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1. Background and Motivation

The major four sections for the IC 
manufacturing include the wafer fabrication, 
the wafer probing (wafer sorting), the IC 
packaging, and the final testing. And on time 
delivery is the major objective of IC 
packaging factories. Due to the high cost of 
the manufacturing by using the ceramic 
process, most of the IC packaging factories 
use plastic packaging.  The manufacturing 
process of plastic packaging generally 
contains the following eleven process stages, 
(1) tapping, (2) lapping (wafer back grinding), 
(3) die sawing, (4) die bonding, (5) wire 
bonding, (6) molding, (7) marking, (8) 
plating, (9) de-flash and trimming, (10) 
forming, and (11) final testing (Manzione 
(1990)).

In the IC packaging factory, a group of
machines are arranged in parallel at each 
stage of the process, and jobs in hundreds of 
product types are to be processed. The 
processing times of each job at different 
process stage may not be the same but
predetermined.  Each job must be processed 
on any of the parallel machines at each
process stage.  Therefore, the manufacturing 
system in the IC packaging factory can be 
considered as a flexible flow shop. The IC 
packaging scheduling problem (ICPSP) we 
investigate is a variation of the flexible 

flow-shop problem, and a generalization of 
the parallel-machine scheduling problem.

In real situations, the ICPSP involves 
constraints on job clusters, job-cluster 
dependent processing time, due dates, 
machine capacity, and sequentially dependent 
setup time at each of the multiple process 
stages. Therefore, the ICPSP is considerably 
more difficult to solve than the classical 
parallel-machine scheduling problem
investigated by Ho and Chang (1995), Gabrel 
(1995), Schutten and Leussink (1996), Cheng 
and Gen (1997), Ruiz-Torres et al. (1997), 
Park and Kim (1997), and Lee and Pinedo 
(1997).  The development of an efficient 
scheduling system is essential in the IC 
packaging industry, as it improves the 
efficiency of the production with dynamic 
orders, and tight due dates restrictions.

2. Purpose

In the research, we formulate the ICPSP 
as an IP problem to minimize the total 
machine workload.  The IP model considers 
the due date restrictions, which includes the 
processing time and the setup time in the 
capacity constraints, thus reflects the real 
situations more accurately than those 
considered by Salvador (1973), Arthanari 
(1974), Wittrock (1988), and Sriskandarajah 
and Sethi (1989).  In addition, we propose 
two efficient solution procedures to solve the 



ICPSP approximately, with efficient job 
schedules that minimize the total machine 
workload. For most factories, wafer sawing 
(die sawing), die mounting, and wire bonding
are three most critical manufacturing stages 
among all, and the machine numbers at those 
stages are enormous.  Scheduling those 
machines under the production environment 
with many factors mentioned above, has 
become a rather difficult task for the IC 
packaging factories.  For most cases, the 
due dates for the jobs are usually settled 
between the customers and the factories.  
Therefore, some tardiness (lateness) must be 
considered to ensure the job completion of 
the orders.  Minimizing the total workload 
allows the process to fully utilize the system 
capacity, thus increases the overall 
productions.

3. Researching Theory

3.1 Framework

First, let the manufacturing environment 
consists of a set of processing stages, and all 
jobs must be processed through the P stages 
and completes the necessary operations 
within every stage.  We also define Mp = 
{ 1pm , 2pm , ..., pKm } as the machine group at 

the p-th stage and containing a set of KP

identical machines.  We note that the cluster 
R0 includes J0 = J01 + J 02 + ⋅⋅⋅ + J 0P jobs in 
each process stage.  Because the cluster R0

is to denote the idle status of the Kp parallel 
machines of each stage, the number of the 
cluster R0 in each stage are equal to the 
number of the parallel machines in each stage.  
Let Wp = { 1Wp , 2Wp , ... , pKW } be the

predetermined machine capacity at the p-th 
stage expressed in terms of processing time 

units. And then, we define R = {R0, R1, 
R2, ... , RI} as the I + 1 clusters of jobs to be 
processed with each job cluster Ri = {rij | j = 
1, 2, ... , Ji} containing Ji jobs. Since each job 
rij must be processed through a set of 
manufacturing process consists of p-stage, rij

= {rijp | p = 1, 2, P} denote the job rijp

processed on the p-th stage.  Let nij be the 
lot size (number of dies) of job rij.

pip : the unit processing time for each die for 
each job rijp in cluster Ri (rijp ∈ Ri) on 
machine pkm , 

pii's : the sequentially dependent setup time 

between any two consecutive jobs )( iijp Rr ∈

and )( ''' ipji Rr ∈  from different job clusters

on each machine pkm .

xijpk : the variable indicating whether the job 
rijp is scheduled on machine pkm  of the p-th

stage, with xijpk = 1 if job rijp is scheduled to 
be processed on machine pkm  of the p-th

stage, and xijpk = 0 otherwise.

tijpk : the starting time for job rijp to be 
processed on machine pkm  of the p-th stage,

where tijpk is between the time windows (bij1, 
eijP) of job rij.
(bij1, eijP) : the service time windows, 
bij1 : the earliest starting time to process job 
rij1 of the first process
eijP : the latest starting time to process job rijP

of the last process. iPijijijP p nde −= .

