
行政院國家科學委員會補助專題研究計畫成果報告
※※※※※※※※※※※※※※※※※※※※※※※※※
※ ※
※ 具實用性及交期導向之 IC 封裝廠排程演算法則 ※
※ 之設計與應用 ※
※ ※
※※※※※※※※※※※※※※※※※※※※※※※※※

計畫類別：R個別型計畫 □整合型計畫

計畫編號：NSC 90－2218－E－009－019－

執行期間：90 年 08 月 01 日至 91 年 07 月 31 日

計畫主持人：彭文理教授

計畫共同主持人：鍾淑馨教授

計畫參與人員： 鄭博化

 羅湘君

 莊佳蒨

本成果報告包括以下應繳交之附件：
□赴國外出差或研習心得報告一份
□ 赴大陸地區出差或研習心得報告一份

□ 出席國際學術會議心得報告及發表之論文各一份

□國際合作研究計畫國外研究報告書一份

執行單位：國立交通大學工業工程管理學系

中 華 民 國 九十一 年 九 月 十八 日

行政院國家科學委員會專題研究計畫成果報告
計畫編號：NSC 90-2218-E-009-19-

執行期限：90 年 08 月 01 日至 91 年 07 月 31 日
主持人：彭文理 交通大學工業工程與管理系

共同主持人：鍾淑馨 交通大學工業工程與管理系
計畫參與人員：鄭博化 羅湘君 莊佳蒨 交通大學工業工程與管理系

1. Background and Motivation

The major four sections for the IC
manufacturing include the wafer fabrication,
the wafer probing (wafer sorting), the IC
packaging, and the final testing. And on time
delivery is the major objective of IC
packaging factories. Due to the high cost of
the manufacturing by using the ceramic
process, most of the IC packaging factories
use plastic packaging. The manufacturing
process of plastic packaging generally
contains the following eleven process stages,
(1) tapping, (2) lapping (wafer back grinding),
(3) die sawing, (4) die bonding, (5) wire
bonding, (6) molding, (7) marking, (8)
plating, (9) de-flash and trimming, (10)
forming, and (11) final testing (Manzione
(1990)).

In the IC packaging factory, a group of
machines are arranged in parallel at each
stage of the process, and jobs in hundreds of
product types are to be processed. The
processing times of each job at different
process stage may not be the same but
predetermined. Each job must be processed
on any of the parallel machines at each
process stage. Therefore, the manufacturing
system in the IC packaging factory can be
considered as a flexible flow shop. The IC
packaging scheduling problem (ICPSP) we
investigate is a variation of the flexible

flow-shop problem, and a generalization of
the parallel-machine scheduling problem.

In real situations, the ICPSP involves
constraints on job clusters, job-cluster
dependent processing time, due dates,
machine capacity, and sequentially dependent
setup time at each of the multiple process
stages. Therefore, the ICPSP is considerably
more difficult to solve than the classical
parallel-machine scheduling problem
investigated by Ho and Chang (1995), Gabrel
(1995), Schutten and Leussink (1996), Cheng
and Gen (1997), Ruiz-Torres et al. (1997),
Park and Kim (1997), and Lee and Pinedo
(1997). The development of an efficient
scheduling system is essential in the IC
packaging industry, as it improves the
efficiency of the production with dynamic
orders, and tight due dates restrictions.

2. Purpose

In the research, we formulate the ICPSP
as an IP problem to minimize the total
machine workload. The IP model considers
the due date restrictions, which includes the
processing time and the setup time in the
capacity constraints, thus reflects the real
situations more accurately than those
considered by Salvador (1973), Arthanari
(1974), Wittrock (1988), and Sriskandarajah
and Sethi (1989). In addition, we propose
two efficient solution procedures to solve the

ICPSP approximately, with efficient job
schedules that minimize the total machine
workload. For most factories, wafer sawing
(die sawing), die mounting, and wire bonding
are three most critical manufacturing stages
among all, and the machine numbers at those
stages are enormous. Scheduling those
machines under the production environment
with many factors mentioned above, has
become a rather difficult task for the IC
packaging factories. For most cases, the
due dates for the jobs are usually settled
between the customers and the factories.
Therefore, some tardiness (lateness) must be
considered to ensure the job completion of
the orders. Minimizing the total workload
allows the process to fully utilize the system
capacity, thus increases the overall
productions.

