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The effect of internal period on the optical dispersion of indefinite medium material �IDMM� is analytically
studied under the condition of the period much smaller than the operating wavelength, based on a simplified
dipole model for the material. Interesting phenomena associated with the internal period, such as upper cutoff
for wave vector, additional propagating mode, and parabolic dispersion in a limiting case are demonstrated in
detail. However, for the normal wave vector �k� region, where �k��k0 or �k��k0 �k0 is the free-space wave
number�, the hyperbolic dispersion behavior can still be realized by IDMM as long as its internal period is
small enough. Our analysis also shows that unlike the homogeneous indefinite medium, there exists no special
boundary for IDMM, on which the refraction problem cannot be physically solved. Finally, the dispersion
properties obtained from the dipole model are verified by using a real example of layered IDMM.
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I. INTRODUCTION

Indefinite media, as a novel type of artificial material,
have received much attention recently. Indefinite media are
anisotropic unconventionally, with permittivity or permeabil-
ity tensors that are indefinite—not all of the principal com-
ponents have the same sign. For such media, the optical dis-
persion relation, i.e., the equifrequency contour, has the form
of a hyperbola �or a hyperboloid in three-dimensional case�,1
significantly differing from those for left-handed media
�LHM� and conventional media, which have the form of a
circle �or a sphere� or an ellipse �or an ellipsoid�. Indefinite
media have been shown to possess a variety of unique
effects1–8 and most studies on them are carried out theoreti-
cally, based on a homogeneous medium model. However,
homogeneous indefinite medium with hyperbolic dispersion
evidently leads to some confusing results in physics. For
example, in a lossless indefinite medium, propagating waves
with a finite frequency may take arbitrarily large wave vec-
tor, whereas, for a lossy indefinite medium, the attenuation
rate of propagating waves would be inversely proportional to
the loss parameter of the medium, if their propagation direc-
tions are almost parallel to one of the asymptotes of the
dispersion hyperbola. Besides, there exists a special bound-
ary of indefinite medium, whose refraction �or reflection�
problem cannot be solved physically, even if the medium is
assumed to be lossy.9 Thus, the characteristic of the disper-
sion of real indefinite medium materials �IDMMs� still needs
to be studied carefully.

Belov et al.10 have discussed the homogenization for a
three-dimensional lattice of �magnetic� uniaxial resonant di-
poles, but their discussion is limited to the condition of k0a
=1 �k0 is the wave number in free space and a the internal
period�, which reflects the state of present IDMM samples at
microwave. Later, under a similar condition �i.e., k0a�1�,

Wood and Pendry11 investigated theoretically the dispersion
behavior of a specific IDMM, which consists of alternating
metal and dielectric layers. Both studies have shown that the
dispersion relation for IDMM evidently deviates from the
dispersion hyperbola predicted by its effective indefinite me-
dium, even in the wave vector �k� region where �k��k0; and
what is more, when the magnitude of negative effective per-
meability or permittivity is small, an additional propagating
mode appears in the anticutoff region predicted by the effec-
tive indefinite medium, which cannot exist in any homoge-
neous indefinite medium. Generally, an artificial material
formed by a lattice of artificial “molecules” or inclusions in a
matrix can be treated as a homogeneous medium with effec-
tive permittivity and permeability under the condition of a
��, where �=2� /k0 being the operating wavelength. In this
situation, it is said that the material can be homogenized. For
IDMM, however, it seems doubtful that the material can be
homogenized with a��, as the magnitude of wave vectors
for a given frequency may be arbitrarily large in the corre-
sponding indefinite medium, which contradicts the fact that
the spatial dispersion effect of IDMM is not again negligible
for large wave vectors �k��1 /a.12 Then, a more practical
problem comes: whether the hyperbolic dispersion behavior
on the normal-k region, where �k��k0 or �k��k0, could be
realized by IDMM when a��, or whether IDMM could be
homogenized for the normal-k region in this case. So it is
necessary to study the effect of internal period on the disper-
sion of IDMM under the condition of a��. In addition, it is
also interesting to investigate the refraction problem on the
respective boundary of IDMM with a��, which corre-
sponds to the special boundary of its effective indefinite me-
dium whose refraction problem cannot be solved physically.

