FRBRRARPELR e LT A R
HIOIGIGICIOIBICIOIIBIGICIIIGIIOIIGIOIN N

3%

o= EFr B2 RS2 ICHERBARFTE ER X

% LR X

%

35K OO HOIGIIOGIOIIIOIROIGKIOGIOIRIIOK

P MBI E (& &A%
L4 %E NSC 90—2218— E—009—019—
HFHF 00E08% 01p 1 91# 07" 31p

PRI YRR

FREERL A Mk R

FHESE AR EE
et

it

¥

ﬂ\@%zﬂié‘ /#"_—f‘. 'ff@ﬁgi\%7 K]‘J’l— .
NSRRI S U S
Diﬁé'?miéﬁﬂwwﬁ
o

HR R g%u@$%£%%1%¢§—w
(IR & TR 2R ETHRLE - >

FREATHELR §LUPT P+ 22
2+ 3 %% ¢ NSC 90-2218-E-009-19-
FHiFHT:90~-£08" 01p 2 91+07" 31p

AL I Ee

LR ifFA Iﬁ_zﬁ%

FHE B AR e Rt i

1. Background and Motivation

The maor four sections for the IC
manufacturing include the wafer fabrication,
the wafer probing (wafer sorting), the IC
packaging, and the final testing. And on time
delivery is the maor objective of IC
packaging factories. Due to the high cost of
the manufacturing by using the ceramic
process, most of the IC packaging factories
use plastic packaging. The manufacturing
process of plastic packaging generally
contains the following eleven process stages,
(2) tapping, (2) lapping (wafer back grinding),
(3) die sawing, (4) die bonding, (5) wire
bonding, (6) molding, (7) marking, (8)
plating, (9) deflash and trimming, (10)
forming, and (11) fina testing (Manzione
(1990)).

In the IC packaging factory, a group of
machines are arranged in paralel at each
stage of the process, and jobs in hundreds of
product types are to be processed. The
processing times of each job at different
process stage may not be the same but
predetermined. Each job must be processed
on any of the parallel machines at each
process stage. Therefore, the manufacturing
system in the IC packaging factory can be
considered as a flexible flow shop. The IC
packaging scheduling problem (ICPSP) we
investigate is a variation of the flexible

Fi¥aifesr gk
Fafeer gk
i S EE EEITY
flow-shop problem, and a generalization of
the parallel-machine scheduling problem.

)
—

T %

=

In real situations, the ICPSP involves

constraints on job clusters, job-cluster
dependent processing time, due dates,

machine capacity, and sequentially dependent
setup time at each of the multiple process
stages. Therefore, the ICPSP is considerably
more difficult to solve than the classical
parallel-machine scheduling problem
investigated by Ho and Chang (1995), Gabrel
(1995), Schutten and Leussink (1996), Cheng
and Gen (1997), Ruiz-Torres et al. (1997),
Park and Kim (1997), and Lee and Pinedo
(1997). The development of an efficient
scheduling system is essentia in the IC
packaging industry, as it improves the
efficiency of the production with dynamic
orders, and tight due dates restrictions.

2. Purpose

In the research, we formulate the ICPSP
as an IP problem to minimize the totd
machine workload. The IP model considers
the due date restrictions, which includes the
processing time and the setup time in the
capacity constraints, thus reflects the red
gituations more accurately than those
considered by Salvador (1973), Arthanari
(1974), Wittrock (1988), and Sriskandarajah
and Sethi (1989). In addition, we propose
two efficient solution procedures to solve the

ICPSP approximately, with efficient job
schedules that minimize the total machine
workload. For most factories, wafer sawing
(die sawing), die mounting, and wire bonding
are three most critical manufacturing stages
among al, and the machine numbers at those
stages are enormous. Scheduling those
machines under the production environment
with many factors mentioned above, has
become a rather difficult task for the IC
packaging factories. For most cases, the
due dates for the jobs are usualy settled
between the customers and the factories.
Therefore, some tardiness (lateness) must be
considered to ensure the job completion of
the orders. Minimizing the total workload
allows the process to fully utilize the system
capacity, thus increases the overal
productions.