3. Researching Theory

3.1 Framework

First, let the manufacturing environment
consists of a set of processing stages, and all
jobs must be processed through the P stages
and completes the necessary operations
within every stage. We also define Mp =
{ 1pm , 2pm , ..., pKm } as the machine group at

the p-th stage and containing a set of KP

identical machines. We note that the cluster
R0 includes J0 = J01 + J 02 + ⋅⋅⋅ + J 0P jobs in
each process stage. Because the cluster R0

is to denote the idle status of the Kp parallel
machines of each stage, the number of the
cluster R0 in each stage are equal to the
number of the parallel machines in each stage.
Let Wp = { 1Wp , 2Wp , ... , pKW } be the

predetermined machine capacity at the p-th
stage expressed in terms of processing time

units. And then, we define R = {R0, R1,
R2, ... , RI} as the I + 1 clusters of jobs to be
processed with each job cluster Ri = {rij | j =
1, 2, ... , Ji} containing Ji jobs. Since each job
rij must be processed through a set of
manufacturing process consists of p-stage, rij

= {rijp | p = 1, 2, P} denote the job rijp

processed on the p-th stage. Let nij be the
lot size (number of dies) of job rij.

pip : the unit processing time for each die for
each job rijp in cluster Ri (rijp ∈ Ri) on
machine pkm ,

pii's : the sequentially dependent setup time

between any two consecutive jobs)(iijp Rr ∈

and)(''' ipji Rr ∈ from different job clusters

on each machine pkm .

xijpk : the variable indicating whether the job
rijp is scheduled on machine pkm of the p-th

stage, with xijpk = 1 if job rijp is scheduled to
be processed on machine pkm of the p-th

stage, and xijpk = 0 otherwise.

tijpk : the starting time for job rijp to be
processed on machine pkm of the p-th stage,

where tijpk is between the time windows (bij1,
eijP) of job rij.
(bij1, eijP) : the service time windows,
bij1 : the earliest starting time to process job
rij1 of the first process
eijP : the latest starting time to process job rijP

of the last process. iPijijijP p nde −= .

Let pkjiijy '' be the precedence variable,
where pkjiijy '' should be set to 1 if the two
jobs rijp and pjir '' are scheduled on machine

pkm and job rijp precedes job pjir '' (not
necessarily directly), and where

pkjiij
y '' = 0

otherwise. Further, let
pkjiij

z '' be the
direct-precedence variable, where

pkjiij
z ''

should be set to 1 if the two jobs rijp and pjir ''

scheduled on machine pkm and job rijp

precedes job pjir '' directly, and where

pkjiij
z '' = 0 otherwise.

3.2 Integer Programming Formulation

To find a schedule for the jobs
which minimizes the total machine workload
without violating the machine capacity and
the service time windows constraints, we
consider the following integer programming
model shown by Table 1.

3.3 Multi-Stage Sequential Savings
Algor ithm

The MSSS algorithm for the ICPSP is
essentially based on the well-known savings
procedure of Clark and Wright (1964) for the
vehicle routing problem, with some
modifications. Each process stage, therefore,
can be treated as a parallel-machine
scheduling problem. Consequently, one
solution strategy we may take is to solve
each single-stage ICPSP problem
sequentially to obtain the stage solutions,
then combine them into a complete ICPSP
solution.

The MSSS algorithm is

proceeding as follows.

First, apply the

sequential-savings

procedure to obtain

stage 1 solution. We

then use the job

completion times

obtained from stage 1

solution as the ready

times bijp for the jobs to

be processed at stage 2,

and solve the ICPSP for

stage 2. Repeat this

step until we obtain all

the P stage solutions.

All the P stage solutions,

are then combined to

form a complete ICPSP

solution. Variations of

the MSSS algorithm

may be considered by

setting various due

dates for each stage

sequentially, then solve

for the resulting single

stage ICPSP to

generating multiple

solutions. The best

among all combined

solutions then is

selected as the solution

for the ICPSP.

The Sequential-Savings

algorithm, initially,

calculates the savings of

all pairs of jobs and

creates a list by sorting

the savings in

descending order of

their magnitudes. The

algorithm then selects

the first feasible pair of

jobs from the top of the

list to start a new

schedule (initialization

of the first schedule).

We note that a selected

pair of jobs is feasible

and will be added to the

machine schedule if it

does not violate the

machine capacity

constraints and the

starting time windows

constraints. Starting

from the top of the

savings list, the

Sequential-Savings

algorithm expands the

schedule by finding the

first feasible pair of jobs

on the list then adding it

to either one of the two

ends of the schedule.