In this paper, the effect of internal period on the disper-
sion of IDMM is studied under the condition of a��, based
on a properly simplified physical model for the material,
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which is formed by a one-dimensional lattice of electric
uniaxial dipoles. As the periodicity is retained only in one
direction, this material model is easily used to demonstrate
the period effect on the dispersion. For such an IDMM, a
relatively simple expression is obtained for the dispersion
relation, thus, its dispersion behaviors can be investigated
analytically. The refraction problem on the special IDMM
boundary is also discussed and it is shown to be solvable
physically. Finally, the dispersion behaviors predicted by the
dipole model are examined numerically by using an example
of real IDMM, which consists of alternating metal and di-
electric layers.

II. DISPERSION BEHAVIORS OF REAL INDEFINITE
MEDIUM MATERIAL

To study the effect of internal period on the optical dis-
persion of IDMM, we consider a physical model for IDMM
as follows: A one-dimensional �1D� periodic array of sheets
of electric uniaxial dipoles directed in the x direction in a
matrix, as illustrated in the inset of Fig. 1�c�. Here, the ma-
trix is a normal medium, and for generality, it is assumed to
be anisotropic. In this dipole model, the dipole spacing in the
sheets is much smaller than the sheet spacing �a� in the z
direction, so the structure can be treated as a system uniform
in the xy plane and periodic along z. As the periodicity is
retained only in one direction, this material model is easily
used to demonstrate the period effect on the dispersion. We
consider TE-polarized waves propagating in the xz plane in
this IDMM �the results for TM-polarized waves in a similar
magnetic dipole structure can be obtained directly from du-
ality�. These waves have electric field with one component in
the x direction and the other in the z direction, and only the
x component interacts with the uniaxial dipoles of the mate-
rial. The operating wavelength ��� of the waves is assumed
to be much larger than the internal period a.

The electric field of TE waves propagating in the IDMM
can be written as E= �x̂ex�z�+ ẑez�z��exp�ikxx�= �x̂U�z�
+ ẑV�z��exp�i�kxx+kzz��, where U and V are periodic func-
tions of z �with the period a�. Here, the z component �kz� of
the Bloch wave vector �k� is limited to the first Brillouin
zone, i.e., �kz��� /a, while the x component �kx� may be
arbitrary value, due to the IDMM uniform in the xy plane.
By solving Maxwell’s equations in the unit cell of the mate-
rial, we will find the dispersion relation associating the wave
vector k with wave frequency f . The induced polarization in
the unit cell can be expressed as P= x̂�0a�Ex��z�, where the
parameter � is a measure for the polarizability of the dipoles.
From Maxwell’s equations, we obtain

d2ex

dz2 + pz
2ex = −

a�

�bx
pz

2ex��z� , �1�

where pz
2=�bx�k0

2−kx
2 /�bz� with k0=2�f /c, and �bx and �bz

are the relative permittivities of the matrix in the x and z
directions, respectively. Here, both �bx and �bz are normal
positive numbers. As the right side of Eq. �1� vanishes at z
�0, the equation can be easily solved in the following re-
gions: region I, where −a /2�z	0 and region II, where 0
	z�a /2. In region I, the solution of Eq. �1� has the form of
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FIG. 1. �Color online� �a� Dispersion curves in the normal-k
region for the IDMMs with ��=0 �dotted�, −0.0025 �dashed�, −0.1
�dash-dotted�, and −1 �solid�. The internal period is a=� /32 for all
cases. �b� Dispersion curves in the normal-k region for the IDMMs
with different values of � /a. The parameter ��=−0.0025 is kept for
all cases. For comparison, the hyperbolic dispersion for the effec-
tive indefinite medium is included as solid circles. �c� Dispersion
relation for the IDMM with ��=−1 and a=� /32. Solid and dotted
lines represent the real and imaginary parts of kz, respectively; and
dashed lines are the dispersion hyperbola for the effective indefinite
medium. Note that �kz�=16k0 at the border of the Brillouin zone.
The inset shows the geometry of IDMM. The common parameters
in �a�, �b�, and �c� are �bx=1 and �bz=1.
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ex
I�z�=A exp�ipzz�+B exp�−ipzz�, and obviously, this solu-

tion can be extended to the neighboring region of −a	z�
−a /2, in which no dipoles are included. Thus, we express the
solution of Eq. �1� for region II as ex

II�z�=ex
I�z−a�exp�ikza�

= �A exp�ipz�z−a��+B exp�−ipz�z−a���exp�ikza�. At the in-
terface between regions I and II, two solutions ex

I and ex
II

must satisfy the following matching conditions:

�ex
I �z→0− = �ex

II�z→0+ = ex�0� ,

	dex
II

dz
	

z→0+
− 	dex

I

dz
	

z→0−
= −

a�

�bx
pz

2ex�0� .

