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摘要
利用最佳化方法設計類神經網路的結

構參數，可以提升類神經網路的效能。本
研究計畫利用最佳化方法中的田口方法與
實驗設計法，進行類神經網路中結構參數
的最佳化設計。在最佳化過程之前，使用
者須先選擇一個適合的類神經網路模型，
而後再依據此類神經網路模型定義最佳化
問題的形式。在最佳化過程中，本研究計
畫將先利用田口方法找出較重要的結構參
數，然後再利用實驗設計法分析這些重要
的結構參數對類神經網路效能的影響。最
後，經過最佳化設計的類神經網路模型應
用在自行車傳動系統的測試系統上。

ABSTRACT
The integration of neural networks and 
optimization provides a tool for designing 
the network parameters and improving the 
network performance.  In this study, the 
Taguchi method and Design of Experiment 
(DOE) methodology are used to optimize the 
network parameters.  The users have to 
recognize the application problems and 
choose a suitable Artificial Neural Network 
(ANN) model.  Then, the optimization 
problems can be defined according to the 
model.  The Taguchi method is first applied 
to the problem for finding the more 
important factors.  Then DOE methodology 
is performed for further analysis and 
forecast.  An LVQ example is demonstrated 
for the application to bicycle derailleur 
systems.
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INTRODUCTION
Artificial Neural Networks (ANNs) are 

receiving much attention currently because of 
their wide applicability in research, medicine, 
business, and engineering.  ANNs offer 
improved performance in areas such as 
pattern recognition, signal processing, 
control, forecasting, etc.

In this study, a systematic process is 
introduced to obtain an optimum design of a 
neural network.  The Taguchi method and 
the Design of Experiments technique (DOE)
(Montgomery, 1991) are the main techniques 
used.  Unlike previous studies, the Taguchi 
method is used here to simplify the 
optimization problems.  Then, DOE is more 
easily  performed.  Because of the 
stronger statistical basis of DOE 
methodologies, many analyses can be 
executed.  Finally, a Learning Vector 
Quantization (LVQ) network is demonstrated 
as an example.  The method proposed in 
this paper can also be applied to any ANN 
model.  The integration of optimization and 
ANNs in this paper was simulated by a 
computer program which can be executed 
automatically and easily.  

THE EXAMPLE
In order to demonstrate the optimum 

design processes, an application with a 
Learning Vector Quantization (LVQ) model 
is shown.  In this example, the purpose is to 
distinguish the type of chain engagement to 
be used in the rear derailleur system of a 
bicycle.

1. Problem descr iption
The derailleur system in a bicycle is 

similar to the gear box in a motor vehicle.  
A complete derailleur system, as shown in 
In derailleur system designs, two types of 
chain engagement, Type I and Type II, have 
to be considered (Wang et al., 1996).  The 
chainwheel and freewheel sprocket design of 
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the two types are different; therefore, it is 
very important for the designers to know 
which type occurs during each gear shift.  
So, the different design defects for the two 
types can be found and improved.

In a real riding or testing environment, it 
is very difficult to distinguish which type of 
chain engagement occurs.  There must be a 
camera for monitoring purposes.  This costs 
a lot of money and it is not very easy to 
install.  The purpose of this example is to 
establish a better and easier method to 
distinguish the chain engagement type during 
gear shifts, using a neural- network model.

The data fed to the network are 
transferred from the time domain to the 
frequency domain by the FFT technique 
(John and Dimitris, 1996).  In gathering 
training data, if the tooth numbers of two 
adjacent sprockets are both even and the 
tooth number of the chainwheel sprocket is 
also even, only one type of chain engagement 
will occur.  If only one chain link is shifted 
from the previous situation, another type will 
occur.

2. Choosing an ANN model
In supervised learning models, an LVQ 

example like that shown in Fig. 7 is selected 
because of this fast training speed, no local 
minimum traps and better performance in 
classification (Patterson, 1996).  The LVQ 
is the transformation from the input vector x
of dimension n to known target output 
classifications t(x)=t, where each class is 
represented by a codeword or prototype 
vector iw  (i=1, 2, ..., m).  The index i is 
the class label for x.  Let C(x) denote the 
class of x computed by the network; cw  is 
the weight vector of the winning unit c.  
Then, C(x) is found using 

  xwxw iic −=− min .

When the class is correct, i.e. C(x)=t, 
the weight vector of the winning unit c is 
shifted toward the input vector.  When an 
incorrect classification is selected, i.e. C(x)≠t, 
the weight vector is shifted away from the 

input vector.  The update rule for the LVQ 
can be summarized as follows:

1) Initialize the weights w to small 
random numbers.

2) Find the prototype unit to represent x
by computing
   xwxw iic −=− min .

Update the weight vectors 
according to
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coefficients of two different cases.
3) Repeat steps 2 and 3 until the weights 

stabilize.

3. Define the optimization problem
The optimal physical problem can be 

covered by a mathematical model of design 
optimization involving the procedures below.

1) Choose design variables.  In this 
example, the chosen design 
variables from the LVQ network 
parameters are the number of input 
units, +α  and −α , and the weight 
initialization range.  The number 
of input units is a discrete design 
parameter, +α  and −α  are 
continuous design parameters, and 
the weight initialization range is a 
qualitative design parameter.

2) Define an objective function: The 
objective function in this example 
is defined as the grouping error of 
the network,
 cost function = ),)(( i

i
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and i=1 to the size of the training 
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data.  The output of interest of this 
example is a “smaller-the-better” 
quality characteristic.

