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ABSTRACT

The major threat of air attract are thought as missiles in the next decades. Therefore,
anti-missile systems are one of key points in the air defense task.

To detect the enemy targets with low height, image detection is an another is an
another approach expected using detection radar. Due to weather variousﬁess, infrared
images can be used to detect the enemy targets. First, the infrared images are analyzes
in this project such that the enemy targets can be separated from the background. It is
necessary to estimate the current location of the enemy target. We focus on the
automatic target recognition of infrared image and basic guidance law. In the last year,
we calculate the position of multi-target, estimate and tracking of multi-target,
estimate the current location of the enemy target, predict the trajectories of moving
targets. At this year, in order to improve the result of the target detection, we try to
use the property of the difference between objects in the image to segment the target
that we need.

From engineering point of view, this project aims to provide a powerful and
effective methodology for direction of arrival (DOA) estimation and emitter
identification (EID) in electronic warfare (EW) applications, fespectively. Capabilities
and performances of the proposed scheme have been verified and evaluated with other
methods by various examples. Simulation results show that the proposed networks

with associated algorithms are superior to other methods.
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Chapter 1

Introduction

1.1 Survey

In the recent years, tracking moving objects using an image sequence has been very
popular. It can be used for capturing and recognizing moving targets as well as for
analyzing object motions, so as to be applied to various applications such as weapon
systems, transportation systems, security systems and factory automation. Digital
image processing encompasses a broad range of hardware, software, and theoretical
underpinnings. The first step in the process is image acquisition-that is, to acquire a
digital image. To do so requires an imaging sensor and the capability to digitize the
signal produced by the sensor. After a digital image has been obtained, the next step
deals with preprocessing that image. The key function of preprocessing is to improve
the image in ways that increase the chances for success of the other processed.

The next stage deals with segmentation. Broadly defined, segmentation partitions
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an input image into its constituent parts or objects. In general, preprocessing deals
with techniques for enhancing contrast, removing noise. For example, elementary
contours can be derived by using a gradient operator and Laplacian operator [1], and
the Hough transform [1] is a well-known method about global processing method, and
the image thresholding method, such as simple global thresholding'[l] [2], optimal
thresholding based on boundary characteristics is often used.

The last stage involves recognition and interpretation. Recognition is the process
that assigns a label to an object based on the information provided by its descriptors.
When the targets are extracted, some noise will accompany the image. In order to
decrease the noise disturbance, the techniques for canceling noise will be used. There
are many researches about canceling noise, for example, lowpass filtering [1] , median
filtering [1], [3], high-boost filtering, derivative filtering and others. These filtering
methods are discuésed in spatial domain. Beside, the issue of canceling noise is also
discussed in frequency domain. The Fourier transform is extracted from the intensity
function of pixels in the time domain to generate the phase and the spectrum, which
are analyzed to cancel the noise. However, heavy computing tasks to handle complex
multiplication and additions are required. Then the method in spatial domain is
chosen in this system.

To detect and track the high-speed-low-height moving target, image detection is
another approach except using detection radar. And the weather is changing all the
time, so the light is an important key. Infrared images can be used to detect the enemy
targets. The infrared images can be separated from the background because of the

target’s temperature.



Since the weather condition is a key for the imagery target detection, we will try

to find a suitable methodology which can reduce the weather effect.

1.2 Organization of the Report

The following is a brief description of the organization of this reports. In Chapter 2,
some image processing techniques including the image thresholding, median filter
and region growing, image difference. Furthermore, to consider the location of the
desired target in the image and to detect from the raw images is presented in Chapter
3. In order to improve the efficiency of the detection, we use another method based on
the velocity field in Chapter 4. In Chapter 5 we discuss the direction of arrival
estimation based on phase differences using neural fuzzy network. Finally, the

conclusions are summarized in Chapter 6.
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Chapter 2

Image Processing Techniques

In this chapter, image processing techniques are introduced to obtain the feature
points of targets, such as image thresholding method [1] [2], and median filter [1], [4],
[3]. In this report,. the image thresholding method is applied to extract the feature
points of the targets. In Section 2.1, image processing methods are introduced to ﬁnd

the feature point included in the trajectory of the target

2.1 Image Processing Techniques

To derive these feature points , several image processing methods are employed in
this section. Image thresholding is introduced in Section 2.1.1. Median filter is
introduced in Section 2.1.2. Low pass filter is introduced in Section 2.1.3. Image

difference is introduced in Section 2.1.4.
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2.1.1 Image Thresholding

Image thresholding is one of the most important approaches to image segmentation.
Suppose that the gray-level histogram shown in Fig. 2.1(a) corresponds to an image,
f(x,y), composed of light objects on a darkling background, in such a way that objects
and background pixels have gray levels grouped into two dominant modes. One
obvious way to extract the objects from the background is to select a threshold 7 that
separates these modes. Then, any point (x,)) for which f{x,))>T is called an object
point; otherwise, the point is called a background point. Fig. 2.1(b) shows a slightly
more general case of this approach. Here, three dominant modes characterize the
image histogram (fof example, two types of light objects on a dark background). The
same basic approach classifies a point (x,y) as belonging to one object class 7;< f{x,y)

=T, to the other object class if f{x,)> T, and to the background if f{x,y) < T}.

Thresholding may be viewed as an operation that involves tests against a function 7
of the form
T=T(x.y.p(x.).S(x3); @.1)
where f{x,y) is the gray level of point (x,y), and p(x,y) denotes some local property of
this point. A thresholded image g(x,y) is defined as |
gxy)=1 if fx.y)>T

8(x.y)=0 iffley) =T
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Fig. 2.1 Gray-level histograms that can be partitioned by (a) a single threshold. (b)

multiple thresholds.

2.1.2 Median Filter

As indicated in Section 2.1.1, the image threshold method in a dynamic imaging
problem has the tendency to cancel all background regions, leaving only image
elements that correspond to noise and to the moving object. The noise problem can be
handled by a filtering approach [1]. As our objective is to achieve noise reduction
rather than blurring, median filters [1] are adopted. That is the gray level of each
pixel is replaced by the median of the gray levels in a neighborhood of that pixel,
instead of by the average. This method is particularly effecti\;e when the noise pattern
consists of strong, the median m of a set of values is such that half the values in the set
are less than m and half are greater than m. In order to perform median filtering in
neighborhood of a pixel, we first sort the values of the pixels and its neighbors,
determine the median, and assign this value to the pixel. For example, in a 3 times 3

neighborhood the median is the 5th largest value, in a 5 times 5 neighborhood the
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13th largest value, and so on. When several values in a neighborhood are the same,

all equal values have to be grouped. For example, suppose that a 3 times 3
neighborhood has values (10, 20, 20, 20, 15, 20, 20, 25, 100). These values are sorted
as (10, 15, 20, 20, 20, 20, 20, 25, 100), which results in a median of 20. Thus the
principal function of median filtering is to force points with distinct intensities to be
more like their neighbors, actually eliminating intensity spikes that appear isolated in
the area of the filter mask. Fig. 2.2 (a) shows a original 3 times 3 neighborhood and

Fig. 2.2 (b) shows the results of median filtering.

10 | 20 | 20 10 | 20 | 20

20 (15 | 20 | ] 20 | 20 | 20

20 | 25 | 100 20 | 25 | 100
@ )

Fig. 2.2 Illustration of median filter method. (a) Original 3x3 neighborhood. (b)

Resulting 3x3 neighborhood.

2.1.3 Low Pass Filter

Another method to delete the noise is low pass filter, and to realize the shape of the
need of low pass filter, Fig 2.3 shows all the parameter mustr be positive, and the final
response is the sum of the 3x3 neighborhood. But it will make the value is too large

to be continue next steps, so we can let the value divide nine, like a mask, and we will
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get the mean value, Fig 2.3(b) shows the result.

1 1 1 1 1 1
1 1 1 o x| 1 1 1
1 1 1 1 1 1

Fig. 2.3 The mask is used to illustrate low pass filter method. (a) The sum of 3x3

neighborhood. (b) The result mean value of the 3 x 3 neighborhood sum.