If the current schedule

cannot be expanded,

choose the first feasible

pair of jobs from the top

of the list to start

another new schedule.

Repeat such steps until

all jobs are scheduled.

The savings, pjij i ''SA ,

which we considered in

the MSSS algorithm is

defined as

pi ipiippjij i '''' sssSA -UU += ,

for all pairs of jobs ijpr

and pj i ''r , where pii's

represents the setup

time between any two

consecutive jobs

)(iijp Rr ∈ and)(''' ipj i Rr ∈

from different job

clusters on each

machine pkm , the

notation U denotes the

machine is in idle status,

and ipsU (pi'sU)

represents the setup

time to prepare an idle

machine to process job

)(pjiijp ''rr . We write a

C++ program to proceed

with the steps of the

Sequential-Savings

algorithm. Considering

the short run time it

takes, and the single

solution obtained, the

MSSS algorithm can

effectively solve

large-scale ICPSP, and

is considered efficient.
3.4 Multi-Stage Parallel Inser tion
Algor ithm

The multi-stage parallel-insertion
algorithm (MSPI) can effectively handle
large-scale problems. The MSPI algorithm
for the ICPSP is essentially based on the
parallel-insertion procedure presented by
Potvin and Rousseau’s (1993) for the vehicle
routing problem with time windows, with
some modifications. Note that the IC
packaging process consists of multiple
manufacturing stages, each process stage
therefore can be treated as a parallel-machine
scheduling problem. Consequently, one
solution strategy we may take is to solve
each single-stage ICPSP problem
sequentially to obtain the stage solutions,
then combine them into a complete ICPSP
solution.

The MSPI algorithm is

proceeding as follows.

First, apply the

parallel-insertion

procedure to obtain

stage 1 solution. We

then use the job

completion times

obtained from stage 1

solution as the ready

times bijp for the jobs to

be processed at stage 2,

and solve the ICPSP for

stage 2. Repeat this

step until we obtain

solutions for all K

stages. All K stage

solutions, are then

combined to form a

complete ICPSP

solution. Variations of

the MSPI algorithm

may be considered by

setting various possible

due dates for each stage

sequentially, then solve

for the resulting single

stage ICPSP to

generating multiple

solutions. The best

among all combined

solutions then is

selected as the solution

for the ICPSP.

At the initialization step,

the parallel-insertion

procedure constructs a

set of machine

schedules

simultaneously. The

procedure uses a

generalized regret

measure over all

schedules to select the

best unscheduled job,

which can foresee the

difficulty of inserting

jobs into machine

schedules. Let PSpk be

the partial schedule of

machine pkm at

process stage p, where

)u,...,u,u,...,(uPS pkLpkn1)pk(npk0pk −=

P1,...,p ,K...,1,k 0,uu ppkLpk0 ====

where upkn is the n-th
job scheduled on

machine pkm at the

process stage p, and upk0

and upkL represent
pseudo jobs. For each
unscheduled job rijp

assigned to machine

pkm , we first compute

its insertion cost on
each position of the

partial schedule of each
machine at the process
stage p.

At process stage p,
)u,r,(u ë pknijp1)pk(npk −

represents the

additional setup time

occurred if job rijp is

inserted between the (n

- 1)th and n-th positions

of the partial schedule

PSpk. In some cases,

job insertion may cause

the postponement of

starting processing time

of jobs already on the

partial schedule. If the

postponement is against

the starting service time

windows constraint,

)u,r,(u ë pknijp1)pk(npk − is

set to be an arbitrary

large value.

)u,r,(u pknijp1)pk(npk −ë

=

p)I(u)I(up)iI(upi)I(u pkn1)pk(npkn1)pk(n sss −− −+

where upk(n-1) and upkn

are two consecutive

jobs on partial schedule

PSpk before job rijp is

inserted, I(upkn) is the

function that returns the

product type of the job

being scheduled on the

n-th position of partial

schedule PSpk.
Let

)u,r,(u ë *pknijp1)*pk(npk*
− d

enote the lowest
insertion cost due to the
insertion of job rijp into
the partial schedule
PSpk.

)]u,r,(u[min)u,r,(u pknijp1)pk(npk
l1,...,n

*pknijp1)*pk(npk*
−

=− = ëë

However, we may not

choose next inserted job

rijp with lowest

)(rë ijppk* , since

insertion problem may

occur for jobs with

larger insertion cost.

