate in
providing real-time applications. It cannot guarantee delay bound requirements of real-time
applications. Moreover, non-real-time applications may be terminated if real-time traffic
causes congestion. Internet 2 is thus proposed to meet future needs. In order to support the
realization of future broadband Internet with guarantee of wide quality of service (QoS)
requirements, this integrated project constantly improves the results in the previous year and

further investigates the following key technologies:

A. High-capacity (Gigabit) routers: In this project, we design and develop high-capacity
routers. We have developed a prototype router, which consists of a data path module, a
gueueing module, a classifier, and a scheduler in last two years. In this sub-project, we
continue developing two key technologies including scheduling and switching. In the
prototype, we implemented SCFQ mechanism due to the consideration of implementation
complexity. However, the delay bound and fairness of SCFQ is not as good as WFQ. In new
design, we implement the FFQ to improve the performance of the scheduler. In the queueing
management of the prototype, we adopted the shared memory architecture. It has a
disadvantage that its capacity islimited for switch with many ports because of heavy memory
access. It is possible to develop a large-scale input queueing system, but there exists a
head-of-line blocking problem. In this sub-project, we investigate the CIOQ architecture. We
have developed a algorithm to emulate an output-queueing switch and evaluate the

performance of CIOQ with finite buffers

B. Measurement-based Admission Control and Congestion Avoidance Schemes for
Controlled-Load Service in Broadband Internet: Many real-time applications are capable of

adapting their transmission to the network state and can as well tolerate occasional delay



bound violations in the presence of transient network congestion. For this type of applications,
an absolutely reliable bound on packet delivery times is not required. Moreover, many
non-real-time applications such as on-line transaction processing and distributed simulation
would desire a congestion-free packet delivery service from the network. This new type of
serviceis called “ Congestion-Free Service” with the guarantee of a maximum packet loss rate.
This work considers resource allocation in the support of “Congestion- Free Service” in
Broadband Internet. First, we studied traffic characterization under different measurement
models via anayzing traffic traces collected from Nationa Taiwan University campus
network. The preliminary results show that traffic load can be approximated by the Normal
distribution. In the second part of the work, we proposed a dynamic bandwidth and queue
management scheme to support “Congestion-Free Service.” To better understand the
characteristics of the broadband Internet, we have developed atool called AppMeasure which
provides three sets of service: /PFlow, AnyTrace, and AppFlow. IPFlow provides on-line
tracking and reporting of individual IP flows. In AnyTrace, user can specify the number of
bytes of a packet to trace. It serves as a measurement base to enable all-layer traffic
accounting and analysis, and differentiated charging based on Quality of Service Appflow
tracks and reports any type of traffic specified by the user. It ams to integrate with

policy-based QoS service

C. QoS routing: This sub-project describes the implementation of a class-based QoS
routing algorithm, which is designed for low blocking probability and low overload. The
class-based QoS routing algorithm is designed in the per-pair granularity. We design a
software architecture and divide it into several modules. Then we describe what the modules
do and how they work. At least the performance evauation of the implementation is
discussed. The results show that the costs, such as processing time of path computation and
memory requirement of routing table, are expensive. The costs are what we have to pay for

QoS routing supporting.



D. Integrated Service and DiffServ Technology: Network processors are emerging as a
programmabl e alternative to the traditional ASIC-based solutions in scaling up the data-plane
processing of network services. They serve as co-processors to offload data-plane traffic from
the origina general-purpose microprocessor. In this work, we illustrate the process and
investigate performance issues in prototyping a DiffServ edge router with 1XP1200, which
consissts of one control-plane StrongARM core processor and six data-plane microengines,
and stores classification and scheduling per-flow policy rules at SRAM and packets at
SDRAM. The external benchmark shows that though the system can achieve aggregated
wire-speed of 1.8Gbps in simple IP forwarding, the throughput drops to 200~300M bps when
performing DiffServ due to the double bottlenecks of SRAM and microengines. Through
internal benchmarks, we found that performance bottlenecks may shift from one place to
another given different network services and algorithms. For simple IP forwarding services,
SDRAM is a nature bottleneck. However, it could shift to SRAM or microengines if heavy
table access or computation is involved, respectively. We also identify the design pitfall of the

hardware called the “ MAC buffer overflow”.

Keywords: Broadband Internet, Quality of service, QoS routing, Gigabit router, Signaling,

Traffic measurement, Network Processor, DiffServ
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(QoS, quality of service) IETF
(Integrated Service)[19]
(Differentiated Service) [12]
(absolute) (delay bound) (queueing)
(Guaranteed Service)[14] [18]
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(admission control) (packet scheduling) (buffer management)

AppMeasure

Blocking probability and route granularity are important issues for QoS routing protocols. In
genera, finer granularity yields higher blocking probability but aso higher computational complexity.