Obviously, the first condition represents the continuity of the
x component of the electric field at the interface z=0,
whereas the second one, which is derived by integrating Eq.
�1� over an infinitesimal interval centered at z=0, reflects the
boundary condition for the y component of the magnetic
field �H�. From these matching conditions, we have

A + B = A exp�i�kz − pz�a� + B exp�i�kz + pz�a� , �2�

i
a�

�bx
pz�A + B� = �− 1 + exp�i�kz − pz�a��A

+ �1 − exp�i�kz + pz�a��B . �3�

By eliminating the coefficients A and B in Eqs. �2� and �3�,
we then find the dispersion relation for the IDMM in the
form

cos�kza� = cos�pza� −
�

2�bx
pza sin�pza� . �4�

The dispersion relation �Eq. �4�� for the IDMM is some-
what complicated. Let’s first examine its characteristic in the
normal-k region of interest, where �k��k0 or �k��k0. Unlike
the previous works,10,11 we assume that k0a�1 �i.e., a���
throughout this paper. Thus, for the normal-k region, we
have �k�a�1, and Eq. �4� is simplified to

kz
2 = 
�� +

�bx
2

12
�1 −

2��

�bx
��k0

2 −
kx

2

�bz
�a2�k0

2 −
kx

2

�bz
� , �5�

where ��=�+�bx. In the derivation of Eq. �5�, higher-order
terms are retained in the series expansion for the right side of
Eq. �4�. This is only because the IDMM is inherently disper-
sive and its parameter �� may become nearly zero at certain
frequencies. The quantities kza and �kxa�2 are of the same
order in the limiting case of ��→0. In order to know com-
pletely about the dispersion behavior of the IDMM, it is
necessary to include such a limiting case in our analysis.
Since kx

2a2 ,k0
2a2�1, and �bx ,�bz�1, Eq. �5� is written ap-

proximately as

kz
2 = 
�� +

�bx
2

12
�k0

2 −
kx

2

�bz
�a2�k0

2 −
kx

2

�bz
� . �6�

If we could neglect the terms involving the factor a in Eq.
�6�, the dispersion equation further reduces to

kx
2

�bz
+

kz
2

��

= k0
2. �7�

This is just the dispersion relation for the homogenized
IDMM. In this situation, the IDMM is equivalent to a homo-
geneous medium with the effective permittivities �� and �bz
in the x and z directions, respectively. In what follows, we
will restrict ourselves to the material case with ��	0, i.e.,
�	−�bx, so that the dispersion relation for the corresponding
homogeneous medium always have the form of a hyperbola,
regardless of whether the homogenization of the material is
valid or not. Actually, only in this case, it is reasonable to
refer to the material as an IDMM. By comparing Eqs. �4�,
�6�, and �7�, it is clear that the dispersion relation �Eq. �7�� is
only valid for the region of �k��1 /a and when ����

 �k0a�2.

It is well known that there exists an anticutoff �kac� for
wave vector of propagating waves in an indefinite medium,
i.e., only the waves with �k��kac is allowed to propagate.
Using the dispersion relation �Eq. �6��, we can analyze the
anticutoff problem for the IDMM. The existence of anticut-
off means that kz

2	0 at kx=0. Let kx=0, from Eq. �6�, we
have

kz
2 = ��� +

�bx
2

12
k0

2a2�k0
2. �8�

Thus, in the case when ��	−�bx
2 k0

2a2 /12, the IDMM indeed
has an anticutoff; but in the case if ����	�bx

2 k0
2a2 /12, the

anticutoff seems not to appear, though �� is negative.
We further analyze the dispersion behavior of the IDMM

in the normal-k region. Let kz=0, from Eq. �6�, we have


�1 +
12��

�bx
2 k0

2a2� −
kx

2

�bzk0
2�1 −

kx
2

�bzk0
2� = 0. �9�

In the case when ��	−�bx
2 k0

2a2 /12, where the anticutoff ex-
ists, we find the anticutoff kac=��bzk0, which is the same as
that for the corresponding indefinite medium. Note that in
this case, perhaps the material cannot be homogenized actu-
ally, as the homogenization strictly requires that ���
−�bx

2 k0
2a2 /12. In the case if ����	�bx

2 k0
2a2 /12 �but ��	0�,

where the anticutoff seems not to appear, the situation be-
comes quite complicated. There are two solutions to Eq. �9�,
i.e., kx1=��bz�1+12�� /�bx

2 k0
2a2�k0 and kx2=��bzk0. From Eq.