2.1.4 Image Difference

In this subsection, we assume that the camera is fixed, because our infrared image
is obtained from an immovable camera, the object must move fast then background. It
has more variation. So we can define the difference image Dif (x,y) as,

Dif (x,y) = image2(x, y) ~imagel(x, y),
which imagel(x,y) means the gray value of the former image,
image2(x,y) means the gray value of the next image,

then the image thresholding method can be used to get a binary image. We can take
that binary image to another processing to get the what we need. Because we can
observe the feature points in the result image easily, image difference is the basic step
in the process of the image sequence. If the camera is fixed, we can use the image
difference method to find the target. Because the background is fixed and the target is

the only moving object, after the image difference method processing, we could find
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the target. Then we let this image2(x,y) be a binary image. The methodology is :

if Dif (x,y) < 20, then Dif(x,y)=0, else Dif(x,y)=255

In other words, if the difference is too small, we could delete it and remain others.
After this, we can take it to multiply image2(x,y). The methodology is as the
follows -

Result (x, y)=image2(x,y) x Dif{x,y),

If Result(x,y)# 0, then Result(x,y)=255.

In fact, the moving target can be detected from image Result(x,y). If the camera is not

fixed, it is necessary to improve this method or use other methods.
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Chapter 3

Targets Detection from Images

To detect the enemy targets with low height, image detection is another approach
except using detection radar. Due to weather constantly changing, infrared images can
be used to detect the enemy targets. The infrared images are analyzed in this section

such that the enemy targets can be separated from the background.

3.1 Movable Camera

Because the camera is movable, the change of background may be more than the
change of the object. The method described before is not suit to be used in this
situation. Unfortunately, the camera is movable in the great part of the situation. So
we propose another method to solve this problem. It can be explained as the following
steps -

1. Find the lightest point in the figure.
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2. Region growing.
3. Reduce the searching range.
4. Decide the video section.

5. Judge whether it is the object.

3.1.1 Search for Possible Targets

Because of the images we used are infrared images, the object almost be the
lightest point. So we can search each pixel of the image in turn to find the largest gray
value be the center of the object. But because of the image convert, the radiant heat
from the ground, the camera lens, the other noise, we forsake the figure edge. Our

searching range is defined,
20 < SRW <image width - 20,
25 < SRH <image height 30,

where SRW is the width of the searching range,

SRH is the height of the searching range.

3.1.2 Region Growing

As its name implies, region growing is a procedure that groups pixels or
subregions into larger regions. The simplest of these approaches is pixel aggregation,
which starts with a set of “seed” points and from these grows regions by appending to
each seed point those neighboring pixels that have similar properties ( such as gray
level, texture, color ). After finding the lightest point in the image, we must decide the

size of the object frame. Now we let the lightest point be the seed searching its
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neighboring pixels. When we find the pixels which gray value is less 10 than the gray
value of the lightest point, they are defined as object frame edges. Because of
sometimes the object is not obviously and may have noise interference, the object
frame may be very large. We limit the range of the object frame not larger than 1600

pixels.

3.1.3 Searching Range

In order to reduce the compute time and mistake, we can reduce thé searching
range. So when we get the position of the object by searching the lightest point in the
whole image, spread 20 pixels in all direction. Let the range be the searching range

next time. It is,
p_x—-20<S8SRW <p_ x+20,
p_y—-20<SSRH<p_ y+20,

where(p _x, p_ y)is the position of the object,
SSRW is the width of the small searching range,

SSRH is the height of the small searching range.

3.1.4 Video Section

When reducing the searching range, we have two problems must be solved. First,
we have to know where is the video section. If the next image is not the same section,
the object may be not in the small range. Second, if the position is not the correct
position of the object, it will be wrong in the next time. When these two problems are

occurred, we have to change to use the whole searching. For the first problem, we can



use mean value to decide whether it is a broken point of the video section. It means:
1 height width

mean =————— image(i, j),
height x width ; ; geth.J)

If the mean of the image is differ from the mean of the next image larger than 5, we
decide it is the broken point of the video section. Fig. 3.1 shows that we do not know
it is a broken point of the video section, and Fig. 3.2 shows that we know it is a

broken point of the video section then change to use the whole image range.

Fig. 3.1 Only using the small range searching.

Fig. 3.2 Decide it is a broken point of the video section then change to use the whole

image range searching.

3.1.5 Target Recognition

Sometimes object is not clearly and the noise may interference our algorithm. So
sometimes it is not the correct position of the object. We have to judge whether it is

the object, otherwise it will be wrong in the next image. Fig.3.3 shows some images



of the result of the experiment. We obtain the series of images from the original video
sequence per 1/30 sec. In all, we obtain 7290 images. By our method, the rate of the
success is higher than 98%. Because the target is not always the lightest point, this

method is easy to be influenced by brightness. So we will propose another method to

improve the whole detection efficiency in the next chapter.

Fig. 3.3 Some final image results
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Chapter 4

Target Detection from Velocity
Estimation

From Chap3, we can find the target that we need from infrared image sequence,
and from this chapter, another algorithm will be proposed to detect the target based on
the velocity estimation. We hope this algorithm would be more efficient and practical

in target detection.

4.1 Image Flow and Optic Flow

An image-flow field depicts, at each point on the imaging surface, a 2D
projection of the instantaneous 3D velocity of the corresponding in the scene. The
scenario in Fig 4.1 can be used to explain this definition. A rigid body B is undergoing

an arbitrary motion relative to the imaging surface. A point P on the rigid body has a
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velocity S with respect to a world coordinate system (X,Y,Z) fixed at the origin
O,,. The imaging surface, a plane in this case, is fixed with réspect to the world
coordinate system in such a way that O, is the center of projection, or the viewpoint
[40]. An image coordinate system (x,y) is attached to the image plane with its
origin at O,. The point p on the image plane is the projection of the scene point P.
Likewise, the vector V =(u,v) in the image plane, originating at p, is the projection
of the velocity vector S. By the definition given above, the vector V is the image-flow

vector at the point p.

Fig. 4.1 The imaging geometry.

The optic-flow field is the 2D distribution of apparent velocities that can be
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associated with the variation of brightness patterns on the image [41]. When the light
source in the image is nonuniform moving, the optic-flow fiel is nonzero. Since the
scene is stationary, the image flow will be zero throughout the image. However, since
the light source is moving, the brightness patterns on the image will result a nonzero
optic-flow field. As the definitions imply, image flow and optic flow are generally not

equal

4.2 Two Apprdaches to Optic-Flow Estimation
4.2.1 Gradient-Based Approach

Techniques based on the gradient-based approach [41,42,43,44,45] typically
work on the assurription of conservation of image intensity. These techniques assume
thét for a given scene point the intensity I at the corresponding image point remains
constant over time. That is, if a scene point projects onto the image point (x, y) at time
t and onto thé image point (x+dx, y+dy) at time (¢ + Jt) , we can write

I(x,y,8) = I(x+ 8%, y+3),t +6). ‘ 4.1)
Expanding the right-hand side by a Taylor series about(x,y,z) and ignoring the

second and higher order terms, we obtain

&, 500, 5 @

I(x+8,y+0p,t+6)=1(x,y,t)+ox—+
(x+30%,y+68y )=1(x,,?) PO PP

Combing the two equations results in the following expression *
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5x—a£+§y§£+5t—ai=0. (4.3)
Ox Oy Ot
Dividing throughout byt ; (u,v)is the local velocity vector, I ,7 and I, is the
partial derivatives.
Tu+Iy+1,=0. “44)

The equation (4.4) denotes the motion constraint line, and it can be plotted in uv

space.

4.2.2 Correlation-Based Approach

Correlation-based techniques typically use the assumption of conservation of
local intensity distribution. In essence, for each pixel in the first image, they search
for a matching pixel in the second image. The output is a displacement vector for each
pixel in the first image. Typically, such a search involves finding the best match for
the pixel under consideration among some interesting pixels in the second image. If
the best match can be found uniquely, the exact displacement vector is immediately

known.

4.3 Detection of the target

Fig 4.2 shows some images of the series video. From above statements, we can

calculate velocity field of the image by correlation-based approach method. And we



can get lots of information from the velocity field. So we propose this method to solve

this problem, it can be explained as the following steps :

1.

Get the image intensity

Compute error distribution and response it

Find the target from velocity field

Check the computing range

Decide the target is real or not

Fig. 4.2 Some images of the series video.