Let pkjiijy ''  be the precedence variable, 
where pkjiijy '' should be set to 1 if the two 
jobs rijp and pjir '' are scheduled on machine 

pkm  and job rijp precedes job pjir ''  (not 
necessarily directly), and where 

pkjiij
y ''  = 0 



otherwise.  Further, let 
pkjiij

z ''  be the 
direct-precedence variable, where 

pkjiij
z ''

should be set to 1 if the two jobs rijp and pjir ''

scheduled on machine pkm  and job rijp

precedes job pjir ''  directly, and where 

pkjiij
z ''  = 0 otherwise.

3.2 Integer  Programming Formulation

To find a schedule for the jobs 
which minimizes the total machine workload 
without violating the machine capacity and 
the service time windows constraints, we 
consider the following integer programming 
model shown by Table 1.

3.3 Multi-Stage Sequential Savings 
Algor ithm

The MSSS algorithm for the ICPSP is 
essentially based on the well-known savings 
procedure of Clark and Wright (1964) for the 
vehicle routing problem, with some 
modifications. Each process stage, therefore, 
can be treated as a parallel-machine 
scheduling problem. Consequently, one 
solution strategy we may take is to solve 
each single-stage ICPSP problem 
sequentially to obtain the stage solutions, 
then combine them into a complete ICPSP 
solution.

The MSSS algorithm is 

proceeding as follows. 

First, apply the 

sequential-savings 

procedure to obtain 

stage 1 solution.  We 

then use the job 

completion times 

obtained from stage 1 

solution as the ready 

times bijp for the jobs to 

be processed at stage 2, 

and solve the ICPSP for 

stage 2.  Repeat this

step until we obtain all 

the P stage solutions.  

All the P stage solutions, 

are then combined to 

form a complete ICPSP 

solution.  Variations of 

the MSSS algorithm 

may be considered by 

setting various due 

dates for each stage 

sequentially, then solve 

for the resulting single 

stage ICPSP to 

generating multiple 

solutions.  The best 

among all combined 

solutions then is 

selected as the solution 

for the ICPSP.

The Sequential-Savings 

algorithm, initially, 

calculates the savings of 

all pairs of jobs and 

creates a list by sorting 

the savings in 



descending order of 

their magnitudes.  The 

algorithm then selects 

the first feasible pair of 

jobs from the top of the 

list to start a new 

schedule (initialization 

of the first schedule).  

We note that a selected 

pair of jobs is feasible 

and will be added to the 

machine schedule if it 

does not violate the 

machine capacity 

constraints and the 

starting time windows 

constraints.  Starting 

from the top of the 

savings list, the 

Sequential-Savings 

algorithm expands the 

schedule by finding the 

first feasible pair of jobs 

on the list then adding it 

to either one of the two 

ends of the schedule.  

If the current schedule 

cannot be expanded, 

choose the first feasible 

pair of jobs from the top 

of the list to start 

another new schedule.  

Repeat such steps until 

all jobs are scheduled.

The savings, pjij i ''SA , 

which we considered in 

the MSSS algorithm is 

defined as 

pi ipiippjij i '''' sssSA -UU += , 

for all pairs of jobs ijpr

and pj i ''r , where pii's

represents the setup 

time between any two 

consecutive jobs 

)( iijp Rr ∈  and )( ''' ipj i Rr ∈

from different job 

clusters on each 

machine pkm , the 

notation U denotes the 

machine is in idle status, 

and ipsU  ( pi'sU ) 

represents the setup 

time to prepare an idle 

machine to process job 

)( pjiijp ''rr .  We write a 

C++ program to proceed 

with the steps of the 



Sequential-Savings 

algorithm. Considering 

the short run time it

takes, and the single 

solution obtained, the 

MSSS algorithm can 

effectively solve 

large-scale ICPSP, and 

is considered efficient.
3.4 Multi-Stage Parallel Inser tion 
Algor ithm

The multi-stage parallel-insertion 
algorithm (MSPI) can effectively handle 
large-scale problems.  The MSPI algorithm 
for the ICPSP is essentially based on the 
parallel-insertion procedure presented by 
Potvin and Rousseau’s (1993) for the vehicle 
routing problem with time windows, with 
some modifications. Note that the IC 
packaging process consists of multiple 
manufacturing stages, each process stage 
therefore can be treated as a parallel-machine 
scheduling problem. Consequently, one 
solution strategy we may take is to solve 
each single-stage ICPSP problem 
sequentially to obtain the stage solutions, 
then combine them into a complete ICPSP 
solution.