�6�, we find that kz
2�0 for �kx�	kx1 or �kx��kx2, while kz

2

	0 for kx1	 �kx�	kx2. Therefore, in this case, there still ex-
ists an anticutoff of kac=��bzk0, at which kz=0, and waves
with �kx� a little smaller than kac are forbidden, while waves
with �kx��kac are propagating. Moreover, an additional
propagating mode occurs in the interval of �kx��kx1. Such an
additional mode cannot exist in any �homogeneous� indefi-
nite medium. Moreover, for the IDMM, what is more, we
find that in the limiting case of ��→0, the dispersion relation
�Eq. �6�� becomes

EFFECT OF INTERNAL PERIOD ON THE OPTICAL… PHYSICAL REVIEW B 77, 205124 �2008�

205124-3



kz = 
�bx

2�3
�k0

2 −
kx

2

�bz
�a , �10�

which is a pair of parabolas. Therefore, in this limiting case,
the dispersion curve for the IDMM does not tend to be two
separated lines as predicted by the effective indefinite me-
dium. Interestingly, no anticutoff exists in this special situa-
tion. It should be indicated that the parabolalike dispersion
behavior was found in our previous study on the metal-
dielectric photonic crystal �with a=� /3�.13 To verify our
analysis above, using Eq. �4�, we numerically calculate the
dispersion relation in the normal-k region for the IDMMs
with various ��, and the results are plotted in Fig. 1�a�.

From the above analysis, it is clear that for any negative
��, the additional propagating mode would not appear when
a	ac, where ac= ��−3�� /��bx��. In the case of no addi-
tional mode, however, the dispersion relation of the IDMM
with a�ac still deviates evidently from the dispersion hyper-
bola for the corresponding effective medium, as seen from
Eq. �6�. Moreover, only when a�ac, the dispersion curve of
the IDMM would agree well with the corresponding disper-
sion hyperbola. These phenomena are illustrated in Fig. 1�b�,
which shows the dispersion curves for the IDMMs with
� /a=32, 36, 64, and 240. The matrix is assumed to be air,
and the parameter ��=−0.0025, for which we find ac
=� /36.3. Note that the effective indefinite media are the
same for all cases since �� is kept constant. For comparison,
the dispersion hyperbola for the effective indefinite medium
is included as solid circles in Fig. 1�b�. As seen from Fig.
1�b�, for a=� /32, there exists an additional mode in the
range of �kx��0.47k0, and the range of the additional mode
becomes very narrow when a=� /36. The additional mode
already vanishes when a=� /64, and in this case, the disper-
sion curve for the IDMM is even different from the corre-
sponding dispersion hyperbola. Only when the internal pe-
riod decreases to a=� /240, good agreement between the
dispersion curves for the IDMM and the corresponding in-
definite medium is achieved in the normal-k region.

Next, we analyze the dispersion characteristic of the
IDMM in the large-k region, where �k�a�1 or �k�a
1. As
propagating waves for a given frequency can take arbitrarily
large wave vector in the effective indefinite medium, it is
perhaps possible for waves to propagate with large wave
vector in the IDMM. For waves with large wave vectors, the
hyperbolic dispersion relation �Eq. �7�� is no longer valid
even when ����
 �k0a�2. It is interesting whether there exists
any upper cutoff for wave vector of propagating waves in the
IDMM. If, as for the effective indefinite medium, no upper
cutoff exists for the IDMM, the dispersion diagram of the
material would have a multiband structure; due to that, kz is
limited to the region �−� /a ,� /a�. If it is really so, this
should be reflected in Eq. �4�. For �kx��kac=��bzk0, we re-
write Eq. �4� as

