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ABSTRACT

The integration of neural networks and
optimization provides a tool for designing
the network parameters and improving the
network performance. In this study, the
Taguchi method and Design of Experiment
(DOE) methodology are used to optimize the
network parameters. The users have to
recognize the application problems and
choose a suitable Artificial Neural Network
(ANN) model. Then, the optimization
problems can be defined according to the
model. The Taguchi method is first applied
to the problem for finding the more
important factors. Then DOE methodology
is performed for further analysis and
forecast. An LVQ example is demonstrated
for the application to bicycle derailleur
systeams.

Keywords. Neural networks; optimization;
Taguchi method; design of experiments;
bicycle derailleur systems.

INTRODUCTION
Artificial Neural Networks (ANNS) are

business, and engineering. ANNs offer
improved performance in areas such as
pattern  recognition, signal processing,
control, forecasting, etc.

In this study, a systematic process is
introduced to obtain an optimum design of a
neural network. The Taguchi method and
the Design of Experiments technique (DOE)
(Montgomery, 1991) are the main techniques
used. Unlike previous studies, the Taguchi
method is used here to simplify the
optimization problems. Then, DOE is more
easily performed. Because of the
stronger  statistical  basis  of DOE
methodologies, many analyses can be
executed. Finally, a Learning Vector
Quantization (LVQ) network is demonstrated
as an example. The method proposed in
this paper can also be applied to any ANN
model. The integration of optimization and
ANNSs in this paper was simulated by a
computer program which can be executed
automatically and easily.

THE EXAMPLE

In order to demonstrate the optimum
design processes, an application with a
Learning Vector Quantization (LVQ) model
isshown. In this example, the purposeisto
distinguish the type of chain engagement to
be used in the rear derailleur system of a
bicycle.

1. Problem description

The derailleur system in a bicycle is
similar to the gear box in a motor vehicle.
A complete derailleur system, as shown in
In derailleur system designs, two types of
chain engagement, Type | and Type I, have
to be considered (Wang et a., 1996). The
chainwheel and freewheel sprocket design of



the two types are different; therefore, it is
very important for the designers to know
which type occurs during each gear shift.
So, the different design defects for the two
types can be found and improved.

In areal riding or testing environment, it
is very difficult to distinguish which type of
chain engagement occurs. There must be a
camera for monitoring purposes. This costs
a lot of money and it is not very easy to
install. The purpose of this example is to
establish a better and easier method to
distinguish the chain engagement type during
gear shifts, using a neural- network model.

The data fed to the network are
transferred from the time domain to the
frequency domain by the FFT technique
(John and Dimitris, 1996). In gathering
training data, if the tooth numbers of two
adjacent sprockets are both even and the
tooth number of the chainwheel sprocket is
also even, only one type of chain engagement
will occur. If only one chain link is shifted
from the previous situation, another type will
occur.

2. Choosing an ANN model

In supervised learning models, an LVQ
example like that shown in Fig. 7 is selected
because of this fast training speed, no local
minimum traps and better performance in
classification (Patterson, 1996). The LVQ
is the transformation from the input vector x
of dimension n to known target output
classifications t(x)=t, where each class is
represented by a codeword or prototype
vector w, (=1, 2, ..., m). The index i/ is
the class label for x. Let C(x) denote the
class of x computed by the network; w., is

the weight vector of the winning unit c.
Then, C(x)isfound using

|[w. - x| = min,[w; - .

When the class is correct, i.e. C(X)=t,
the weight vector of the winning unit ¢ is
shifted toward the input vector. When an
incorrect classification is selected, i.e. C(x)*t,
the weight vector is shifted away from the

input vector. The update rule for the LVQ
can be summarized as follows:
1) Initialize the weights w to small
random numbers.
2) Find the prototype unit to represent x
by computing

W - x| =min,w; - X .

Update the weight vectors

according to
w¥ = +at(x-w)  if O =t
wr=w-a(x-w) it
w = w" foralit ¢
where

a >0 are the learning

a >0

coefficients of two different cases.
3) Repeat steps 2 and 3 until the weights
stabilize.

3. Define the optimization problem
The optimal physical problem can be
covered by a mathematical model of design
optimization involving the procedures below.
1) Choose design variables. In this
example, the chosen design
variables from the LVQ network
parameters are the number of input
units, a* and a’, and the weight
initialization range. The number
of input units is a discrete design

+

parameter, a and a ae
continuous design parameters, and
the weight initialization range is a
gualitative design parameter.

2) Define an objective function: The
objective function in this example
is defined as the grouping error of
the network,

cost function = & £,,(C(X),t),

where
1 fyr =0 if C(x) =1¢
% farr =1 ifC(x)* ¢

and /=1 to the size of the training



data. The output of interest of this
example is a “smaller-the-better”
quality characteristic.

3) ldentify constraints. A suggested
range of design variables from the
solver SNNS (Z€ll, 1995) will be
described in next section.

4. The Taguchi Method

The theories and principles used in the
Taguchi Method (Taguchi, 1986; Peace,
1993) will not be described in detail; only the
key points and analyzed results are shown
below.