4.3.1 Image Intensity

The images from this infrared sequence are RGB level, and we must get the pixel
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value to find the correlation between the first image and the second image, so the first
step is to get the image intensity. Then in order to make this method wok with
real-time, it is very important to decide the correlation area to make this method more
efficiently. The intensity can be expressed as follows :

Intensity(x,y) = %[image(x, y)+image(x+1,y)+image(x+2,y)]. - 4.5

4.3.2 Computation of the Error Distribution
As discussed in the qualitative description, we use sum of squared differences

(SSD) as the error function. For simplicity, we use only two images, /,and I,, to

compute error distribution and response it over the search area. For each

pixel P(x, y)at location(x,y) in the image /;, we form a window W, of size 3x3
around the pixel. We establish the search window W, of size 5x 5 around the pixel at
location (x,y)in the image/,. The 5x 5 sample of error distribution, whose elements
represent the dissimilarity between ), and a 3x3 window around each pixelin W,,

is computed as

1 1
E (uv)=Y > (L(x+i,y+ )—L(x+u+i,y+v+ ),
i=—1j=-1
u,v=-2,-1,0,1,2. (4.6)

In this expression, I,(x,y)and I,(x,y)refer to the intensities at location (x,y)

in images /,and I,, respectively. The 5x5 sample of response distribution, whose
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elements represent the similarity between ¥, and a 3x3 window around each pixel

in W,,1is computed as the exponential of the negated error. That is,

Rc(u,v)=e'k[ii(ll(x+i,y+j)—12(x+u+i,y+v+j))2],
i=—1 j=-1

u,v=-2,-1,0,1,2. ' 4.7

The choice of an exponential function for converting error distribution into
response distribution is based primarily on computational considerations. First, it is
well-behaved when error approaches zero. A function that uses, for instance, the
reciprocal of error, tends to infinity as error approaches zero. Therefore, it is
computationally harder to manipulate. Secondly, the response obtained with an
exponential function varies continuously between zero and um'ty over the entire range
of error. We use k=10 in this method to make the response be the positive value,
and the total loop times in one image are (u2—-ul+1)x(v2—-v1+1) where (u2,ul)

is the range of the P(x,y) in X direction, and (v2,v1) is the range of it in Y

direction.

4.3.3 Velocity Field
From the above Fig4.3 (c), we can find the best match pixel from the maximum
response pixel, but we still can’t know whether it is the target we need or not.

Therefore we still have to calculate the velocity field to segment what we need. And
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20 30 121 4 6 8 9 16 19 | 22
6 .- 19 5 6 8 0 12 20 @ 22
..... 11 11 10 23 32 124 @ 126
81 79 111

14 15 16 18 26 121 | 121
() 58 0 60 65 8 8 116 | 117
98 | 100 105 110 112 123 | 124
100 | 104 110 110 ' 112 124 | 124

(b)

9 12 18 63 82

11 17 26 154 78

67 107 162 987 143

171 194 180 369 96

157 153 106 87 39

(c)

Fig. 4.3 An illustration of response distribution computation of one example : (a) the

3x3 window W,. (b) the 5x5 window W, (a one-pixel-wide annulus around this

window is shown because it is required to compute the correlation at boundary pixels).

(c) the 5x 5 response distribution(x 10°).
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then based on the property that the velocities of the target and background are
different, we can define the target by its maximum velocity difference with others in
the image.

A very important step in the current framework is interpreting the response
distribution. Each point (,v) in the search window (in uv space) is a candidate for
the true velocity. However, a point with a small response is less likely to represent the
true velocity than is a point with a high response. Thus, response distribution could be
interpreted as a frequency distribution in velocity space — the response at a point
depicting the frequency of occurrence, or the likelihood, of the corresponding value of
velocity. This interpretation lets us use a variety of estimation-theoretic techniques to
compute velocity and associate a notion of confidence with it.

Specifically, the quantity we are trying to compute is the true velocity (x,,v,) .
With the interpretation given above, we know the frequency of occurrence R, (u,v)
of various values of velocity (u,v)=(4,,v,)+(e,,e,) over the search area. The
quantity (e,,e,) is the error associated with the point (u,if) , that is, its deviation
from the true velocity. We can obtain an estimate of the true velocity using a weighted

least-squares approach [46]. This estimate, denoted by U, =(u,,,v,), is given by

> R (u,v)u
Hee = uszRc(u,v) ’
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ZZRC (u,v)v
Ve =SSR )

where the summation is u,v=-2,-1,0,1,2. For example, the u, andv,

(4.8)

corresponding to the response distribution of Fig 4.3(c) is (0.35,-0.42).
After finishing the calculation of the velocity field, we can find the mean
velocity of the area we set. Finally we are able to find the maximum difference with

the mean velocity, and that is the target we need.

1 1
diff = Z Z[U(x +i,y+ j)—-mean x|’ +[V(x+i,y+ j)—mean_y]’ (4.9)
i=—1 j=-1
where U(x, y) is the velocity in X direction of 7,(x,y) ; ¥ (x,y) is in Y direction, and

mean _x is the mean velocity in X direction; mearn_y is in Y direction. Fig 4.4

shows the velocity fields of some images.

4.3.4 Computing Range

In order to let this method can realize with real-time, not only downsampling the
information but also checking the computing range of the image are necessary steps.
About downsaping the information, we select M =3, it means the downsampling
factor is 3, to decrease the computing quantity. And about checking the computing
range this way, we set that the ceﬁter is I,(x,y), it is the target position, and one 5x 5
window to find the velocity field in the next image. So the iteration numbers of the

next image will be decreased to 25 times, i.e., And we can decide the search range
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from equation (4.10). Some velocity fields as follows :

70 r v

601 . C
501 : e

401 - ) ]

30} 4
i

20| . . ]

10}

0 20 40 60 80

Fig. 4.4 The velocity fields of some images.

u2=x+5
ul=x-5
V2=y+35

4.10
vi=y-5 ( )
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4.3.5 Target Recognition

Although we constrain the loop times 25 times in every image, that is our
assumption that the target motion is continuous in the image sequence. For this
problem, building one decision rule is necessary. And we discover that the difference
of the target and the mean velocities, it denotes diff, will be greater than 1, in the
situation that the target is real. To the contrary, if the diff value is smaller than 1, we
couldn’t decrease the iteration numbers to 25, and we must restart the whole image

again to make sure the result correctness.

4.3.6 Experiinental results

In this section, we use another method to detect the target, and Fig 4.5 shows
some final result. We obtain these images per %0 second one image. In all of this
sequence, we obtain more than 7000 images, and the rate of success is higher than
98.5% based on the viewpoint of the velocity field. So the\ detection of the target is
workable by this method. Fig. 4.5 shows some results by this method, because it is
based on the velocity field, if the target velocity is different from the background
velocity, even the target is not the lightest pixel in the image, we still can find out the

target in the most case. Even if the iteration number reaches the upper bound, we still



velocity, even the target is not the lightest pixel in the image, we still can find out the
target in the most case. Even if the iteration number reaches the upper bound, we still
can detect the target in one second. In the future, we wish that more testing videos can

be provided to test the proposed algorithm.
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Chapter 5

Direction of Arrival Estimation
Based on Phase Differences Using
Neural Fuzzy Network

Estimating the DOA of signals is a significant problem in the field of array signal
processing. Many conventional DOA estimation methods have been proposed,
including the multiple signal classification (MUSIC) method of Schmidt, and the
maximum likelihood (ML) technique. Of both these available methods, the ML
technique has the best performance. Nonetheless, because of the high computational
load of the multivariate nonlinear maximization problem involved, the ML technique
did not become popular. On the contrary, the suboptimal MUSIC method is more
prevalent than the ML technique when the signal-to-noise ratio and the number of
samples are both not too small, because the suboptimal method involves solving only
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a one-dimensional maximization problem and finding a subspace (signal subspace or
noise subspace). However, the MUSIC has to perform the eigen-decomposition.
Hence the major computational burden lies in finding the signal subspace or noise
subspace. In summary, these methods are computationally intensive and difficult to
implement in real time. The DOA estimation is viewed as a mapping problem from a
different view of point in this‘thesis. Therefore, we propose one scheme to cope with
the mapping problems. At first, we propose a six-layered neural fuzzy network (NFN)
with on-line learning and anti-noise abilities. The network structure keeps integrating
expert knowledge (or fuzzy rules) and neural network's learning abilities. There are no
rules initially in the NFN. They are created and adapted as on-line learning proceeds
through simultaneous structure and parameter learning. In the structure learning of the
precondition part, the input space is partitioned in a flexible way according to an
aligned clustering-based algorithm. As to the structure learning of consequent part,
only a singleton value selected by a clustering method is assigned to each rule initially.
The combined precondition and consequent structure learniﬁg scheme can set up an
effective and dynamically growing network. Based on the constructing network, the
associated parameter learning algorithms are derived. The precondition parameters are
tuned by the backpropagation algorithm and the consequent parameters are tuned

optimally by either least mean squares (LMS) or recursive least squares (RLS)



algorithms. Both structure and parameter learning are done simultaneously to form a
fast learning scheme. More notably, only the proper training data need to be provided
from the outside world to achieve the structure and parameter learning without giving
any initial rule in this learning method. To increase the estimation accuracy, we take
the phase differences (PD) from the output of the interferometer as network input.
Therefore, we can realize an optimal neuro-fuzzy estimation system to deal with the
defects of low accuracy, high computational burden, and real-time estimation for the
conventional estimation methods. Finally, the performances comparison of both the
NFN and the RBFN in terms of convergence accuracy, estimation accuracy,
sensitivity to noise, and network size are performed by various examples.