3. Researching Theory

3.1 Framework

First, let the manufacturing environment
consists of a set of processing stages, and all
jobs must be processed through the P stages
and completes the necessary operations
within every stage. We also define M, =
{ My, my,, ...,my} asthe machine group at
the p-th stage and containing a set of Kp
identical machines. We note that the cluster
Ro includes J = Jog + Joz + *+ Jop jObs in
each process stage. Because the cluster Ry
is to denote the idle status of the K, parallel
machines of each stage, the number of the
cluster Ry in each stage are equal to the

number of the parallel machines in each stage.

Let Wp = {Wp, Wy, ..., Wy} be the
predetermined machine capacity at the p-th
stage expressed in terms of processing time

units. And then, we define R = {Ry, Ry,
Rz, ..., R} asthel + 1 clusters of jobs to be
processed with each job cluster Ry = {r;; | j =
1,2, ..., J} containing J jobs. Since each job
rj must be processed through a set of
manufacturing process consists of p-stage, r;;
= {rjp | p = 1, 2, P} denote the job rjp
processed on the p-th stage. Let n; be the
lot size (number of dies) of job rj;.

pip : the unit processing time for each die for
each job rjp in cluster R (rjp T Ri) on
machine m,

Sii'p :

the sequentially dependent setup time
between any two consecutive jobs 7, (R)
and r;;,(R) from different job clusters

on each machine my.

Xijpk : the variable indicating whether the job
rijp is scheduled on machine m,, of the p-th
stage, with Xijp = 1 if job r;j, is scheduled to
be processed on machine m, of the p-th
stage, and Xijpx = O otherwise.

tipk : the starting time for job rj, to be
processed on machine my, of the p-th stage,
where tjjo is between the time windows (b,
e;jp) Of job rj;.

(bij1, &;jp) : the service time windows,

bij1 : the earliest starting time to process job
rij1 of the first process

ejp : the latest starting time to process job rijp
of the last process. gjr =d; - n;pp.

Let Yy

i D€ the precedence variable,
where iz

yi7 Should be set to 1 if the two
jobs rijp and 17,
my and job rj, precedes job r;

necessarily directly), and where y, ..

are scheduled on machine
(not
=0

ip

otherwise. Further, let =z .. be the
ijij pk

direct-precedence variable, where Zi i o
should be set to 1 if the two jobs rij, and 7;;,
scheduled on machine m, and job rip
precedes job r;;, directly, and where

4 = 0 otherwise.

ijij pk
3.2 Integer Programming Formulation

To find a schedule for the jobs
which minimizes the total machine workload
without violating the machine capacity and
the service time windows constraints, we
consider the following integer programming
model shown by Table 1.

3.3 Multi-Stage Sequential Savings
Algorithm

The MSSS agorithm for the ICPSP is
essentialy based on the well-known savings
procedure of Clark and Wright (1964) for the
vehicle routing problem, with some
modifications. Each process stage, therefore,
can be treated as a parale-machine
scheduling problem. Consequently, one
solution strategy we may take is to solve
each single-stage ICPSP problem
sequentially to obtain the stage solutions,
then combine them into a complete ICPSP
solution.

The MSSS agorithm is
proceeding as follows.
First, apply the
sequential-savings

procedure to obtan
stage 1 solution. We
then wuse the job
completion times

obtained from stage 1
solution as the ready
times by, for the jobs to
be processed at stage 2,
and solve the ICPSP for
stage 2. Repeat this
step until we obtain al
the P stage solutions.
All the P stage solutions,
are then combined to
form a complete | CPSP
solution. Variations of
the MSSS agorithm
may be considered by
setting various due
dates for each stage
sequentialy, then solve
for the resulting single
stage |CPSP to
generating multiple
solutions. The best
among al combined
solutions then IS
selected as the solution
for the ICPSP.