cos�kza� = g�t�
 1

f�t�
+

�

2
 , �11�

where t=�−pz
2a=��bx�kx

2 /�bz−k0
2�a�0, �=� /�bx, and the

functions f and g are defined as f�t�= t tanh�t� and g�t�

= t sinh�t�. Note that the parameter �	−1 since ��	0 or
�	−�bx. The functions f and g have the following proper-
ties: At t=0, f =g=0, but f−1g=1; for t�0, f and g increase
monotonously with t; as t→�, f ,g→�. Thus, at t=0 �or
�kx�=kac�, cos�kza�=1, i.e., kz=0; and for 0	 t�1, cos�kza�
�1+ �1+��t2 /2, indicating that cos�kza� decreases as t �or
�kx�� begins to increase from 0 �or kac�. Obviously, there ex-
ists a point t0, at which 1 / f +� /2=0, i.e., cos�kza�=0. More-
over, as t increases from t0, the function cos�kza�	0, as well
as it decreases monotonously with t. Since cos�kza�
��g�t� /2→−� as t→�, there must exist a critical point tc,
at which cos�kza�=−1, i.e., kz= � /a. If t further increases
from tc, then cos�kza�	−1, meaning that kz has an imaginary
part. Therefore, for kx, there also exists a critical value

kuc =��bz�k0
2 +

tc
2

a2�bx
� , �12�

where tc only depends on the value of �, and waves with
�kx��kuc are evanescent in the IDMM. Clearly, there exists
only a single value for tc �or kuc�, at which cos�kza�=−1,
because cos�kza� decreases monotonously in the region of t
� t0, where cos�kza��0. Therefore, for the IDMM with fi-
nite period, the dispersion diagram is not a multiband struc-
ture, and there exists physically an upper cutoff, above
which, i.e., �k���kuc

2 + �� /a�2, the wave is forbidden in the
material. To illustrate this dispersion behavior, the dispersion
relation for the IDMM with a typical parameter ��=−1 is
plotted in Fig. 1�c�, where the dispersion hyperbola for the
corresponding indefinite medium is included as dashed lines
for comparison. As seen from Fig. 1�c�, waves are propagat-
ing only for k0	 �kx�	8k0, and at larger wave vectors, the
dispersion curve is also strongly distorted and thus deviates
from the dispersion hyperbola.

III. WAVE REFRACTION ON THE SPECIAL IDMM
BOUNDARY

The dispersion relation �Eq. �4�� can be used to analyze
the refraction behavior of waves incident upon the IDMM
boundary. If the IDMM boundary is parallel or normal to the
x axis, and a plane wave is incident from air upon the mate-
rial boundary, the refraction problem is only related to the
part of the dispersion curve in the normal-k region, which
may be approximated by a part of hyperbola generally, as
seen in Fig. 1�c�. In this case, the IDMM can be represented
by its effective medium. The wave refraction or reflection on
the indefinite medium boundary parallel or normal to the
anisotropy axis was well discussed in Ref. 3, and the phe-
nomenon of anomalous total reflection was found. Evidently,
such a phenomenon generally also happens to the IDMM
boundary parallel to the x axis, and the normally incident
wave with kx=0 will be totally reflected, as waves with �kx�
	kac are forbidden in the IDMM. However, for the IDMM
with small ���� when the additional propagating mode exists,
the normally incident wave is not again totally reflected by
the IDMM boundary. For this case, the prediction from the
effective indefinite medium is wrong completely. Interest-
ingly, in this case, only these waves with incident angle
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larger than one critical angle but smaller than another may be
totally reflected by the IDMM boundary.

It is of particular interest to discuss the wave refraction on
the special IDMM boundary, which is perpendicular to one
of the asymptotes of the dispersion hyperbola for the effec-
tive indefinite medium. Let’s first examine the refraction
problem for the case of the indefinite medium. The wave
vector diagram for analyzing the wave refraction is shown in
Fig. 2�a�, where a plane wave with wave vector kin is inci-
dent from air upon the special boundary of the indefinite
medium �see the inset of Fig. 2�b��. The orientation of the