In addition, an optimal identifier is proposed for tackling the emitter
identification problems. The associated learning algorithms is also derived in this
thesis. Similar to the above processing method, we reconsider the préblem of emitter
identification as a mapping problem again. Hence, we construct a three-layered
network éo-called vector neural network (VNN) to identify emitter types. Each of the
input variables is selected by the feature vector which is composed of the upper limit
and lower limit values of the characteristic parameters in detecting signal. The input
feature vectors include the radio frequency (RF), pulse width (PW), and pulse

repetition interval (PRI). Based on the supervised learning algorithm, both
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conventional vector-type backpropagation (CVTBP) and new vector-type
backpropagation (NVTBP) algorithms are introduced and used to derive the
parameter learning algorithms. The parameter learning algorithms are also used o
tune the network parameters, find the optimal connection weights and increase the
correction rate of emitter identification. Capabilities and performances of both
algorithms (CVTBP and NVTBP) are verified and compared by various computer
simulations. Simulation results show that the NVTBP outperforms the CVTBP not
only in terms of convergence rate but also in terms of correction rate. It is seen that
the constructing VNN is feasible to solve the problem of the EID. For the complex
signals, we may add signal parameters as input variables to keep high discrimination

rate in the future. ‘

5.1 The introduction of Vector Neural Network (VNN)

for Emitter Identification

Modern radars have been widely used to detect aircrafts, ships, or land vehicles,
or they can be used for searching, tracking, guidance, navigation, and weather
forecasting. In military operation, radar has become an important equipment and also
used to guide weaponry. Hence, an electronic support measure (ESM) system such as

radar warning receiver (RWR) is needed to intercept, identify, analyze, and locate the



existence of emitter signals. The primary function of the RWR 1is to warn the crew of
an immediate threat with enough information to take evasive action. To accomplish
this function, a powerful emitter identification (EID) function must be involved in the
RWR system. As the signal pulse density increases, further demands will be put on
the EID function. Clearly, the EID function must be sophisticated enough to face the
complex surroundings [47].

Many conventional signal recognition techniques including k-nearest neighbor
classification and template matching rely on algorithms which are computationally
intensive and require a key man to validate and verify the analysis [48]. At present, a
histogramming approach is accessed by radio frequency (RF), pulse width (PW), and
pulse repetition interval (PRI) of the collected pulse descriptor words (PDWs). This
approach is used in a current EID system designed for sorting and comparing
tabulated emitter parameters with measured signal parameters. However, these
techniques are inefficiency and time-consuming for solving EID problems; they are
often difficult to identify signals under high signal density énvironment in near real
time.

For many practical problems, including pattern matching and classification,
function approximation, optimization, vector quantization, data clustering and

forecasting, neural networks have drawn much attention and been applied
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successfully in recent years [48]-[51]. Neural networks have a large number of highly
interconnected nodes that usually operate in parallel and are configured in regular
architectures. The massive parallelism results in the high computation rate of neural
networks and makes the real-time processing of large data feasible. In this chapter, the
EID problem is considered as a nonlinear mapping problem. The input features,
including RF, PW, and PRI, are extracted from PDWs. Since the values of these
features vary in interval ranges in accordance with a specific radar emittér, a vector
neural network (VNN) is proposed to process interval-value input data. The VNN can |
accept either interval-value or scalar-value input and produce scalar output. The
proposed VNN is used to construct a functional mapping from the space of the
interval-value features to the space of emitter types. The input and output of the VNN
are related through interval arithmetics. To train the VNN, a suitable learning
algorithm should be developed. The training goal is to find a set of optimal weight; in
the VNN such that the trained VNN can perform the function described by a training
set of if-then rules. Most existing learning methods in neurél networks are designed
for processing numerical vdata [52]-[54]. Ishibuchi and his colleagues extended a
normal (scalar-type) backpropagation (BP) learning algorithm to the one which can
train a feedforward neural network with fuzzy input and fuzzy output [55]. This BP

algorithm was derived based on an error function defined by the difference of fuzzy
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actual output and the corresponding nonfuzzy target output through fuzzy arithmetics.
Similar to their approach, we derive a vector-type BP algorithm for training the
proposed VNN. Although this algorithm can train the VNN for the if-then-type
training data, it has the problems of slow convergence and bad local minima as a
normal scalar-type BP algorithm does. To obtain better learning results and efficiency
for the VNN, we further propose a modified vector-type BP algorithm derived from a
different form of error function. This learning algorithm has higher convergence rate
and is not easily stuck in bad local minima. After training, the VNN can be used to
identify the emitter type of the sensed scalar-value features from a real-time received
emitter signal. The representation power of the VNN and the effectiveness of the
modified BP learning algorithm are demonstrated on several EID problems, including
the two-emitter identification problem and the multi-emitter identification problem

with/without additive noise.

5.2 Problem Formulation

In general, the problem of emitter signal classification is performed in a two-step
process as illustrated in Fig. 5.1. The first step is called deinterleaving (or sorting),
which sorts received pulse trains into *‘bins" according to the specific emitter from the

composite set of pulse trains received from passive receivers in the RWR system.
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After deinterleaving, the second step is to infer the emitter type by each bin of
received pulses to differentiate one type from another type. A pulse descriptor word
(PDW) is generated from the sorting process. Typical measurements include radio
frequency (RF), pulse width (PW), time of arrival (TOA), and pulse repetition interval
(PRI) as illustrated in Fig. 5.2. Thus, a PDW describes a state vector in a
multidimensional space. The primary focus of the chapter will be on the problem of
emitter identification (EID). Emitter parameters and performance are affected by the
RF band in which they operate. Likewise, the range of frequency band chosen for a
specific emitter is determined by the radar's mission and specifications. The frequency
infomation is very important for both sorting and jamming. By comparing the
frequency of the received pulses, the pulse trains can be sorted out and identified for
different radars. When the frequency of the victim radar is known, the jammer can
concentrate its energy in the desired frequency range. The parameter PW can be used
to provide coarse information on the type of radars. For example, generally speaking,
weapon radars have short pulses. Another parameter of intefest in ‘electronic warfare
(EW) receiver measurements is the PRI. The information is the time difference
between the leading edge of consecutive transmission waves and is the reciprocal of
pulse repetition frequency (PRF). The parameter varies for different radars.

In this chapter, the EID problem is considered as a nonlinear mapping problem,
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the mapping from the space of feature vectors of emitter signals to the space of
emitter types. The three parameters, RF(x1), PRI(x,), and PW(x3), are used to form the
feature vector [x, x, x3] in this problem.

Such a nonlinear mapping function can be approximated by a suitable neural

network. However, these parameters operate in interval ranges for a specific radar

emitter; for example, RF ranges from 15.6 GHz to 16.6 GHz, PRI ranges from 809 us
to 960 us, and PW ranges from 1.8 us to 3.6 us for some speciﬁq emitter type. To
endow a neural network with the interval-value processing ability, we propose a
vector neural network (VNN) which can accept either interval-value or scalar-value
input and produce scalar output. In the training phase, the VNN is trained to form a

functional mapping from the space of interval-value features to the space of emitter

types based on N, samples of training pairs (ip;d P) for the EID problem, where
p=1,..., N, indicating the pth training pair, X, =[%,,,X,,,%,;]. In each training pair,
%, is an interval value represented by [xf,,.,x;',.], and d, is a m-dimensional {0,1}
vector containing only one 1 to indicate the emitter type améng m candidates. Hence,
the VNN has 3 input nodes with each node receiving one feature's value, and m output
nodes with each node representing one emitter type. The input-output relationship of
the VNN is denoted by

A

Y, =Sf&,) G.1)
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where y, is a m-dimensional vector indicating the actual output of the VNN, and

f represents the approximated function formed by the VNN. More clearly, the VNN

is trained to represent the EID mapping problem in the following if-then form:

IF x, is in [x,,x,] and ... and x,, is in [x,,x),
THEN x, =[x,,,...,x,,] belongs to C, (5.2)

where Cy, denotes the kth emitter type.