The Sequentia-Savings
algorithm, initially,
calculates the savings of
al pars of jobs and
creates a list by sorting
the savings in

descending order of
their magnitudes. The
agorithm then selects
the first feasible pair of
jobs from the top of the
list to stat a new
schedule (initialization
of the first schedule).
We note that a selected
pair of jobs is feasible
and will be added to the
machine schedule if it
does not violate the
machine capacity
congtraints and the
starting time windows
constraints. Starting
from the top of the
savings list, the
Sequential-Savings

algorithm expands the
schedule by finding the
first feasible pair of jobs
onthelist then adding it
to either one of the two
ends of the schedule.
If the current schedule
cannot be expanded,
choose the first feasible
pair of jobs from the top
of the list to start

another new schedule.
Repeat such steps until
all jobs are schedul ed.

The savings, $4,;, ,

which we considered in
the MSSS algorithm is
defined as

S‘},-,-',-'p=ﬁup+%rp'$rp ’
for al pairs of jobs r,

where s;,

and r

ijp

represents the setup
time between any two
consecutive jobs

Tijp (T R) and Fijp (T R)
from different job

clusters on each

machine m, , the

notation U denotes the
machineisin idle status,

and SJl'p (SJi'p)

represents the setup
time to prepare an idle
machine to process job

i (1) . We write a

C™" program to proceed
with the steps of the

Sequential-Savings

algorithm. Considering
the short run time it
takes, and the single
solution obtained, the
MSSS algorithm can
effectively solve
large-scale ICPSP, and

Is considered efficient.
3.4 Multi-Stage Parallel Insertion
Algorithm

The multi-stage paralel-insertion
algorithm (MSPI) can effectively handle
large-scale problems. The MSPI algorithm
for the ICPSP is essentialy based on the
parallel-insertion procedure presented by
Potvin and Rousseau’'s (1993) for the vehicle
routing problem with time windows, with
some modifications. Note that the IC
packaging process consists of multiple
manufacturing stages, each process stage
therefore can be treated as a parallel-machine
scheduling problem. Consequently, one
solution strategy we may take is to solve
each single-stage ICPSP problem
sequentially to obtain the stage solutions,
then combine them into a complete ICPSP
solution.

The MSPI algorithm is
proceeding as follows.
First, apply the
parallel-insertion

procedure to obtan
stage 1 solution. We

then use the job
compl etion times
obtained from stage 1
solution as the ready
times by, for the jobs to
be processed at stage 2,
and solve the ICPSP for
stage 2. Repeat this
step until we obtain
solutions for al K
stages. All K stage
solutions, are then
combined to form a
complete |CPSP
solution. Variations of
the MSPI agorithm
may be considered by
setting various possible
due dates for each stage
sequentialy, then solve
for the resulting single
stage |CPSP to
generating multiple
solutions. The best
among al combined
solutions then IS
selected as the solution
for the ICPSP.

At theinitialization step,
the pardlée-insertion
procedure constructs a

set of machine
schedules

simultaneously. The
procedure uses a
generalized regret
measure over al
schedules to select the
best unscheduled job,
which can foresee the
difficulty of inserting
jobs into machine
schedules. Let PS, be
the partial schedule of

machine My at

process stage p, where

I:)Spk = (upk0| ey upk(n—l)) upkn UL

UpkozupkL =0) k=1|"')Kp)

where Uy, is the n-th
job scheduled on

machine m, a the

process stage p, and U
and Uy represent
pseudo jobs. For each
unscheduled job 1y
assigned to machine

m, , we first compute

its insertion cost on
each position of the

p=1..,P

partial schedule of each
machine at the process

stage p.

At process stage p,
€pk (Upk(n-1)» Tijps Upkn)

represents the
additional setup time
occurred if job 1, is
inserted between the (n
- D)th and n-th positions
of the partial schedule
PSx. In some cases,
job insertion may cause
the postponement of
starting processing time
of jobs already on the
partial schedule. If the
postponement is against
the starting service time
windows constraint,

€pc (Upkn-1), lijps Upkn) 1S

set to be an arbitrary
large value.