boundary is indicated by the dashed line Lb, which is or-
thogonal to the asymptote �La� of the dispersion hyperbola.
The construction line Lc represents the conservation of the
wave vector component parallel to Lb, which must be satis-
fied for wave transmission across the interface. As seen from
Fig. 2�a�, Lc only intersects one point �B� of the dispersion
hyperbola, and its Poynting vector �SB� points toward the
source, indicating that it contributes to no refracting wave.
Thus, a puzzling problem arises about the refraction on this
special boundary. Next, we investigate the case of the IDMM
under consideration, and the wave vector diagram is plotted
in Fig. 2�b�. In contrast to the corresponding dispersion hy-
perbola, the dispersion curve for the IDMM is distorted at
large wave vectors, which makes the construction line Lc
intersect two points B and C, with Poynting vectors SB and
SC, respectively. SB points toward the source as in the homo-
geneous case, but SC points away from the source. Thus,
point C contributes to a refracting wave. So the puzzling
problem mentioned above vanishes for the IDMM with finite
internal period.

However, as the dispersion curve for the IDMM is
bounded and not closed, it still seems possible that no re-
fracted wave might be case for the special IDMM boundary
if the plane wave is incident from a medium with very high
index and has a very large wave vector component parallel to
the boundary, as illustrated in Fig. 3. In this case, the con-
struction line Lc intersects only one point �B� of the disper-
sion curve for the IDMM, and it, with Poynting vector SB
pointing toward the source, contributes to no refracting
wave. In this situation, we need to repeat the dispersion
curve in higher-order Brillouin zones, as refracted wave in
the IDMM is a Bloch wave.14,15 As seen from Fig. 3, Lc can
always intersect a point �C�� in a high-order zone. To acquire
the fundamental wave vector of the corresponding Bloch
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for the incident medium with a high index, and kin is the incident
wave vector. La is an asymptote of the dispersion hyperbola for the
effective indefinite medium, and Lb, which is orthogonal to La,
indicates the orientation of the material boundary. Lc is the con-
struction line, and it intersects point B in the first Brillouin zone and
point C� in a high-order Brillouin zone. C� falls onto C when folded
back to the first zone. SA, SB, and SC are the Poynting vectors of A,
B, and C, respectively. The wave vector �kt� at C corresponds to a
causal refracted wave in the IDMM. The parameters of the IDMM
are the same as in Fig. 1�c�.
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wave, the point C� is folded back to the first zone by sub-
tracting a reciprocal lattice vector, and it falls onto point C.
Point C has a Poynting vector SC pointing away from the
source, thus contributes to a refracting wave. Therefore, for
the IDMM with finite internal period, there really exists no
special boundary, on which the refraction problem cannot be
solved physically.

IV. LAYERED IDMM EXAMPLE

All analysis performed above is based on the 1D dipole
model for IDMM. Now, we consider a real example of
IDMM to examine the predicted dispersion behaviors, and
also to compare it with its dipole model. The real IDMM
consists of alternating layers of metal with relative permit-
tivity �m	0 and dielectric with relative permittivity �r�0.
The inset of Fig. 4 shows the unit cell of the material. The
internal period �a� of the material is assumed to be much
smaller than the operating wavelength. According to the ef-
fective medium theory,16 this material can be designed as an
indefinite medium with negative effective permittivity �t in
the xy plane and positive effective permittivity �n in the z
direction, which are given by �t= fm�m+ �1− fm��r and �n
=�r�m / �fm�r+ �1− fm��m�, where fm=d /a being the filling
fraction of the metal, and d is the metal layer width. For
TE-polarized waves propagating in the xz plane, the disper-
sion relation for this indefinite medium then has a hyperbolic
form. Let us strictly solve for the dispersion relation for this
layered IDMM. For this purpose, we first divide the unit cell
of the material into three regions: region I, where −a /2�z
	−d /2; region II, where −d /2�z�d /2; and region III
where d /2	z�a /2. Then, the magnetic field component
�Hy� of �Bloch� waves with wave vector k= x̂kx+ ẑkz in three
regions can be written as

Hy
I �x,z� = �A1 exp�ipzz� + B1 exp�− ipzz��exp�ikxx� ,

Hy
II�x,z� = �A2 exp�− qzz� + B2 exp�qzz��exp�ikxx� ,

Hy
III�x,z� = Hy

I �x,z − a�exp�ikza� ,

where pz=��rk0
2−kx

2 and qz=�kx
2−�mk0

2. The nonzero compo-
nents �Ex and Ez� of the electric field can be obtained
straightforwardly from Hy. The dispersion relation for the
layered IDMM is determined by imposing matching condi-
tions on the parallel field components �Hy and Ex� at the
interface between regions I and II and the one between re-
gions II and III. From the continuity of Hy and Ex at z=
−d /2, we have