The MSPI algorithm is 

proceeding as follows. 

First, apply the 

parallel-insertion 

procedure to obtain 

stage 1 solution.  We 

then use the job 

completion times 

obtained from stage 1 

solution as the ready 

times bijp for the jobs to 

be processed at stage 2, 

and solve the ICPSP for 

stage 2.  Repeat this 

step until we obtain 

solutions for all K 

stages.  All K stage 

solutions, are then 

combined to form a 

complete ICPSP 

solution.  Variations of 

the MSPI algorithm 

may be considered by 

setting various possible 

due dates for each stage 

sequentially, then solve 

for the resulting single 

stage ICPSP to 

generating multiple 

solutions.  The best 

among all combined 

solutions then is 

selected as the solution 

for the ICPSP.

At the initialization step, 

the parallel-insertion 

procedure constructs a 



set of machine 

schedules 

simultaneously. The 

procedure uses a 

generalized regret 

measure over all 

schedules to select the 

best unscheduled job, 

which can foresee the 

difficulty of inserting 

jobs into machine 

schedules.  Let PSpk be 

the partial schedule of 

machine pkm  at 

process stage p, where

)u,...,u,u,...,(uPS pkLpkn1)pk(npk0pk −=

P1,...,p    ,K...,1,k    0,uu ppkLpk0 ====

where upkn is the n-th 
job scheduled on 

machine pkm  at the 

process stage p, and upk0

and upkL represent 
pseudo jobs.  For each 
unscheduled job rijp

assigned to machine 

pkm , we first compute 

its insertion cost on 
each position of the 

partial schedule of each 
machine at the process 
stage p. 

At process stage p, 
)u,r,(u  ë pknijp1)pk(npk −

represents the 

additional setup time 

occurred if job rijp is 

inserted between the (n 

- 1)th and n-th positions 

of the partial schedule 

PSpk.  In some cases, 

job insertion may cause 

the postponement of 

starting processing time 

of jobs already on the 

partial schedule.  If the 

postponement is against 

the starting service time 

windows constraint, 

)u,r,(u  ë pknijp1)pk(npk −  is 

set to be an arbitrary 

large value.

)u,r,(u pknijp1)pk(npk −ë

= 

p)I(u)I(up)iI(upi)I(u pkn1)pk(npkn1)pk(n sss −− −+

where upk(n-1) and upkn

are two consecutive 



jobs on partial schedule 

PSpk before job rijp is 

inserted, I(upkn) is the 

function that returns the 

product type of the job 

being scheduled on the 

n-th position of partial 

schedule PSpk.
Let 

)u,r,(u  ë *pknijp1)*pk(npk*
− d

enote the lowest 
insertion cost due to the 
insertion of job rijp into 
the partial schedule 
PSpk.

)]u,r,(u[min)u,r,(u pknijp1)pk(npk
l1,...,n

*pknijp1)*pk(npk*
−

=− = ëë

However, we may not 

choose next inserted job 

rijp with lowest 

)(rë ijppk* , since 

insertion problem may 

occur for jobs with 

larger insertion cost.  

To quantify the future 

insertion difficulties for 

a job on each machine, 

the generalized regret 

measure σ(rijp) of job rijp

is defined. The regret 

measure looks ahead 

what can be lost later, if 

a given job is not 

immediately inserted 

into its best alternative 

machine at the process 

stage p, which 

summaries the 

differences of insertion 

cost between the best 

alternative machine and 

all other alternative 

machines.  Hence, 

unscheduled jobs with 

larger regret value must 

be inserted in higher 

priority, since these 

jobs are more difficult 

to find feasible insertion 

position among all 

machines. In the 

parallel insertion 

algorithm, instead of 

using )(rë ijppk* , the 

candidate inserted job 
*
ijpr  is selected with 

largest regret value 

σ(rijp).  

)](r[max)(r ijp
r

*
ijp

ijp

σ=ó

∑=σ
≠

−−'
*''**

pkpk
pkijp1)(npkpk

*
pknijp1)pk(npk

*
ijp )]u,r,(u-)u,r,(u[)(r ëë



where 
)]u,r,(u[ëmin)u,r,(uë *pknijp1)*pk(npk*

pK1,...,k
*n'pkijp1)*(n'pk

'pk*
−=− =

 and insert *
ijpr

between 1)*(n'pku −  and 

*n'pku .  At each process 

stage, the steps of 

algorithm are described 

in the following:
(Step 1) At each process stage, obtain 
the partial schedules for all machines
using the largest criterion to select a 
jobs rijp, which causes an idle

machine pkm  to spend the largest setup 

time to prepare for the processing of 
job rijp.
(Step 2) The following three sub-steps
are proceeded to execute the 
scheduling procedures until all the jobs 
are scheduled.