€ ok (Upk(n-1)» Mijp» Upkn)

Siupk(n-1))ip ¥ Silupkn)p = Siupk(n-1)) upkn

ae two consecutive

jobs on partial schedule
PS, before job r;, is
inserted, |(Uxn) IS the
function that returns the
product type of the job
being scheduled on the
n-th position of partia
schedule PS,.
Let

bk (Ugye-1y» Tiips Uyt) @
enote the lowest
insertion cost due to the
insertion of job rj, into
the partial schedule
PSox.

However, we may not
choose next inserted job
ijp with lowest

&" ok (Tijp) : since

insertion problem may
occur for jobs with
larger insertion cost.
To quantify the future
insertion difficulties for
a job on each machine,
the generalized regret
measure s (rijp) of job rijp
Is defined. The regret
measure |ooks ahead
what can be lost |ater, if

a given job is not
immediately inserted
into its best aternative
machine at the process
stage P, which
summaries the
differences of insertion
cost between the best
alternative machine and
al other alternative
machines. Hence,
unscheduled jobs with
larger regret value must
be inserted in higher
priority, since these
jobs are more difficult
tofind feasibleinsertion
position among al
machines. In the
parallel insertion
agorithm, instead of

using & x(rjp) , the
candidate inserted job
rin 1S selected with

largest regret value
S (fijp)-

6 (1) =max[s(r;p)]

Sk = ék[é Uty Tim Unn) € pk(Uygiioay T
PR

where

E ok (U t.1y Tip %m*):ér_‘.i]pp[ékpk(%k(ﬁl)’ fijp Uya)]

and Insert i
between u .-, and
Uy - Ateach process
stage, the steps of

algorithm are described

in the following:
(Step 1) At each process stage, obtain
the partia schedules for all machines
using the largest criterion to select a
jobs which causes an idle

machinem,, to spend the largest setup

Fijps

time to prepare for the processing of

job Fijp-
(Step 2) The following three sub-steps
are proceeded to execute the

scheduling procedures until all the jobs
are scheduled.

(@) For each unscheduled lot, first
compute its best feasible insertion
position By & p (U .y fiip Uyer) &L
each machine's partial schedule
PSox.

(b) Compute the regret value s(r;;,) for
each job. Choose the next inserted
job rj, with largest s(r;,) among
all unscheduled jobs.

(c) The best lot rjj, isinserted into the
lowest insertion cost position of the
machine determined by &” pk (1) -

We the
MSPI algorithm using

implement

the C™ programming
language to execute the
Parallel-Insertion

procedure at each of the

P stages.
4. Achievements

In this study, we formulated ICPSP as
an integer programming model the presented
an efficient solution procedure, called the
Multi-Stage Parallel Insertion algorithm, to
solve the ICPSP case, which minimizes the
total machine workload.

Major achievements:

1. Develop the integer programming model
for the ICPSP with the total machine
workload minimized. And write C++
programming language code to generate
the IP model.

2. Use integer programming software
(Cplex) to illustrate the applicability of
the linear integer programming model,
and derive the optimal solution for ICPSP.
Transfer the ICPSP the ICPSP into
vehicle routing problem with
time-window(VRPTW)network problem.

3. Develop multi-stage sequential savings
algorithm (MSSS) to solve the ICPSP
approximately and effectively handle
large-scale problems.

4. Develop multi-stage parallel-insertion

algorithm (MSPI) to solve the ICPSP
approximately and effectively handle
large-scale problems.

References

[1]

[2]

[3]

[4]

[3]

[6]

[7]

Arthanari, T. S. (1974). On some
problems of sequencing and grouping.
PhD thesis, Indian Statistical Institute,
Calcutta.

Cheng, R. and Gen, M. (1997).
Parallel machine scheduling problem
using memetic agorithms. Computers
and Industrial Engineering, 33(3-4),
761-764.

Gabrel, V. (1995).
within time windows on identica
paralel machines. new mode and
algorithms. European Journal of
Operational Research, 83, 320-329.

Ho, J. C. and Chang, Y. L. (1995).
Minimizing the number of tardy jobs for
m parallel machines. European Journal
of Operational Research, 84, 343-355.

Lee, Y. H. and Pinedo, M. (1997).
Scheduling jobs on paralel machines
with sequence-dependent setup times.