Ā1 + B̄1 = Ā2 + B̄2, �13�

− i��Ā1 − B̄1� = Ā2 − B̄2, �14�

where Ā1=A1 exp�−ipzd /2�, B̄1=B1 exp�ipzd /2�, Ā2

=A2 exp�qzd /2�, B̄2=B2 exp�−qzd /2�, and �=�mpz /�rqz.
Then, we obtain

Ā2 =
1

2
�1 − i��Ā1 +

1

2
�1 + i��B̄1, �15�

B̄2 =
1

2
�1 + i��Ā1 +

1

2
�1 − i��B̄1. �16�

Similarly, from the matching conditions at z=d /2, we can
obtain

Ā2 exp�− qzd� =
1

2
��1 − i��exp�− ipz�a − d��Ā1

+ �1 + i��exp�ipz�a − d��B̄1�exp�ikza� ,

�17�

B̄2 exp�qzd� =
1

2
��1 + i��exp�− ipz�a − d��Ā1

+ �1 − i��exp�ipz�a − d��B̄1�exp�ikza� .

�18�

Substitution of Eqs. �15� and �16� into Eqs. �17� and �18�
yields

�1 − i���exp�− qzd� − exp�− ipz�a − d��exp�ikza��Ā1

= − �1 + i���exp�− qzd� − exp�ipz�a − d��exp�ikza��B̄1,

�19�

�1 + i���exp�qzd� − exp�− ipz�a − d��exp�ikza��Ā1

= − �1 − i���exp�qzd� − exp�ipz�a − d��exp�ikza��B̄1.

�20�

By eliminating the coefficients Ā1 and B̄1 in Eqs. �19� and
�20�, we can finally obtain the dispersion relation for the
layered IDMM in the form

0 4 8 12 16
0

4

8

12

16

k
x

/ k
0

k z
/k

0

x

z
a/2

−a/2

d/2

−d/2
o

I
II
III

FIG. 4. �Color online� Dispersion curves �solid lines� for the
layered IDMMs with various fm. The parameter �t=−2 is kept con-
stant for all cases. Dotted line is the dispersion curve for the corre-
sponding dipole model. Dot-dashed lines are the dispersion curves
for the effective dipole models for different fm. For the solid or
dot-dashed lines from left to right: fm=0.1, 0.2, 0.3, 0.4, and 0.5,
respectively. The other parameters are �r=2.1 and a=� /32. The
inset shows the unit cell of layered IDMM.
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cos�kza� = cos��1 − fm�pza�cosh�fmqza�

−
1

2
�� −

1

�
�sin��1 − fm�pza�sinh�fmqza� .

�21�

The dispersion equation �Eq. �21�� for the layered IDMM
seems quite different from Eq. �4�, the one for the dipole
model. However, if we let fm→0 and �m→−� but keep �t
constant, we find that �n=�r in this limiting case, and Eq.
�21� reduces to Eq. �4�, with ��=�t and �bx=�bz=�r. There-
fore, the layered IDMM can be described exactly by the
dipole model in the limiting case.

It is interesting to investigate how the metal layer width
affects the dispersion of the layered IDMM. For this purpose,
we numerically calculate the dispersion relation of the lay-
ered IDMM using Eq. �21�. As an example, the dielectric
layers are assumed to be fused silica �SiO2� with �r=2.1, and
the internal period is a=� /32. We fix �t=−2, but vary fm to
calculate the dispersion relation for each case. The results are
plotted as solid lines in Fig. 4, where the dispersion curve for
the corresponding dipole model, with ��=�t and �bx=�bz
=�r, is also included as dotted line for comparison. As the
dispersion diagram is symmetric about both the kx and kz
axes, only its quarter is shown in Fig. 4 for clarity. As seen
from Fig. 4, when fm increases, the dispersion curve for the
layered IDMM moves toward the large kx region and differs
from the dispersion curve for the dipole model even in the
normal-k region. However, if we introduce an effective di-
pole model for each case, with ��=�t, �bx=�r− ��r−1�fm,
and �bz=�n, then we find that in the normal-k region, the
dispersion curve �dot-dashed line� for the effective dipole
model is always in good agreement with that for the layered
IDMM, as expected. Moreover, for fm�0.4, two dispersion
curves are almost the same in the whole k region. This
means that the finite width effect of the metal layers is al-
most equivalent to a modification to the matrix for the effec-
tive �uniaxial� dipole model of the IDMM. Evidently, the
complicated dispersion relation �Eq. �21�� can be well ap-
proximated by Eq. �4� with parameters chosen properly,
when the metal layers are thin compared to the period.