The objective of learning is to obtain an approximated model f () for the
mapping in Eq. (5.1) and Eq. (5.2) such that the error function indicating the
difference between d, and y,, p=l1,...,N, is minimized. Two different error
functions are used in this chapter, one is the common root-mean-square error function,

and the other is

N,
Ew)=-Y{d,Iny, +(1-d,)In(l-y )} (5.3)

p=1
After training, the trained VNN can be used in the functional phase or the so-called
testing phase. In this phase, the VNN on-line accepts a feature vector, x =[x,,x,,x,]

containing scalar values x; from the sensors, and produces an output vector y,

with the highest-value element in y , indicating the identified emitter type.

5.3 Structure of Vector Neural Network (VNN)

In this section, we shall introduce the structure and function of the vector neural
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network (VNN) which can process interval-value as well as scalar-value data. Before
doing so, let us review some operations of interval arithmetic that will be used later.
Let A=[a", a"] and B=[b", bY]$ be intervals, where the superscripts L and U
represent the lower limit and upper limit, respectively. Then we have

A+B={la", a" B+ b", b B={[ a"+b",a"+b" ]

and

[kaLl kat], if k20

k-A=k- L, v ={[k L:k 1=
A=k[ a", a’ I ={ka" ka"}] {[kal,kau],ifk<0,

where $k$ is a real number. The activation function of a neuron can also be extended to an interval

input-output relation as

f(Net,)= f([Net,,Net,]) =[ f (Net,), f (Net,)],

U

where Netl.n = [Netl.l;i ,Netin] is interval-valued and f() is a sigmoid function. The

sigmoid function is denoted by f (Netl.n) =1 (1+ exp(~Ne ‘) ) The interval
activation function defined by Eq. (5.6) is illustrated in Fig. 5.2.

We shall now describe the function of the VNN using the above interval arithmetic
operations. The general structure of VNN is shown in Fig. 5.3, where the solid lines
show theforward propagation of signals, and the dashed lines show the backward
propagation of errors. In order to identify any n-dimensional interval-value vector, we

employ a VNN that has n input nodes, | hidden nodes, and m output nodes. When the

interval-value input vector )’épn) is presented to the input layer of

Xp= (xpl""’
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VNN, the input-output relation of each node of VNN is explicitly calculated as

follows, where X . =[x L. U]
pi pi

pi
Input nodes: Each input node just passes the external input, J?pi =[x L X MY 1
pi pi
i=1,..., n, forward to the hidden nodes.
Hidden nodes:
~ L U
: t t , j=1.. 5.7
2 =ler s 1=1f (netry), f(neth ), j= (5.7)
net, = Z WX, + ) WX, +0, (5.8)
(’)zo (’)<o
net, = Z WOx+ D WOt +6), (5.9)
_(')zo “)<o
Output nodes:
~ L U L U
.= ,Z =[f(net™,), f(net , k=1...m 5.10
5y = oot =L et ), f et ) (5.10)
net!, = Z WX, + z wyx, +6,, (5.11)
{j.%)zo (Z?ko
L] &
net, = Z wixy + ), wia, +6, (5.12)

where the weights Wﬁ'li)’ wl(gz') and the biases 9J., 6’k are real parameters and the

outputs Epj , and )”zpk are intervals. It is noted that the VNN can also process

scalar-value input data by setting XL =3V = ., where x_.is the scalar-value
pr pr pl pt

input. Correspondingly, the VNN can produce scalar output, yL ok ygk pk '
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5.4 Supervised Learning Algorithms for VNN

In this section, we shall derive a conventional vector-type backpropagation
(CVTBP) learning algorithm and a new vector-type backpropagation (NVTBP)
learning algorithm for the proposed VNN with interval-value input data. The

comparisons ofthese two methods are also made.

5.4.1 Conventional Vector-Type Backpropagation Learning

Algorithm

In this subsection, a cost functioh, E

e is defined, using the interval output

] and the corresponding desired output d

e for the pth input

~ _c.L U

pattern, as
_vL 32 =
(dpk ypk) /2, if dpk_1

E

= _ (5.13)
pk _JU 2 ifd =0
(dpk ypk) /2, pk

for the case of an interval-value input vector and a crisp desired output.

The training of VNN involves the minimization of the cost function in Eq.(5.13). As

@

in the BP algorithm, the weight changes Aw K

)and Awg.ll.) are updated according to

the following rules:

2) _ 2 _ (2)
pe@er=a MD@Own (OF, 100)), (5.14)
Aw(j?(ml):a Aw(jll.)(t)ﬂy (—aEpk/awS.?), (5.15)
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where 7] is the learning rate, $\alpha$ is the momentum constant, and the gradient

can be derived by the chain rule:

P Lok o 516
ow of ow '

where /' is the activation function. The weight updating rules for the VNN are

illustrated in Fig. (5.4). Tb show the learning rules, we shall calculate the computation

oE
of 6p k layer by layer along the dashed lines in Fig. (5.3), and start the derivation
&)

from the output nodes.
OE k
Layer 3: Using Eqgs. (5.10)-(5.13) to calculate ——%— for various values of the
aw( .)
kj
weights and desired output.
1.If d , =land w(z.) >0, then
pk ki
OE
pk L. L L L a L L
— - =—(d _, - 1- .= =0 . .
@ = e TV kY ) = Oy G179
ki
L L
oy of (net”,)
where pl]f = pk ; and f(neth) = 1 L -
6netp . 6netp X p a+ exp(—-netp . ))
)
2.If d , =land w,.” <0, then
pk b
OE
pk _ gL U, (5.18)
O k™D
W, .
kj



2)
3, If d k—Oand wlg >0, then

aEpk U.U U.U., UU

——(d . - 1- R
@ @k =% o pe 1= Y iV gy = =0 i

U U
aypk _af(netpk) U 1
where T = . y and f(netpk) = . U -
anetpk netpk ( +exp(—netpk))
4.If d , =0and w() 0, then
. Pk 2
OE
pk U L .
aw(z) = 5pkzpj’ (5.20)
ki

Layer 2: Using Egs. (5.7)-(5.9) and (5.13) to calculate for different values of the

weights and desired output.

RO
“I

(1)

1.If d >0 and wﬁ >0, then

OF
pk JOL I L oL DL LI

=—(d - - = (1-z_.
2D ( pk =7 pk)y pk( pk) K PJ( pj)xpz 5pkwlq' Zpi pr)xpi’
Jt

(5.21)
2.If d | =1, w(2.) >0 and co(.l.) <0, then
pk kj Ji
oE
pk L (L, L.U
(1) pkwkj zpj(l ij)xpi’ (5.22)
jl
3.If dpkzl, wggz.) <0 and (.og.li) >0, then
oE
Pk _ 5L 4PV - UNY (5.23)

PR T A
Ji
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4.If d | =1, w(z.) <0 and w(.l.) <0, then
pk ki Ji
OE
pk (2) L U. L
_sk 1—z7. )
PROIID o A 2 s (5:24)
jl

5.1f d,, =0, ij(z) >0 and wﬁ(l) >0, then

OF Uyy Uimy Uy @z U=z U)x U
ow, 5 = o =V W A=y Wy "z (=2, )%, (5.25)

A U (2 _ Up_ _ U U
- 5pk W  Zy a Zpj )xpi

6.1f d, =0,w;” 20 and w,” <0,then

=8, w2, (-2, )x," (5.26)
7.1 d, =0,w, " <0andw,” >0, then
=8, w,? 2, 1=z, )x," (5.27)

