
1

行政院國家科學委員會補助專題研究計畫成果報告

網路安全與頻寬控制閘道器之實作與研究

Implementation and Research of Security and Bandwidth

Management Gateways

計畫類別：� 個別型計畫 � 整合型計畫

計畫編號：NSC 90-2213-E-009-161-

執行期間： 2001 年 08 月 01 日至 2002 年 7 月 31 日

計畫主持人： 林盈達

共同主持人：

計畫參與人員： 魏煥雲、梁元彪、張智晴

本成果報告包括以下應繳交之附件：

�赴國外出差或研習心得報告一份

�赴大陸地區出差或研習心得報告一份

�出席國際學術會議心得報告及發表之論文各一份

�國際合作研究計畫國外研究報告書一份

執行單位： 國立交通大學資訊科學系

2

1. Abstract

中文摘要：
網路安全和頻寬管理對企業而言已經成為
一個重要的議題。本研究著重在整合與安
全及頻寬管理相關的開放性原始碼套件在
單一個閘道器上。各套件彼此的衝突已被
消弭以確保其互通性。其次，這項研究並
從內部及外部量測各功能元件的效能，以
發現更進一步的研究議題。我們也提出了
一個 PostACK 的方式來管理 TCP 流量，在
一個會損失封包的廣域網路下較TCR的方
式節省了 96%的緩衝區空間，及提高 10%
的實質輸送量。最後，我們並提供幾種提
升各元件效能方法的建議。

English abstract:
Network security and bandwidth
management have become a critical issue for
enterprises. The research focuses on
integrating components of open source
packages for security and bandwidth
management into a single gateway. Conflicts
among the packages are resolved to ensure
interoperability. Next, this study internally
and externally evaluates the performance of
each component to identify the problems for
future research directions. We also propose a
PostACK to shape TCP flows, which saves
96% buffer space but also has 10% goodput
improvement against TCP rate control (TCR)
[1] under a lossy WAN in our
implementation. Finally, several approaches
to scale up these software components are
suggested to improve the performance.

2. Motivation and introduction

To guarantee the secure operations of an
enterprise network, firewalls, virtual private
networks (VPN) and intrusion detection
systems (IDS), respectively, address the
requirement. Originally they were separate
devices, but they have been integrated with
other services such a network address
translation (NAT) as a single security
gateway. Besides, bandwidth management is
an increasing demand. It is expected to be
integrated into the gateway as well. We

integrate several open source packages for
these purposes into a single gateway. These
packages are listed in Table 1 [2-7].

Package Name User-space Program Kernel-space Program Package
Size Version

ipchains Command-line
management tool

Kernel built-in packet
filtering firewall and
NAT

63KB 1.3.9

Squid Daemon
(Cache server,
transparent proxy**,
and URL filter)

No 1104KB 2.3

FWTK Daemon
(Application proxies
for Web content filter)

No 476KB 2.1

FreeS/WAN Pluto Daemon
(Internet key
exchange, IKE)

KLIPS kernel patch
(Encryption and
authentication)

1252KB 1.5

Snort Daemon
(Intrusion detection)

No 644KB 1.7

ALTQ Management tools QoS components 507 KB 3.1

Table 1 Software packages information

Figure 1 illustrates the complete packet
processing flows of the security part of the
integrated gateway.

check
for ward

chain
deny

deny/
reject

yes

no make
routing
decision

no

deny/
reject

no

yes

deny/
reject

accept

accept

accept

lo inter face

nic

yes
do

VPN
if

needed

de-VPN

check
output
chain

de-NAT

NAT

check
input
chain

check
sum
&

check
sanity

source
ip is
local

Squid
por t 3128

redir ect

slave
por t 1000

other local processes
(Pluto, Snor t, etc.)

User Space

Kernel Space

bypass 1

bypass 2

TIS
por t 8080

child
por t 1001

nic

accept

accept
KLIPS

KLIPS

Select For k

linear
search

Figure 1: Complete Packet Processing Flows of the security
Integration

In general, the packet flow from the private
interface to the public interface is as follows: (1)
perform checksum calculations and sanity checks
of the packet; (2) check the packet through the
input chain; (3) routes the packet; (4) judge
whether the packet is generated by the gateway
itself; (5) check the packet through the forward
chain; (6) NAT the packet if needed; (7) check
the packet through the output chain, and (8)
perform VPN processing if needed. In addition, if
the packet’s source and destination IP addresses
both belong to the gateway, i.e., inter-daemon
communication from Squid to FWTK, the
gateway passes the packet back to the loopback
(lo) interface after checking the output chain.