Unlike the dipole model, the layered IDMM generally has
no simple expression for its dispersion relation in the
normal-k region where �k�a�1. For the normal-k region, if
we expand both sides of Eq. �21� in Taylor series to second
order, then we obtain

1 −
1

2
�kza�2 = 1 −

�t

2
�k0a�2 +

�t

2�n
�kxa�2. �22�

Consequently, we have

kx
2

�n
+

kz
2

�t
= k0

2, �23�

which agrees with the dispersion relation for the correspond-
ing effective medium. Evidently, Eq. �22� is valid only under
the condition of ��t�
 �k0a�2, and so is Eq. �23�. When this
condition is not satisfied, the right side of Eq. �21� should be
expanded to fourth order for the normal-k region, and the

resulting equation is quite complicated. However, in the lim-
iting case of �t→0, the resulting equation has a simple form
of

kz = 
�1 − fm��r

2�3
�k0

2 −
kx

2

�n
�a , �24�

which corresponds to the parabolic dispersion. The compari-
son between Eqs. �24� and �10� implies that the effective
dipole model for layered IDMM should take an effective
parameter �bx= �1− fm��r for small ��t�, instead of �bx= �1
− fm��r+ fm.

Using Eq. �21�, we analyze numerically the dispersion
characteristic of the layered IDMM in detail, and find that all
dispersion phenomena predicted previously for the dipole
model, such as anticutoff, upper cutoff, and additional propa-
gating mode, may also happen to the layered IDMM. To
show this, the dispersion curves for the layered IDMMs with
�t=0, −0.0065, −0.1, and −1 are plotted in Fig. 5, where we
set fm=0.2 for all cases. For comparison, the results for the
effective dipole models are also included as marks in Fig. 5.
As the dispersion diagram is symmetric about the kz axis,
only its right half is shown. The effective dipole model has
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FIG. 5. �Color online� Dispersion curves for the layered IDMMs
with �t=0 �dotted�, −0.005 �dashed�, −0.1 �dash-dotted�, and −1
�solid�. For comparison, the results for the effective dipole models
are included as marks, and good agreement is achieved for each
case. In �b�, the dispersion curves for �t=0 and −0.005 is not dis-
tinguishable from each other. The other parameters of the layered
IDMM are fm=0.2, �r=2.1, and a=� /32.
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��=�t and �bz=�n for all cases, but takes �bx= �1− fm��r for
�t=0, −0.0065, and −0.1, and �bx= �1− fm��r+ fm for �t=−1.
As seen from Figs. 5�a� and 5�b�, excellent agreement be-
tween the layered IDMM and its effective dipole model is
achieved for each case, indicating that the layered IDMM,
which is perhaps the simplest structure of real IDMM, can be
effectively described by our dipole model.

V. SUMMARY

Based on a simplified dipole model for the material, the
effect of internal period on the optical dispersion of IDMM
has been studied analytically, under the condition of the pe-
riod much smaller than the operating wavelength. It has been
shown that under this condition, the dispersion behavior of
IDMM is still deeply affected by its internal period. Interest-
ing phenomena associated with the internal period, such as
additional propagating mode in the anticutoff region pre-
dicted by the effective indefinite medium, upper cutoff for
wave vector of propagating waves, and wave refraction on
the special material boundary, have been illustrated in detail.
Unlike the homogeneous indefinite medium, there exists no

special boundary for IDMM with finite period, on which the
refraction problem cannot be solved physically. Our analysis
has also shown that for the normal-k region of interest,
IDMM can always be homogenized as an effective indefinite
medium, as long as its period is enough small compared to
the wavelength. All these dispersion properties have been
verified by one kind of real IDMM, which consists of alter-
nating metal and dielectric layers. In addition, a new type of
optical dispersion, i.e., the parabolic dispersion, which can
be realized by the IDMM in the limiting case, has been
found for the first time. The special material with parabolic
dispersion and its application will be discussed detailedly in
our next paper.
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