8.1f d,, =0,w, " <0andw,” <0, then

BE L L U
ow, (1) 5 WkJ 2y (=27 )%, ' (5.28)
oF oE, oy, (5.29)
L k k k L L
O = 5netp T apr 6ne; 7= (=Y W (l"yP"L)’
pk pk
OE CE ay
5pkUé ok _ “Epk pk _( e = Vot )ypk 1- Yok ) (5.30)

anetpku 6ypk 6net

Clearly, the value of §,, is proportional to the amount of(d , =¥, )y, (1= ,.) -
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5.4.2 New Vector-Type Backpropagation Learning
Algorithm
The aim of this subsection is to modify the CVTBP learning algorithm derived in
the last subsection to enhance the identification power of VNN. To achieve this, we

propose another error function instead of the squares of the differences between the

actual interval output y;k and the corresponding desired output d;k as in Eq.(5.13),

where the subscript pk represents the pth input pattern and kth output node. The new

error function is defined as

L L .
) {——dpk Iny,” -(1-d,)nl-y,"), ifd,=1 531)

E kT .
" |-dyny,’ -1-d,)h(1-y,"), ifd,=0.
The meaning of this error function will be described later. The learning objective is to

minimize the error function in Eq.(5.31). In the new vector-type backpropagation
(NVTBP) learning algorithm, the partial derivative of E,, withrespectto y, is,

OF

pk pk

d, 1-d,
L Tt L
aypk ypk 1- ypk
. (5.32)
ypk _dpk

(1 - dpk)ypkL ’ .

and

OE

pk

d

Pk

) 1-d,

a.ypku ypkU 1-— ypkU
" (5.33)
ypk _dpk

(1 - dpk)ypkU ’

Likewise, Eqgs. (5.14) and (5.15) describe the weight changes Aw,®and Aw,” in
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the modified BP algorithm. We shall calculate the values of OF,, / kaj(z) for each
connection from the hidden la.yer to the output layer. Similarly, we shall calculate the
values of OF,, / 6wﬁ(1) for each connection from the input layer to the hidden layer.
Then the connection weights are updated according to these gradient values. The

procedure of the derivation is layer by layer along the dashed lines in Fig. 4, and start

the derivation from the output nodes.
Layer 3: Using Egs. (5.10)-(5.12), (5.32), and (5.33) to calculate 0E,, /dw,” for
different values of the weights and desired output.

LIf d,, =1,w," 20,then

L L
5ij(2) = ow,® {_dpk Iny,”-(1-4d,)In(l-y, )}
g

_OE, ayp,f 6netpkL
6ypkL 6netpkL 8w,g.(2)
_ (dpk - ypkL)
ypkL(l"ypkL)
Ly, L
- (dpk Vo )ij

A v L L

yu A=y,)z," (5.34)

2.1f d,, =1,w,? <0,then

OF

=~dy~p )z,
ow, > T (5.35)

A v LU
—_5pk ij

3.1f d,, =0,w,” 20,then
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OE, @ v, v
@ =y 2 =y,
_OE, aypk” anetpku
oy, omet,’ 0w
_ (dpk _ypkU)
Yoo, A=3,")

vl A=y, )z, (5.36)

Uy U
=—(dpk =Yk )ij

£ "5'pkU ijU
4.1f d,, =0,w,” <0,then

OE v vy, -
Pk _(d . — -
o, pk = Yok )2 5.37)
é-gp"uzij
Layer 2: Using Egs. (5.7)-(5.9), (5.32), and (5.33) to calculate OE, / awﬁ“) for

different values of the weights and desired output.

LI d,, =1,w,” 20and w,” 20, then

aE k a L L
aw.’j(l) = . ® {"dpklnypk “(l“dpk)ln(l"ypk )}
Ji Ji
_ OE aypkL 6netpkL ayp.L 6netij
ayp,f anetpkL 6yij 6netij awﬁ(l)
CAES
=By 1=y, w2, (-2, ), (5.38)

ypkL(l—ypkL)
= (dpk - ypkL)Wlsi(Z)ijL a- ijL )xpiL

A o LD Ly L L
S0 W, z, (I-z, )x,
2.If d, =1, w,” 20 and w,” <0, then
: pk T g = Ji >

OF :
Ew% =0 w, "z, 1=z, )x,;" (5.39)
Ji

3.1 d,, =1w,” <0and w,” 20,then
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_ L, Uy U\ U
T =0 Wz, 1=z, )x,

4.1 d, =1L, w,? <0 and w,® <0, then

OF ,
o -
ow,

2

vl y_ U Us. L
0o Wy z, (1-2z, )x,

5.1f d,, =0,w,” 20 and w," >0, then

OE o
= Iy — (=)=, )
Ji Ji
O, 0y, Onet, oy,  onet,’

= U U U U )
Oy, Onet, 0Oy, Onet, Ow,

_ (dpk _ypkU)
ypkU(]‘“ypkU)

—_ U (2) U U U
==(dy =Y Wy 2y (=2, )x,

U U 2 U U U
v A=y, w0z, 12, )x,,

A o U (U Uy U
S0 W, z, (I-z, )x,
6.1f d. =0,w.?>0andw.® <0,then
: Pk >TH T Ji >

S U@ Ug Uy L
w0 Ope Wy~ zy; (=2, )%y

Ji
7.1 d, =0,w,” <0and w,” >0, then

OFE

pk

_ U@ Ly L L
o= 5pk Wy Z (1 Z i )xpi
E“ji

8.1f d,, =0,w,” <0andw,” <0,then

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

In the previous discussion, the notations & pkL and 8 " are defined as follows:
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L
L é aE'pk - aEpk aypk
6netpkL ayp,f Onet

S ==y, (5.46)

pk

5' U A aE‘pk _ a‘E‘pk aypku
Pk = 7 U U
Onet, 0y, Onet,

=(dy=Yu ). (5.47)

Clearly, the value of & pis proportional to the amount of (d,, —y)rather than
(i ~Yu)Vu(=y,) as in the conventional BP learning rule. When the actual
output y, (representing ypkL or ypkU) approaches the value of 1 or 0, the factor
¥ (1= y,)makes the error signal§,, very small. This implies that an output node
can be maximally wrong without producing a strong error signal with which .the
connection weights could be significantly adjusted. This decelerates the search for a
minimum in the error. A detailed description of quantitative analysis can be found in.
In summary, the supervised learning algorithm for the VNN is outlined in the
following.
Algorithm NVTBP/CVTBP:

Consider a 3-layered VNN with n input nodes, / hidden nodes, and m output
nodes. The connection weight w ﬁ(l) is from node i of the inpﬁt layer to the jth node of
the hidden layer, and w,g.(z) is from the kth node of the hidden layer to the th node of

the output layer.

Input: A set of training pairs {(x,;d,), p =1,..., N, }, where the input vectors are in interval

1. (Initialization): Choose 7> 0 and E,, (maximum tolerable error). Initialize the

5-21



weights to small random values. Set E=0 and p=1.

2. (Training loop): Apply the pth input pattern X » to the input layer.
3. (Forward propagation): Propagate the signal forward through the network from the

input layer to the output layer. Use Eqs.(4.7)-(4.9) to compute the net input (net ;)

and output (z;j ) of the jth hidden node, and use Eqs.(4.10)-(4.12) to compute the net

input (net ,, ) and output ( y;k ) of the kth output node.

4. (Output error measure): Compute the error signal ¢ ’px from Egs. (4.46) and (4.47),
and compute 6 ’px from Egs. (5.29) and (5.30).

5. (Error backpropagation): Propagate the errors backward to update the weight

changes Aw? between hidden and output nodes by using Eq. (5.14), and update the

j
weight changes Ao between input and hidden nodes by using Eq. (5.15).
6. (One epoch looping): Check whether the whole set of training data has been cycled
once. If p <N, then p=p+1 and go to Step 1; otherwise, go to Step 7.
7. (Total error checking): Check whether the current total error is acceptable; if E <
Emax, then terminate the training process and output the ﬁnél weights; otherwise, set
E=0, p=1, and initiate the new training epoch by going to Step 2.

The above algorithm adopts the incremental approach in updating the weights;
that is, the weights are updated for each incoming training pattern. Finally, the
®

optimal weights W\, and w.)

o Can be obtained through the training procedure and
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expressed by

(1) (1) (6]
Wi W o W,
(1) 1) (0))
wy owd) o w
M _ | Wai 2 2
Wapt - . . ’ . (5.48)
(1) ()] 1)
Wi W ot Wy
and
(2) (2) (2)
W W Win
(2) (2) (2)
w w e W
2 21 22 2
W =| 1 ", (5.49)
(2) (2) (2)
WmI wm2 Wmn

5.5 Simulation Results

In this section, we employ the proposed VNN trained by the modified BP
algorithm to handle the practical emitter identification problems in real-life; i.e., to
map input patterns to their respective emitter types. An input pattern is determined to
belong to the kth type if the kth output node produces a higher value than all the other
output nodes when this input pattern is presented to the VNN. Before the input
patterns are presented to the VNN, the range of each paranieter must be normalized
over the following bound to increase the network's learning ability:

RF :2.0 GHz t§ 18.0 GHz
PRI:1.0us to 100us

PW:0.1uys to 10.0us
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Two problems are examined to demonstrate the identification capability of the
proposed VNN in this section, the two-emitter identification problem and
three-emitter identification problem. The performance is compared to that of the VNN

trained by the conventional BP algorithm on the same training and testing data.