A new agorithm proposed in [24] to show us a new thought of QoS routing after integrated the
11



researches mentioned above. This QoS routing protocol, with a novel idea of per-class forwarding
with routing marks, is designed in order to achieve the high scalability and low blocking probability.
The mechanism of the routing is based on per-pair granularity. It is shown by simulation that, with a
small number of routing marks, the routing algorithm yields competitive blocking probability as

compared to the routing algorithm that routes flows independently.

In this sub-project, we try to implement the class-based routing algorithm as an extension
to a routing daemon, named Zebra. When a router receives a QoS request, the router may
trigger following actions: path calculation, marking, and forwarding. In this project, we will
only focus on the issue of routing, i.e., the path calculation task. The path calculation will find
anew route with the least cost and abundant residual bandwidth based on Dijkstra's algorithm,

which is also adopted by OSPF

The increasing link bandwidth demands even faster nodal processing especialy for the
data-plane traffic. The nodal data-plane processing may range from routing table lookup to
various classifications for firewall, DiffServ and Web switching. The traditional
general-purpose processor architecture is no longer scalable enough for wire-speed processing
so that some ASIC components or co-processors are commonly used to offload the data-plane
processing, while leaving only control-plane processing to the original processor.

Many ASIC-driven products have been announced in the market, such as the acceleration
cards for encryption/decryption [29], VPN gateways [30], Layer 3 switches [31], DiffServ
routers [32] and Web switches [33]. While these ASICs indeed speedup the data-plane packet
processing with special hardware blocks, much wider memory buses, and faster execution
process, they lack flexibility in reprogrammability and have a long development cycle which
iIsusually monthsor even years.

Network processors are emerging as an aternative solution to ASICs for providing

scalability for data-plane packet processing while retaining reprogrammability. In this study,
12



we adopt Intel IXP1200 [34] network processor shown in Fig.l which consists of one
StrongARM core and six co-processors referred as microengines, so that developers can
embed the control-plane and data-plane traffic management modules into the StrongARM
core and microengines, respectively. Scalability concern in dataplane packet processing
could be satisfied with the four zero context switching overhead hardware contexts in each of

the six microengines and the instructions specialized for networking.
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Fig. 1 Hardware architecture of 1XP1200
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A. Implementation Issue
A.1. Design Objectives and Scope

Our objective is to put the class-based QoS routing protocol into practice, and we try to limit the

implementation complexity. There are some important assumptions which affect the design choices.

These assumptions include:

Support for on-demand path recal culation.
Exchange QoS parameter using the metric field of LSAs.
Support per-class routing.

Interface to RSVP,
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In addition, our implementation also relies on the following simplifying assumptions made in
[23].
I The scope of QoS route computation islimited in asingle area.
I All routersin the arearun the class-based QoS route daemon.
1 Allinterfaces on arouter are QoS capable.

I Support hop-by-hop routing only.

3.2. Software Architecture
Figure 9 shows the architecture of the class-based QoS routing daemon. The modules of QoS
routing consists of following modules:

I Interface status module maintain parameters of network status from the original OSPF.
The interface status records the residual bandwidth on the interface.

I QoS routing table module records route cost and residual bandwidth along the path as
QoS parameter in its route entry. the module stores the class-based routing table into
kernel routing table using the data structure made for ECMP.

I QoS LSAsmodule creates QoS LSAs by collecting status of al interfaces on the router
and updates the QoS parameters, route cost and residual bandwidth, recorded in the
routing table when a new QoS LSA arrives.

I Flow table (with traffic characteristics) module records the QoS request of flows. The
entry of the flow table contains flow informantion and traffic characteristics. The QoS
requirements are part of RSV P messages.

I Path selection and management module records the request of flows into the flow
table and trigger path recalculation if necessary.

I Path Recalculation module finds the least cost route according to Dijkstra algorithm.

20
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Performance Evaluation

B.1. Methodology

In this section, we will evaluate the performance of our implemetation. We explore three different
dimensions in our comparisons. @) processing cost, b) memory requirement, and c) message
generation and reception cost.

We construct a network topology to accomplish the experiment. The topology can be expanded
by repeating a basic building block. The basic building block consists of 4 routers and 5 transit
networks and is shown in Figure 10. The N x N mesh topology is constructed by repeating the basic
block along two dimensions. We can control the network size by simply changing N. We set up the

mesh topol ogy by creating pseudo router LSASs in our implementation.
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B.2. Stand-Alone Cost

It is important to measure the cost of our implementation. Among the router cost, processing time
and routing table size can be measured on a single router. The cost measured on a single router is
called stand-alone cost. To measure the traffic amount of L SAs exchange, we need at |east two routers

and monitor the packets of L SAs on the link connected to the two routers.