1) For the number of input units; the
vibration signals during
gear-shifting are transformed into
the frequency domain by the FFT to
256 data points. Therefore, in this
factor (the number of input units),
three levels (256, 128 and 32 points)
are selected.

2) 0.05£a’,a £03 is assumed,
and three levels (0.05, 0.1 and 0.3)
are selected.

3) For the weight initialization range,
a small range is suggested from the

software (Zell, 1995). Therefore,
+0.1, £+0.3 and +0.5 are
selected.

After the factors and levels are

determined, a suitable orthogonal array can
be selected for the training process. Table

is the L,(3*) orthogonal array for the

factors and levels in this example. For
instance, in the first training experiment,
there are 256 input units, h* and h™ are

set to 0.05, and the weight initialization
range is between +0.1 and -0.1. After nine
training experiments have been made, the
grouping errors of the 80 training data are
summarized in Table 1. Because there are
no loca minimum traps in this model,
replicate training is not needed for the same
parameters. For some other models, the
final results may be affected by different
initial  designs. Therefore, replicated
training is necessary for the following S/N

analysis.

The last column in Table 1 is the
signal-to-noise ratio (S/IN). The equation
for caculaing the SN for the
smaller-the-better quality characteristic is
Equation A.1. Inthisexample, thereisonly
one replicate, therefore, the physical meaning
of S/N is similar to the grouping errors in
Table 1. The grouping errors are used here
instead of S/N for easier understanding.

The next step in the Taguchi method is
Level Average Analysis. The goa is to
identify the strongest effects, and to
determine the combination of factors and
levels that can produce the most desired
results. Table 2 isthe response table, which
shows the average experiment at result for
each factor level. Thetotal effect of the 256
input units is 16. This is the average
grouping error of the first three rowsin Table
2 ((1+14+80)/3=16). Other response values
can be calculated by using a similar method.
For the number of input units, 256 units can
get asmaller grouping error than other levels.

The same principle can be used to make h*

and A~ equa to 0.05 and the weight

initialization range to be between +0.3 and
-0.3. Therefore, the recommended factor

levels are: 256 input units, h* =0.05 ,
h™ =0.05 and a weight initialization range
of +0.3.

CONCLUSIONS

Optimization techniques have been
widely used in many applications. In this
paper, two major categories, the Taguchi
method and the DOE methodology, are
applied to improve one the original designs
of ANNs. The users have to recognize the
design problem and choose a suitable ANN
model. Then, the optimization problems
can be defined according to the model. The
Taguchi method is first applied to find the
more important factors, and to simplify the
design problems. DOE methodologies are
then used to find the sensitivity and a more
precise combination of design parameters.
The final results of the examples introduced



in this study indeed improve the initial
designs and get a better performance.
Although only one ANN mode, LVQ,
is demonstrated in this paper, other models,
such as ADALINE, MADALINE, Hopfield
Networks, MLFF, Boltzmann Machines,
Recurrent Neural Networks, Neocognitrons,
etc., are also suitable. Many benefits can be
mentioned.  First, this is a systematic
method to use for a neural-network design.
It means that the engineer, whether or not he
or she is experienced in ANN, the Taguchi
method and DOE, can follow this process
easily. Many commercia software
packages can be applied, such as SNNS in
ANN and SASin the DOE. Second, it will
not take too much computational effort and
time. The results of the demonstrated
examples can be obtained within 5 minutes
with a Pentium-150 PC. This detail was not
emphasized in this paper because it is not the
major concern here. Finally, in engineering
applications, it is not necessary to get a
global optimization of the problems, because
that takes too much time or the algorithms
may be very complicated. The
improvement of the original designs in an
acceptable region is helpful for engineers.
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Input Units A" h Weight Initial  Grouping YN
Range Error
1 256 0.05 0.05 +0.1 1/80 19.03dB
2 256 0.1 0.1 +0.3 14/80 7.56 dB
3 256 0.3 0.3 +05 34/80 3.72dB



4 128 0.05 0.1 +05 18/80 6.48 dB
5 128 0.1 0.3 +0.1 34/80 3.72dB
6 128 0.3 0.05 +0.3 5/80 12.04 dB
7 32 0.05 0.3 +0.3 35/80 3.59dB
8 32 0.1 0.05 +05 43/80 2.70dB
9 32 0.3 0.1 +0.1 33/80 3.85dB
Tablel Training results.
Factor Level Error Factor Level Error
256 16 0.05 16
Input units 128 19 h 0.1 22
32 37 0.3 34
0.05 18 +0.1 23
N Weight
h 0.1 30 initial range +03 18
0.3 34 +05 32
Table2 Responsetable.
Degree of
Source  Sum Square Freedom Mean Square Fo Pr>F
h* 141.56 2 70.78 0.42 0.6827
h 205.56 2 102.78 0.61 0.5868
Error 673.11 4 168.27
Total 1020.23 8
Table3 The ANOVA table.
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