5.5.1 Performance Evaluation without Measurement Error

In this subsection, two experiments are performed for clean input data without
measurement distortion to demonstrate the identification capability of the VNN with
the NVTBP and CVTBP learning algorithms, respectively.

Experiment 1: For the two-emitter identification problem, we employ a VNN with 3
input nodes, 5 hidden nodes and 2 output nodes (denoted By 3-5-2 network). We set
the learning rate as 7 =0.01 and momentum constant as & =0.99 in Egs. (5.14) and
(5.15) of the NVTBP learning algorithm, and 7 =0.05, a=0.9 in Eqgs. (5.14) and
(5.15) of the CVTBP learning algorithm. The 10 input-output training pairs (5 pairs
for each type) are listed in Table 5.1. In the training phase, wé use these training pairs
to train two VNNSs using the CVTBP and NVTBP learning algorithms, respectively,
and find individually a set of optimal weights. In the testing phase, 80 testing patterns
(40 patterns for each emitter type) are randomly selected from the ranges of emitter

parameters and are presented to the trained VNNs for performance testing. Part of
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these testing patterns are shown in Table 5.2. Once a testing pattern is fed to the
trained VNN, the networks identify immediately its emitter type in near real time.
The testing results show that the two trained VNNs achieve high identification rates.
However, the VNN trained by the NVTBP algorithm performs better than the VNN

trained by the CVTBP algorithm; the former achieves an average identification rate of
99.91% and the latter 96.26% as listed in the last row of Table 5.5.

Experiment 2: In this experiment, a three-emitter identification problem is solved by
two 3-8-3 VNNs trained by the NVTBP and CVTBP algorithms, respectively. We
first set the learning constant as 7 =0.02 and momentum constant as @ =0.7 in .both
learning algorithms. The 15 input-output training pairs (5 pairs for each type) as listed
in Table 5.3 are uéed to train the two VNNSs. After training, 120 testing patterns (40
patterns for each emitter type) are presented to the trained VNNs for performance
testing. Part of these testing patterns are shown in Table 5.4. Again, both networks
show high identification capability, where the VNN trained by the NVTBP learning
algorithm achieves an average identification rate of 99.34% nd the other VNN
91.08% as listed in the last row of Table 5.6. In the above t§vo experiments, the results
show that the two-emitter and three-emitter identification problems can be easily
handled by the VNN with the derived NVTBP learning algorithm and the CVTBP

learning algorithm in real time. However, the VNN trained by the NVTBP learning
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algorithm has better identification capability than that trained by the CVTBP learning
algorithm. These experiments are performed for clean input data without
measurement distortion. The robustness of the proposed scheme in noisy environment

is tested in the following experiments.

5.5.2 Performance Evaluation with Measurement Error

In this subsection, two experiments are performed to evaluate the robustness of VNN
with measurement distortion. In these experiments, the measurement distortion is
simulated by adding noise. To perform the testing at different levels of adding
noise, we define the error deviation level (EDL) by

EDL,-(%)=—€-’—’i x100%, i=1,2,3, (5.50)

P

for ith input feature, where { ,; is a small randomly generated deviation for the pth
input pattern.

Experiment 3: First, we consider the two-emitter identification problem with the
input data corrupted by additive noise. The noise testing i)attems are obtained by
adding random noise, { p; (i=1, 2, 3), to each testing pattern ( X 51, X p2, X p3)> P=1,...,
80, used in Experiment 1 to form the noise testing database, (X p1 £ p1, X p2 £ p2s
X p3 £ p3). The noisy testing patterns with different EDLs (from 1 % to 15 %) are

presented to the trained 3-5-2 VNNs in Experiment 1 for performance testing. The
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testing results are shown in Table 5.5.

Experiment 4: In this experiment, ‘we consider the three-emitter identification
problem with the input data corrupted by additive noise. The noise testing patterns are
obtained by adding random noise, { , (i=1, 2, 3), to each testing pattern ( X 1, X p2, X
p3)s P=1,..., 120, used in Experiment 2 to form the noise testing database, (o1 £ 1,
Xp2 & p2 X p3 £ p3). The noisy testing patterns with different EDLs are presented
to the trained 3-8-3 VNNs in Experiment 2 for performance testing. The testing
results are shown in Table 5.6. The testing results in Table 5.5 and Table 5.6 indicate
that, as expected, the VNN's identification ability decreases as EDL increasing in
noisy environments. In conclusion, the proposed VNN trained by the NVTBP
learning algorithm not only has higher identification capability, but is also relatively

more insensitive to noise than that trained by the CVTBP learning algorithm.

5.6 Concluding Remarks

In this chapter, a vector neural network (VNN) along\ with a new vector-type
backpropagation (NVTBP) learning algorithm was proposed to solve the emitter
identification (EID) problem. The VNN can learn the teaching patterns in the form of
interval-value input and scalar-value output in the training phase, and then operate in

the way of scalar-value input and scalar-value output in the testing phase by means of
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interval arithmetics. The main contribution of this chapter is to propose an idea for
integrating the processing of interval-value and scalar-value data into a single
processing system and derive a NVTBP learning algorithm for solving the practical
EID problem in real time. In fact, the proposéd network with the NVTBP learning
algorithm can not only solve the learning problem with interval-value data, but also
improve the convérgence of the CVTBP learning algorithm. The simulated results
show that the proposed VNN can always produce high identification accuracy for the
emitter signals. Also, it was demonstrated that the proposed VNN is quite insensitive
to the additive error. With these results achieved in this chapter, the proposed VNN
may be widely applied to military applications (such as reconnaissance and threat
reaction) for achieving high power of identification for emitter signals to replace the
EID function in the electronics support measures (such as RWR). In this chapter, we
have showed that the proposed VNN can be used for identifying unambiguous
emitters. In the future work, we will use the éxtra parameters of emitters such as angle
of arrival and amplitude to form a new enlarged input featufe vector for handling the
problem of multiple ambiguous emitters; i.e., different types of emitters have similar

characteristics.
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Figure. 5.1 Flow chart of emitter signal
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Figure. 5.2 Interval sigmoid function of each node in the VNN, where
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Layerl: Inputnode

Figure. 5.3 The three-layered architecture of the proposed VNN.
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Figure. 5.4 Nlustration of backpropagation learning rule for the VNN.
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Pattern RF (GHz) PRI (us) PW (us) |Emitter
Number | Lower | Upper | Lower | Upper | Lower | Upper | Type
limit | limit | limit | limit | limit | limit
1 15.6 16.6 8.09 | 9.60 1.80 | 3.60 1
2 4.2 5.0 220 | 450 | 245 | 475 2
3 4.3 4.9 230 | 440 | 2.50 | 4.70 2
4 4.4 4.8 240 | 430 | 2.55 | 4.65 2
5 15.70 | 16.50 | 8.19 | 9.50 1.90 | 3.50 1
6 15.80 | 1640 | 829 | 940 | 2.00 [ 3.40 1
7 450 | 470 | 2.50 | 420 | 2.60 | 4.60 2
8 1590 | 16.30 | 8.39 9.30 2.10 3.30 1
9 16.00 | 16.20 | 8.49 9.20 2.20 3.20 1
10 4.55 460 | 260 | 4.10 | 2.65 | 455 2

Table. 5.1 Input-output training pairs for the two-emitter identification problem in

Experiments 1 and 3.