B.2.1 Processing time of Routing Table Computation
Figure 11 shows the comparison of processing time used by QoS routing and standard SPF tree

calculation. The standard SPF routing algorithm runs Dijkstra to find the SPF tree, and so does the
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class-based QoS routing algorithm. The result provides that the sum of reciproca bandwidth is good to

be the cost function of the class-based QoS routing algorithm.

B.2.2. Memory Requirements of the QoS Routing Table

Figure 12 shows the comparison of memory requirements of QoS routing table with full paths,
QoS routing table within one path and standard SPF routing table. To provide accuracy of QoS
routing, we maintain the lists of nexthops in each route entry. It results that the memory used to store

the QoS routing table is much greater than the standard SPF routing table. It's necessary to record the

nexthops to provide accuracy.

Fig4. Memory eguirement of routing table
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Fig 5. The traffic of LSAs exchange
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B.2.3. Link State Advertisements Generation and Receiption

Asseen in figure 13, the curves of the QoS LSAs traffic and the standard SPF LSAs traffic
are closed to each other. The major difference between the two kind of trafficistheir
frequency. We always monitor the QoS LSAs traffic on the link but the SPF LSAstrafficis
seen for two or three times. Thus, the frequency of the QoS LSAs generation is much higher
than the SPF LSAs. However, even the maximum LSAs traffic amount is still alittle fragment

of the whole bandwidth of alink. The influence of the LSAs traffic can be ignored.

In this work, we first explain the need of network processors for today’s complex
applications, and introduce the architecture and packet flow in 1XP1200 shown in Fig. 14.
Then we detail the mapping of DiffServ onto 1XP1200, as shown in Fig. 15. There are two
most important modules in DiffServ, classifier and scheduler, which are implemented with
Multi-dimensional Range Matching [35] and Deficit Round Robin [36]. Finally we have
external and internal benchmarks in order to find the bottlenecks in our implementation and

possible design pitfalls of 1XP1200.
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The results of external benchmarks, asin Fig. 16, Fig. 17 and Fig. 18, have shown that our
implementation can support well the PHBs in DiffServ at an aggregated throughput of

290Mbps. .We aso identify the MAC buffer overflow which is described below. Fig. 19 shows
25



a diagram of packet reception. As we can see in Fig. 1, the rest of MPs, which are basic data
units in IXP1200, are transferred from MAC buffer, RFIFO to SDRAM after the SOP (Start
Of Packet) is classified. However, if SOP cannot be processed in time and the buffer is not
large enough, the incoming MPs of the same packet could fill up the whole buffer and thus
result in a packet drop, and then 100% packet |oss.

Since both the slow classification and small buffer contribute to the MAC buffer overflow,
we propose three solutions to avoid the two necessary conditions. They are (1). faster

classification, (2). larger MAC buffer size, and (3). move the MPs into SDRAM before

classification.
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In both external and internal benchmarks, we identify the double bottleneck of both
exclusive SRAM access and the lack of computing power in microengines inside the Range
Matching DiffServ, as shown in Table 1. That is, the Range Matching DiffServ could still
suffer from the other bottleneck after one of them is solved. Three methods are proposed to
solve the bottleneck of SRAM accesses that leads to the low utilization of receiver
microengines. First is to divide one large SRAM into many smaller banks at different
interfaces. This could shorten the queuing delay of requests in the command queue if the
requested addresses are in different memory banks. Second, we may adopt a new memory
architecture, for example, RAMBUS DRAM (RDRAM) [37] in 1Q2000 [38] that has a peak
bandwidth of up to 1.6GBps which is two to three times of what SRAM supports. Third, an
additional cache can be used to reduce the number of memory accesses because the traffic in
the same time period usually shows locality in lookups of policy and routing tables.

While the SDRAM is the bottleneck in IP forwarding [39], we observe that the
bottleneck may shift from one functional unit to another depending on the specific service,
algorithm and the way input traffic is alocated to threads, as shown in Table 1. We aso find
that the SRAM bottleneck does not necessarily occur at 100% utilization, it could even occur

at 559 when the accessis bursty.
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Table 1. Bottlenecks in Diff Servs of two algorithms

Service or traffic allocation Bottleneck
Linear search SRAM
Range matching :
Single input port SRAM
8x100M input ports ME
1 gigabit port ME
8x100M and 1 gigabit SRAM
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