3) Identify constraints. A suggested 
range of design variables from the 
solver SNNS (Zell, 1995) will be 
described in next section.

4. The Taguchi Method
The theories and principles used in the 

Taguchi Method (Taguchi, 1986; Peace, 
1993) will not be described in detail; only the 
key points and analyzed results are shown 
below.    

1) For the number of input units; the 
vibration signals during 
gear-shifting are transformed into 
the frequency domain by the FFT to 
256 data points. Therefore, in this 
factor (the number of input units), 
three levels (256, 128 and 32 points)
are selected.

2) 3.0,05.0 ≤≤ −+ αα  is assumed,
and three levels (0.05, 0.1 and 0.3) 
are selected. 

3) For the weight initialization range, 
a small range is suggested from the 
software (Zell, 1995).  Therefore, 

5.0  and  3.0  ,1.0 ±±±  are 
selected.

After the factors and levels are 
determined, a suitable orthogonal array can 
be selected for the training process.  Table  
is the )3( 4

9L  orthogonal array for the 
factors and levels in this example.  For 
instance, in the first training experiment, 
there are 256 input units, +η  and −η  are 
set to 0.05, and the weight initialization 
range is between +0.1 and -0.1.  After nine 
training experiments have been made, the 
grouping errors of the 80 training data are 
summarized in Table 1.  Because there are 
no local minimum traps in this model, 
replicate training is not needed for the same 
parameters.  For some other models, the 
final results may be affected by different 
initial designs.  Therefore, replicated
training is necessary for the following S/N 

analysis. 
The last column in Table 1 is the 

signal-to-noise ratio (S/N).  The equation 
for calculating the S/N for the 
smaller-the-better quality characteristic is 
Equation A.1.  In this example, there is only 
one replicate, therefore, the physical meaning 
of S/N is similar to the grouping errors in 
Table 1.  The grouping errors are used here 
instead of S/N for easier understanding.

The next step in the Taguchi method is 
Level Average Analysis.  The goal is to 
identify the strongest effects, and to 
determine the combination of factors and 
levels that can produce the most desired 
results.  Table 2 is the response table, which 
shows the average experiment at result for 
each factor level.  The total effect of the 256 
input units is 16.  This is the average 
grouping error of the first three rows in Table 
2 ((1+14+80)/3=16).  Other response values 
can be calculated by using a similar method.  
For the number of input units, 256 units can 
get a smaller grouping error than other levels.  
The same principle can be used to make +η
and −η  equal to 0.05, and the weight 
initialization range to be between +0.3 and 
-0.3.  Therefore, the recommended factor 
levels are: 256 input units, 05.0=+η , 

05.0=−η  and a weight initialization range 
of 3.0± .

CONCLUSIONS
Optimization techniques have been 

widely used in many applications.  In this 
paper, two major categories, the Taguchi 
method and the DOE methodology, are 
applied to improve one the original designs
of ANNs.  The users have to recognize the 
design problem and choose a suitable ANN 
model.  Then, the optimization problems 
can be defined according to the model.  The 
Taguchi method is first applied to find the 
more important factors, and to simplify the 
design problems.  DOE methodologies are 
then used to find the sensitivity and a more 
precise combination of design parameters.  
The final results of the examples introduced 
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in this study indeed improve the initial 
designs and get a better performance.

Although only one ANN model, LVQ, 
is demonstrated in this paper, other models, 
such as ADALINE, MADALINE, Hopfield 
Networks, MLFF, Boltzmann Machines, 
Recurrent Neural Networks, Neocognitrons, 
etc., are also suitable.  Many benefits can be 
mentioned.  First, this is a systematic 
method to use for a neural-network design.  
It means that the engineer, whether or not he 
or she is experienced in ANN, the Taguchi 
method and DOE, can follow this process 
easily.  Many commercial software 
packages can be applied, such as SNNS in 
ANN and SAS in the DOE.  Second, it will 
not take too much computational effort and 
time.  The results of the demonstrated 
examples can be obtained within 5 minutes 
with a Pentium-150 PC.  This detail was not 
emphasized in this paper because it is not the 
major concern here.  Finally, in engineering 
applications, it is not necessary to get a 
global optimization of the problems, because 
that takes too much time or the algorithms 
may be very complicated.  The 
improvement of the original designs in an 
acceptable region is helpful for engineers.
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Input Units +η −η Weight Initial 
Range

Grouping 
Error S/N

1 256 0.05 0.05 1.0± 1/80 19.03 dB

2 256 0.1 0.1 3.0± 14/80 7.56 dB

3 256 0.3 0.3 5.0± 34/80 3.72 dB
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4 128 0.05 0.1 5.0± 18/80 6.48 dB

5 128 0.1 0.3 1.0± 34/80 3.72 dB

6 128 0.3 0.05 3.0± 5/80 12.04 dB

7 32 0.05 0.3 3.0± 35/80 3.59 dB

8 32 0.1 0.05 5.0± 43/80 2.70 dB

9 32 0.3 0.1 1.0± 33/80 3.85 dB

Table 1  Training results.

Factor Level Error Factor Level Error

256 16 0.05 16
128 19 0.1 22Input units

32 37

−η

0.3 34

0.05 18 1.0± 23

0.1 30 0.3± 18+η

0.3 34

Weight 
initial range

5.0± 32

Table 2  Response table.

Source Sum Square Degree of 
Freedom Mean Square F0 Pr > F

+η 141.56 2 70.78 0.42 0.6827
−η 205.56 2 102.78 0.61 0.5868

Error 673.11 4 168.27

Total 1020.23 8

Table 3  The ANOVA table.
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