We also propose PostACK to manage TCP traffic.
It is designed to be more intelligent both in
retaining previous TCR benefits and
eliminating its deficiencies. Without
measuring the WAN delay and shrinking the

3

RWND in TCP ACKs, PostAck can avoid
the side effects of TCR. It has the following
advantages: (1) low buffer requirement, (2)
low data packet latency, (3) fairness among
flows within a class, (4) higher goodput than
TCR-applied flows, (5) more robust under
various TCP implementations, (6)
eliminating triple-dup ACKs. Figure 2
illustrtates theis mechanism.

Figure 2: Efficient PostAck implementation for managing
outgoing TCP traffic

3. Result and discussion

We perform both internal and external
benchmarks to our implementation. Table 2
summarizes the benchmark methodology.

Category Benchmark Tools Settings Benchmark Items
CPU cost SmartBits 2000 with

SmartFlows 1.2,
self-written HTTP
Traffic Generator

Who tops the
processing time
among all the
functions

Memory and
disk cost

SmartBits 2000 with
SmartFlows 1.2,
self-written HTTP
Traffic Generator

1. Enable all security
functions
2. No other filters in
ipchains
3. Using 3DES / MD5
4. 10 URL entries are

configured
5. A single HTTP

connection repeatedly
retrieves a 40KB Web
page for 10 seconds

The disk / memory
consumptions

Packet Filter SmartBits 2000 with
SmartFlows 1.2

1. Only enable packet
filter
2. Various numbers of
filters
3. Various packet sizes

Scalability

URL Filiter self-written HTTP
Traffic Generator

1. Various Web page sizes
2. Various URL lengths in
HTTP request
3. A single HTTP
connection repeatedly
retrieves a 64KB Web
page for 10 seconds

Scalability

Content Filter HTTP Traffic
Generator

1. Various Web page sizes
2. Various numbers of
concurrent connections
3. A single HTTP
connection repeatedly
retrieves a 64KB Web
page for 10 seconds

Scalability

IP
Masquerade

SmartBits 2000 with
SmartFlows 1.2

1. Security gateway
equipped with 4 NICs. 1
for public interface and 3
for private interfaces
2. Various numbers of
private hosts
3. Various packet sizes

Scalability

Authentication
Algorithms

SmartBits 2000 with
SmartFlows 1.2

Various packet sizes Cost of MD5 and
SHA1

IDS SmartBits 2000 with
SmartFlows 1.2

Various packet sizes 1. Packet loss rate
2. pattern-matching
time

Table 2: Benchmark methodology

Table 3 summarizes the observations of the

benchmark results. It indicates that ipchains
and FreeS/WAN are more viable than
commercial products, but FWTK and Snort
have performance problems.

Module Characteristics Bottleneck Reason Worst-case Time
Complexity

ipchains CPU-intensive Increasing the
number of filters

Linear matching
algorithm

O(l+m+n); l, m, n:
number of filters in
input, forward, and
output chains,
respectively

Squid Memory&
CPU-intensive

Increasing the
number of URL
regular
expressions

Linear matching
algorithm

O(n(l+m)); l: URL
length in HTTP
requests; m: average
regular expression
length; n: number of
URL regular
expressions

FWTK CPU-intensive Increasing the
number of HTTP
connections and
the size of the
retrieved Web
page

1. Parse config
file for each
request
2. Read only one
byte of the Web
page from the
socket interface
at a time

O(n); n: size of the
retrieved Web page

NAT CPU-intensive Increasing the
number of
private-to-public
connections

Data structure of
NAT table

O(n); n: number of
private-to-public
connections

FreeS/WAN CPU-intensive Using the stronger
algorithms

Too many
computation for
encryption and
authentication

O(n*m); m: key
length; n:
packet size

Snort CPU-intensive Packet loss
frequently

1. Copy each
packet from
kernel space to
user space
2. Linear
matching
algorithm

O(l+m*n); l: number
of TCP/UDP/ICMP
rule tree nodes; m:
number of
TCP/UDP/ICMP rule
options; n: packet
size

Table 3: Summary of comparisons

For bandwidth management, we compare the
pros and cons of three mechanisms, Per-flow
Queuing (PFQ), TCR, and PostAck, as well
as their complexity. The results are
summarized in Table 4 and 5.