Scheduling jobs

European Journal of Operationd
Research, 100, 464-474.
Manzione, L. T. (1990). Plastic

Packaging of Microelectronic Devices.

Technical Report, AT&T Bell
Laboratories.
Ovacik, I. M. and Uzsoy, R. (1996).

Decomposition methods for scheduling
semiconductor testing facilities. The
International Journal of Flexible

[8]

[9]

[10]

[11]

[12]

[13]

Manufacturing Systems, 8, 357-388.

Park, M. W. and Kim, Y. D. (1997).
Search heuristics for a parallel machine
scheduling problem with ready time and
due dates. Computers and Industrial
Engineering, 33(3-4), 793-796.

Potvin, J. Y. and Rousseau, J. M. (1993).
A Pardle route building agorithm for
the vehicle routing and scheduling
problem with time windows. European
Journal of Operational Research, 66,
19-26.

Salvador, M. S. (1973). A solution of a
specia class of flow-shop scheduling
problems. Proceedings of the
Symposum on the Theory of
Scheduling and its Applications, 83-91,
Springer-Verlag, Berlin.

Schutten, J. M. J. and Leussink, R. A. M.
(1996). Parallel machine scheduling
with release dates, due dates and family
setup times. International Journal of
Production Economics, 46-47, 119-125.

Sriskandargjah, C. and Sethi, S. P.
(1989). Scheduling agorithms for
flexible flowshop: worst and average
case performance. European Journal of
Operational Research, 43, 143-160.

Wittrock, R. J. (1988). An adaptable
scheduling algorithm for flexible flow
lines. Operations Research, 36, 445-453.

Table 1 The IP model for ICPSP

Lo £ K IJ Do
e Ao o Pt B (R, Gk e
subject to / e
Kﬁ
& Xjx =2 jfor al I, j,p
Jghk=t
a Xijk:‘[' ﬁr al’ p,k
=y Iyl
& & Xjok Mj Pip+ & & (& & Zy ;S p)EWp, Sor all pK
i=0j=1 i=0j=1 j=0j=1

Vi jo ¥ Yijipn /™ Qo Xipk + % j g -2 3 for alll], pK
(Yiii j ok i f i/ Lo Xijpk ¥ % j g ~2E L Sor alll,], pK
(Yiij ok ¥ Yij /™ QolXipk* %y JE G Sor all I,], pK
Vi joe ¥ Vi ijok /= LolX; j ok ik * V£ G Sfor alll,], Pk
(Yiij ok ¥ Yij ik /™ QolXipk= % ju ¥ VEG Sor alll,], pK

- 3 - i
i j pk Z/j/jpk’ ﬁf M’/// p,k

=
&~

Zi ok £5 Sfor all ij,pk

71

Z Jiipk

1 oy o
I
Ny

£1 for al ijpk

ol

a

1j5=1

!

Mg~ & Z =
i Pk

' P
Lipk + MjPip+ S = by 7 i * Qp (Vi j o ~VEOQ, Sor all'l,], p,K

t::

1 for el pk

T ol
o
~.

| Qe
N

P e . .
a a Xijpk = P, for i=13.,1and adl' |
p=1k=1

tipk ® b Xjpk, Sfor @l i, J, p, K
Lipk £ €jpXijpk, Sor all i, j, p, k
Xk | 0.4, for all I, j, pk

Yii) 08 fordd i, j, pk

Zii ik B foral I,], pk

ik M Pip ¥ S = b o T Rp (Vi f i+ Zjit j Y B O, Sor oL,], B K
Gionk t i Pipy "yt RoYyif ot Zji RO for P= 23 Pand all T,], bk
Yyt i ot 2t QoY f o 2y f o2 Qo Vyij~Zyi o 2 Sor 1, 1, K

Lijpk * 1T pip;(/'jpk Eli payk + G2p\ - Xijpi) + G2p(2-Xjg o A Sor 1=42.., | and p=13..., P-Land all], k

(1)
2
©)
(4)
()
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)

	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8
	page9
	page10
	page11