To quantify the future

insertion difficulties for

a job on each machine,

the generalized regret

measure σ(rijp) of job rijp

is defined. The regret

measure looks ahead

what can be lost later, if

a given job is not

immediately inserted

into its best alternative

machine at the process

stage p, which

summaries the

differences of insertion

cost between the best

alternative machine and

all other alternative

machines. Hence,

unscheduled jobs with

larger regret value must

be inserted in higher

priority, since these

jobs are more difficult

to find feasible insertion

position among all

machines. In the

parallel insertion

algorithm, instead of

using)(rë ijppk* , the

candidate inserted job
*
ijpr is selected with

largest regret value

σ(rijp).

)](r[max)(r ijp
r

*
ijp

ijp

σ=ó

∑=σ
≠

−−'
*''**

pkpk
pkijp1)(npkpk

*
pknijp1)pk(npk

*
ijp)]u,r,(u-)u,r,(u[)(r ëë

where
)]u,r,(u[ëmin)u,r,(uë *pknijp1)*pk(npk*

pK1,...,k
n'pkijp1)(n'pk

'pk*
−=− =

 and insert *
ijpr

between 1)*(n'pku − and

*n'pku . At each process

stage, the steps of

algorithm are described

in the following:
(Step 1) At each process stage, obtain
the partial schedules for all machines
using the largest criterion to select a
jobs rijp, which causes an idle

machine pkm to spend the largest setup

time to prepare for the processing of
job rijp.
(Step 2) The following three sub-steps
are proceeded to execute the
scheduling procedures until all the jobs
are scheduled.

(a) For each unscheduled lot, first
compute its best feasible insertion
position by)u,r,(u *pknijp1)*pk(npk*

−ë at
each machine’s partial schedule
PSpk.

(b)Compute the regret value σ(rijp) for
each job. Choose the next inserted
job *

ijpr with largest σ(rijp) among
all unscheduled jobs.

(c) The best lot *
ijpr is inserted into the

lowest insertion cost position of the
machine determined by)(rë *

ijppk* .

We implement the

MSPI algorithm using

the C++ programming

language to execute the

Parallel-Insertion

procedure at each of the

P stages.
4. Achievements

In this study, we formulated ICPSP as
an integer programming model the presented
an efficient solution procedure, called the
Multi-Stage Parallel Insertion algorithm, to
solve the ICPSP case, which minimizes the
total machine workload.

Major achievements:

1. Develop the integer programming model
for the ICPSP with the total machine
workload minimized. And write C++
programming language code to generate
the IP model.

2. Use integer programming software
(Cplex) to illustrate the applicability of
the linear integer programming model,
and derive the optimal solution for ICPSP.
Transfer the ICPSP the ICPSP into
vehicle routing problem with
time-window(VRPTW)network problem.

3. Develop multi-stage sequential savings
algorithm (MSSS) to solve the ICPSP
approximately and effectively handle
large-scale problems.

4. Develop multi-stage parallel-insertion
algorithm (MSPI) to solve the ICPSP
approximately and effectively handle
large-scale problems.

References

[1] Arthanari, T. S. (1974). On some
problems of sequencing and grouping.
PhD thesis, Indian Statistical Institute,
Calcutta.

[2] Cheng, R. and Gen, M. (1997).
Parallel machine scheduling problem
using memetic algorithms. Computers
and Industrial Engineering, 33(3-4),
761-764.

[3] Gabrel, V. (1995). Scheduling jobs
within time windows on identical
parallel machines: new model and
algorithms. European Journal of
Operational Research, 83, 320-329.

[4] Ho, J. C. and Chang, Y. L. (1995).
Minimizing the number of tardy jobs for
m parallel machines. European Journal
of Operational Research, 84, 343-355.

[5] Lee, Y. H. and Pinedo, M. (1997).
Scheduling jobs on parallel machines
with sequence-dependent setup times.
European Journal of Operational
Research, 100, 464-474.

[6] Manzione, L. T. (1990). Plastic
Packaging of Microelectronic Devices.
Technical Report, AT&T Bell
Laboratories.

[7] Ovacik, I. M. and Uzsoy, R. (1996).
Decomposition methods for scheduling
semiconductor testing facilities. The
International Journal of Flexible

Manufacturing Systems, 8, 357-388.

[8] Park, M. W. and Kim, Y. D. (1997).
Search heuristics for a parallel machine
scheduling problem with ready time and
due dates. Computers and Industrial
Engineering, 33(3-4), 793-796.