(a) For each unscheduled lot, first 
compute its best feasible insertion 
position by )u,r,(u  *pknijp1)*pk(npk*

−ë  at 
each machine’s partial schedule 
PSpk.

(b)Compute the regret value σ(rijp) for 
each job.  Choose the next inserted 
job *

ijpr  with largest σ(rijp) among 
all unscheduled jobs.

(c) The best lot *
ijpr  is inserted into the 

lowest insertion cost position of the 
machine determined by )(rë *

ijppk* .

We implement the 

MSPI algorithm using 

the C++ programming 

language to execute the 

Parallel-Insertion 

procedure at each of the 

P stages.
4. Achievements

In this study, we formulated ICPSP as 
an integer programming model the presented 
an efficient solution procedure, called the 
Multi-Stage Parallel Insertion algorithm, to 
solve the ICPSP case, which minimizes the 
total machine workload.

Major achievements:

1. Develop the integer programming model 
for the ICPSP with the total machine 
workload minimized. And write C++ 
programming language code to generate 
the IP model.

2. Use integer programming software 
(Cplex) to illustrate the applicability of 
the linear integer programming model, 
and derive the optimal solution for ICPSP. 
Transfer the ICPSP the ICPSP into 
vehicle routing problem with 
time-window(VRPTW)network problem.

3. Develop multi-stage sequential savings 
algorithm (MSSS) to solve the ICPSP 
approximately and effectively handle 
large-scale problems.

4. Develop multi-stage parallel-insertion 
algorithm (MSPI) to solve the ICPSP 
approximately and effectively handle 
large-scale problems.
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Table 1 The IP model for ICPSP

minimize   ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑+
= = = = = = = =
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1 0 1 0 1 0 1'

'

'
''

l

K

1k

I

i

J

j

I

i

J

j
pii

I

i

J

j
pkjijiipijijpk

i i
'

i
szpnx

subject to

∑ =
=

pK

k
ijpk pjix

1
,,  all   for    1, (1)

∑ =
=

0

1
0

J

j
jpk p,kx   all   for    1,  (2)

p,ksz pnx pk
I

i

J

j

I
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J
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pii

I
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J
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pkjijiipijijpk

i i
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i
  all  for   ,W)( ≤∑ ∑ ∑ ∑ ∑ ∑+

= = = = = =0 1 0 1 0 1'

'

'
'' (3)

all  for   1,2)(Q  )(  i, j, p,k-xxyy pkjiijpkpijpkjipkjiij ≥+−+ '''''' (4)

,all  for   1,2)(Q  )(  j, p,ki-xxyy pkjiijpkpijpkjipkjiij ≤+++ '''''' (5)

j, p,kixxyy pkjiijpkpijpkjipkjiij ,all  for   0,)(Q  )( ≤+−+ '''''' (6)

all  for   0,1)(Q  )( i, j, p,kxxyy ijpkpkjipijpkjipkjiij ≤+−−+ '''''' (7)

j, p,k ixxyy pkjiijpkpijpkjipkjiij ,all  for   0,1)(Q  )( ≤+−−+ '''''' (8)

 p,k jizy pkjiijpkjiij ,,all  for   ,'''' ≥ (9)

i,j,p,kz
I

i

J

j
pkjiji

i
  all  for   1,≤∑ ∑

= =1 1' '
'' (10)

i,j,p,kz
I

i

J

j
ijpkji

i
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= =1 1' '
'' (11)
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I

i

J

j rr
pkjijiijpk

i

jiij

  all  for   1,=∑ ∑ ∑−
= = ≠0 1 ''

'' (12)

kpjiytspnt pkjiijppkjipiiipijijpk '''' ,,,all  for   ,1)-(Q 0' ≤+−++ (13)

k pji-zytspnt pkjiijpkjiijppkjipiiipijijpk '''''' ,,,all  for   ,2)(Q 0' ≤++−++ (14)

kpji,...,P,p-zytpnt pkjiijpkjiijppkjipijikpji '''''' ,,,alland  for   ,2)(Q  320)1()1( '''''' =≤++−+ −− (15)

kpji-z-y-zy-zy pkjiijpkjiijppkjiijpkjiijppkjijipkjiij '''' ,,,all  for,1)(Q2)(Q 2******** ≥−++ (16)

  ,  all  and1,...,2,1,and1,2,...,  for),1G21G1 kjP-pIix-x-txpnt )kij(ppijpkpkpijijpkipijijpk ==++≤+ ++ '' 1)1( ()(   (17)

∑ =∑ =
= =

P

p

K

k
ijpk jI i Px

p

1 1
   all  and1,2,...,for    , (18)

kpjixbt ijpkijijpk ,,,all   for    ,1≥ (19)
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