Metrics PFQ TCR PostACK
Goodput (under lossy WAN) High Slightly Lower High
Fairness (fine-grained) Good Good Slightly Lower
Fairness (under lossy WAN) Good Degraded Similar to PFQ
Buffer Requirement High Low Low
Data Packet Latency Large Little Little
ACK Packet Latency Little Little Large
Robustness (under lossy WAN) High Poor High
Stability (under lossy WAN) High Slightly Lower High
Table 4: Comparison of PFQ, TCR, and POSTACK:
performance metrics

Complexity PFQ TCR PostACK
Classification per-flow per-flow per-flow
Time O(1) O(1) O(1)
Space O(N) O(N) O(N)
RTT Measurement No Yes No
Header Modification No Yes No
Checksum Recalculation No Yes No
Table 5: Comparison of PFQ, TCR, and PostACK:
complexity

The following improvements are suggested
to scale up the security packages:
(1) Improving the linear-time algorithms

4

For ipchains, Squid, and Snort, their linear
matching algorithms can be accompanied by
a flow cache so that active flows can follow a
fast path. For example, signature-based IDS
such as Snort, most of the signatures (545 of
763 signatures) attack Web servers. By
carefully caching the valid URLs, normal
URL accesses can bypass the long
linear-matching phase of URL-related
signatures.

(2) Proper implementation tricks
For FWTK, the configuration file should be
scanned only once, and the retrieved Web
page can be read multiple bytes at once from
the kernel space to the user space. For the
NAT module, a suitable bucket size for large
enterprises can be defined to avoid hash
collisions.

(3) Function relocation from daemon to
kernel

For some advanced access control policy
used in the application proxy, such as FTP,
SMTP proxy in FWTK, only the
control-plane parts are required to be directed
to the user-space daemon process for
checking. Other data-plane objects should
pass directly through the kernel or be blocked,
according to the access-control policy.
Several works have focused on changing the
slow kernel-daemon-kernel data path into a
fast kernel data path [8,9,10]. The efforts
differ primarily in the flexibility to switch
between slow and fast data paths. Numerical
results indicate that this pure software-based
acceleration of application proxies can
improve the performance by a factor of two
to four.

(4) Hardware accelerators

For encryption/decryption operations in
VPN processing such as that in FreeS/WAN,
the 3-DES operations can be offloaded to an
accelerator card or ASIC. Typical operations
are: (1) formatting the data to be
encrypted/decrypted; (2) feeding data to the
hardware through programming I/O or DMA
channels; (3) waiting for a hardware interrupt

to trigger the Interrupt Service Routine (ISR)
to check what is happening; (4) finding that
the hardware has successfully
encrypted/decrypted, and (5) continuing to
process the subsequent operations.

(5) PostACK
PostACK can also achieve perfect fairness,
as PFQ and TCR can, if the measuring time
scale lasts for several RTTs. But if we
measure the bandwidth with a very fine-
grained time scale, PostACK’s fairness is
slightly degraded. Honestly speaking, ACK
control has always been a cool hack, but not
a deep solution. Our study provides a big
picture of how much we can shape TCP
traffic transparently, especially in the lossy
WAN environments.

4. Self-evaluation of the result

Integrating many functions into a single
all-in-one system or separating them as
standalone devices involves security and
bandwidth management issues. Many
commercial security gateways choose to be
an all-in-one solution. Accordingly, this
study focuses only (1) building a product-like
all-in-one system from numerous
open-source packages and on (2) externally
and internally evaluating the performance of
such system. However, installing such a
device does not mean secured. Other issues,
such as correctly setting the administrative
policy rules, increasing the security of the
network architecture, and increasing the
security of the encryption algorithms, are
beyond the scope of this study and deserve
further attention. The highly integrated
system presented here, together with the
self-developed Web management console, is
downloadable at [11] for hands-on practice.

5. References
[1] S. Karandikar, S. Kalyanaraman, P. Bagal,
and B. Packer, TCP Rate Control, ACM
Computer Communication Review, Vol. 30,
No. 1, Jan. 2000.
[2] ipchains,
http://www.netfilter.org/ipchains/.

5

[3] Squid, http://www.squid-cache.org .
[4] FWTK, http://www.fwtk.org .
[5] FreeS/WAN, http://www.freeswan.org .
[6] Snort, http://www.snort.org .
[7]ALTQ,
http://www.csl.sony.co.jp/person/kjc/progra
ms.html.
[8] David Maltz, “TCP Splicing for
Application Layer Proxy Performance,” IBM
Research Report, March 1998.
[9] Oliver Spatscheck, Jorgen S. Hansen,
John H. Hartman, Larry L. Peterson,
“Optimizing TCP Forwarder Performance,”
IEEE/ACM Transactions on Networking,
Vol.8 No.2, April 2000.
[10] Saibal Kumar Adhya, “Asymmetric
TCP Splice: A Kernel Mechanism to
Increase the Flexibility of TCP Splice,”
Master thesis of Dept. of C.S., Indian
Institute of Technology, April 2001.
[11] “Integrated security gateway,”
http://speed.cis.nctu.edu.tw/SG.html.

	page1
	page2
	page3
	page4
	page5