[9] Potvin, J. Y. and Rousseau, J. M. (1993).
A Parallel route building algorithm for
the vehicle routing and scheduling
problem with time windows. European
Journal of Operational Research, 66,
19-26.

[10] Salvador, M. S. (1973). A solution of a
special class of flow-shop scheduling
problems. Proceedings of the
Symposium on the Theory of
Scheduling and its Applications, 83-91,
Springer-Verlag, Berlin.

[11] Schutten, J. M. J. and Leussink, R. A. M.
(1996). Parallel machine scheduling
with release dates, due dates and family
setup times. International Journal of
Production Economics, 46-47, 119-125.

[12] Sriskandarajah, C. and Sethi, S. P.
(1989). Scheduling algorithms for
flexible flowshop: worst and average
case performance. European Journal of
Operational Research, 43, 143-160.

[13] Wittrock, R. J. (1988). An adaptable
scheduling algorithm for flexible flow
lines. Operations Research, 36, 445-453.

Table 1 The IP model for ICPSP

minimize ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑+
= = = = = = = =

L
})({

1 0 1 0 1 0 1'

'

'
''

l

K

1k

I

i

J

j

I

i

J

j
pii

I

i

J

j
pkjijiipijijpk

i i
'

i
szpnx

subject to

∑ =
=

pK

k
ijpk pjix

1
,, all for 1, (1)

∑ =
=

0

1
0

J

j
jpk p,kx all for 1, (2)

p,ksz pnx pk
I

i

J

j

I

i

J

j
pii

I

i

J

j
pkjijiipijijpk

i i
'

i
 all for ,W)(≤∑ ∑ ∑ ∑ ∑ ∑+

= = = = = =0 1 0 1 0 1'

'

'
'' (3)

all for 1,2)(Q)(i, j, p,k-xxyy pkjiijpkpijpkjipkjiij ≥+−+ '''''' (4)

,all for 1,2)(Q)(j, p,ki-xxyy pkjiijpkpijpkjipkjiij ≤+++ '''''' (5)

j, p,kixxyy pkjiijpkpijpkjipkjiij ,all for 0,)(Q)(≤+−+ '''''' (6)

all for 0,1)(Q)(i, j, p,kxxyy ijpkpkjipijpkjipkjiij ≤+−−+ '''''' (7)

j, p,k ixxyy pkjiijpkpijpkjipkjiij ,all for 0,1)(Q)(≤+−−+ '''''' (8)

 p,k jizy pkjiijpkjiij ,,all for ,'''' ≥ (9)

i,j,p,kz
I

i

J

j
pkjiji

i
 all for 1,≤∑ ∑

= =1 1' '
'' (10)

i,j,p,kz
I

i

J

j
ijpkji

i
 all for 1,≤∑ ∑

= =1 1' '
'' (11)

p,kzx
I

i

J

j rr
pkjijiijpk

i

jiij

 all for 1,=∑ ∑ ∑−
= = ≠0 1 ''

'' (12)

kpjiytspnt pkjiijppkjipiiipijijpk '''' ,,,all for ,1)-(Q 0' ≤+−++ (13)

k pji-zytspnt pkjiijpkjiijppkjipiiipijijpk '''''' ,,,all for ,2)(Q 0' ≤++−++ (14)

kpji,...,P,p-zytpnt pkjiijpkjiijppkjipijikpji '''''' ,,,alland for ,2)(Q 320)1()1('''''' =≤++−+ −− (15)

kpji-z-y-zy-zy pkjiijpkjiijppkjiijpkjiijppkjijipkjiij '''' ,,,all for,1)(Q2)(Q 2******** ≥−++ (16)

 , all and1,...,2,1,and1,2,..., for),1G21G1 kjP-pIix-x-txpnt)kij(ppijpkpkpijijpkipijijpk ==++≤+ ++ '' 1)1(()((17)

∑ =∑ =
= =

P

p

K

k
ijpk jI i Px

p

1 1
 all and1,2,...,for , (18)

kpjixbt ijpkijijpk ,,,all for ,1≥ (19)

 kpj,ixet ijpkijijpk ,,all for , P≤ (20)

j, p,kixijpk , allfor 1},{0,∈ (21)

 p,kjiy pkjiij ,, allfor 1},{0,∈'' (22)

 p,kjiz pkjiij ,, allfor 1},{0,∈'' (23)

	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8
	page9
	page10
	page11