Pattern RF (GHz) PRI(s) PW (us) Emitter
Number | Lower | Upper | Lower | Upper | Lower | Upper | Type

limit limit limit | limit | limit | limit
15.65 | 15.65 8.09 8.09 1.80 1.80
1570 | 15.70 | 8.12 8.12 1.82 1.82
15.75 | 15.75 8.15 8.15 1.85 1.85
15.80 | 15.80 | &.19 8.19 1.88 1.88
15.85 | 15.85 8.23 8.23 1.91 1.91
1590 | 1590 | 8.25 8.25 1.93 1.93
15.95 | 15.95 8.28 8.28 1.95 1.95
16.05 | 16.05 8.33 8.33 1.99 | 1.99
16.10 | 16.10 | 8.39 8.39 2.03 2.03
10 16.13 | 16.13 8.43 8.43 2.05 2.05
11 4.20 4.20 2.19 2.19 2.45 2.45
12 4.22 4.22 2.24 2.24 2.51 2.51
13 4.23 4.23 2.43 2.43 2.58 2.58
14 4.25 4.25 2.57 2.57 2.62 2.62
15 4.28 4.28 2.68 2.68 2.74 2.74
16 4.31 4.31 2.73 2.73 2.81 2.81
17 4.33 433 | 2.82 2.82 2.85 2.85
18 4.35 4.35 2.91 2.91 2.98 2.98
19 4.38 4.38 3.03 3.03 3.05 3.05
20 4.43 4.43 3.13 3.13 3.15 3.15

OO0 (N[N fWwWiNdjm-—

NN N NI D[N DD | 1 | ot |yt { et | et | e | pord | o | ot | ot

Table. 5.2 Part of the testing samples for the two-emitter identification problem in

Experiments 1 and 3.
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Pattern RF (GHz) PRI(us) PW (us) Emitter
Number | Lower | Upper | Lower | Upper | Lower | Upper | Type

limit | limit | limit | limit | limit | limit
15.6 16.6 8.09 9.60 1.80 3.60
4.20 5.00 2.20 4.50 2.45 4.75
4.30 4.90 2.30 4.40 2.50 4.70
16.35 | 17.45 | 5.05 6.90 5.35 7.85
15.70 | 16.50 | 8.19 9.50 1.90 3.50
15.80 | 16.40 | 8.29 9.40 2.00 3.40
1645 | 1735 | 5.15 6.80 5.45 7.75
16.55 | 17.25 | 5.25 6.70 5.55 7.65
4.50 470 2.50 4.20 2.60 4.60
10 15.90 | 16.30 | 8.39 9.30 2.10 3.30
11 16.00 | 16.20 | 8.49 9.20 2.20 3.20
12 16.75 | 17.15 | 5.35 6.60 5.65 7.55
13 4.40 4.80 2.40 4.30 2.55 4.65
14 16.85 | 17.05 | 5.45 6.5 5.75 7.45
15 4.55 4.60 2.60 4.10 2.65 4.55

Qoo ||| Wit |-

N WIN[W = =W W] =W —

Table. 5.3 Input-output training pairs for the three-emitter identification problem in
Experiments 2 and 4.
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Pattern RF (GHz) PRI (1w s) PW (us) Emitter

Number | Lower | Upper | Lower | Upper | Lower | Upper
limit | limit | limit | limit | limit | limit
15.65 | 15.65 | 8.09 8.09 1.80 1.80
15.70 | 15.70 | 8.12 8.12 1.82 1.82
1575 | 1575 | 8.15 8.15 1.85 1.85
15.80 | 15.80 | 8.19 8.19 1.88 1.88
15.85 | 1585 | 8.23 8.23 1.91 1.91
1590 | 15.90 | 8.25 8.25 1.93 1.93
1595 | 1595 | 8.28 8.28 1.95 1.95
16.05 | 16.05 | 8.33 8.33 1.99 1.99
16.10 | 16.10 | 8.39 8.39 2.03 2.03
16.13 | 16.13 | 8.43 8.43 2.05 2.05
4.20 4.20 2.19 2.19 2.45 2.45
4.22 4.22 2.24 2.24 2.51 2.51
4.23 4.23 2.43 2.43 2.58 2.58
4.25 4.25 2.57 2.57 2.62 2.62
4.28 4.28 2.68 2.68 2.74 2.74
431 4.31 2.73 2.73 2.81 2.81
4.33 4.33 2.82 2.82 2.85 2.85
4.35 4.35 291 291 2.98 2.98
4.38 4.38 3.03 3.03 3.05 3.05
16.35 | 16.35 | 5.05 5.05 5.35 5.35
1641 | 1641 | 5.13 5.13 5.42 5.42
1645 | 16.45 | 5.17 5.17 5.55 5.55
16.51 | 16.51 | 5.25 5.25 5.88 5.88
16.55 | 16.55 | 5.28 5.28 5.91 5.91
16.61 | 16.61 | 5.35 5.35 5.93 5.93
16.65 | 16.65 | 5.39 5.39 5.95 5.95
16.69 | 16.69 | 543 5.43 5.99 5.99
16.72 | 16.72 | 5.59 5.59 6.03 6.03
16.83 | 16.83 | 5.63 5.63 6.05 6.05
4.43 443 3.13 3.13 3.15 3.15

g
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Table. 5.4 Part of the testing samples for the three-emitter identification problem in

Experiments 2 and 4.
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3-5-2 VNN trained by the 3-5-2 VNN trained by the

Error

Deviati

on Average Correction Total Average Correction Total

Average Average
Level S .
Typ@ Type Correctlon Type Type Correctlon

15 99.5 99.8 99.7 88.0 94.0 91.0
13 99.9 99.8 99.9 93.0 94.4 93.7
11 99.9 99.8 99.9 95.0 94.6 94.8
9 99.9 99.8 99.9 96.1 94.8 95.4
7 99.9 99.8 99.9 96.7 94.9 95.8
5 99.9 99.8 99.9 97.0 95.0 96.0
3 99.9 99.8 999 97.1 95.1 96.1
1 99.9 99.8 99.9 97.2 95.1 96.2
0 99.9 99.8 99.9 97.3 95.2 96.2

Table. 5.5 Testing results of the 3-5-2 VNN on the two-emitter
identification problem with/without noise.
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3-8-3 VNN trained by the

3-8-3 VNN trained by the

Error

Pevmt Average Correction Total Average Correction Total

ion Average Average

Level Type | Type | Type |Correction | Type | Type | Type |Correction
15 63.0 | 89.3 | 74.8 75.7 57.8 | 87.9 | 70.7 72.2
13 72.2 | 90.3 74.9 79.1 59.0 89.3 70.8 73.1
11 742 | 922 | 749 80.4 60.0 | 90.2 | 709 73.7
9 79.1 | 93.7 | 79.3 84.0 608 | 92.1 | 755 76.1
7 86.3 | 96.1 | 858 89.4 67.1 | 93.1 | 80.5 80.2
5 96.0 | 97.9 94.1 96.0 75.1 94.0 | 88.6 85.9
3 993 | 99.3 | 99.6 99.4 80.5 | 94.8 | 92.1 89.1
1 99.6 | 99.8 | 99.9 99.8 82.7 | 954 | 937 90.6
0 99.6 | 99.9 | 99.9 99.8 83.3 | 95.8 | 94.0 91.0

Table 5.6: Testing results of the 3-8-3 VNN on the three-emitter
identification problem with/without noise.
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Chapter 6

Conclusion

In last year, we proposed an algorithm for the target detection from infrared images,
and detected the target in two parts. Firstly, the infrared images obtained from an
immovable camera would be discussed by using the image difference, run length, and

-image thresholding. Secondly, detect the target from images obtained from a movable

camera; according to the result, the rate of success is higher than 98%. In this year, in
order to improve the system efficiency, we proposed another method that based on the
velocity differences of the image objects. By this method, the detection correctness
rate is more than 98.5%.

Compare these two methods, the proposed method is more efficient. The former

assumes the target is the lightest pixel in the image. However the lightest pixel is not
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always the target, it might be something else. At the beginning, it must take more than
two images to find the real target. In this year we decrease the brightness effect to the
image, and it needs only two images to find out the target. Even the target detection is
wrong, we still can detect correctly in less one second.

About the guidance system, we have proposed a neural fuzzy scheme for estimating
the -direction of arrival of moving targets based on the phase differences from an
interferometer. In addition, to avoid the discontinuities caused by the input phase
transition, we use the quadrature representation of the phase differences. Unlike
conventional eigen-based DOA estimator, the proposed scheme requires no large
amount of computations and does not need to model signal. With these results
achieved in above chapter, th¢ proposed neural fuzzy scheme could be widely applied
to military applications (such as reconnaissance and threat reaction) for achieving
high accurate DOA for certain electronics support measures. As the targets move,
their motion is tracked through a SONFIN which uses the data provided by the most

recent output of the sensor array to update the existing estimate of target angles.
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