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1. Abstract

中文摘要：
網路安全和頻寬管理對企業而言已經成為
一個重要的議題。本研究著重在整合與安
全及頻寬管理相關的開放性原始碼套件在
單一個閘道器上。各套件彼此的衝突已被
消弭以確保其互通性。其次，這項研究並
從內部及外部量測各功能元件的效能，以
發現更進一步的研究議題。我們也提出了
一個 PostACK 的方式來管理 TCP 流量，在
一個會損失封包的廣域網路下較TCR的方
式節省了 96%的緩衝區空間，及提高 10%
的實質輸送量。最後，我們並提供幾種提
升各元件效能方法的建議。

English abstract:
Network security and bandwidth 
management have become a critical issue for 
enterprises. The research focuses on 
integrating components of open source 
packages for security and bandwidth 
management into a single gateway. Conflicts 
among the packages are resolved to ensure 
interoperability. Next, this study internally
and externally evaluates the performance of 
each component to identify the problems for 
future research directions. We also propose a
PostACK to shape TCP flows, which saves 
96% buffer space but also has 10% goodput 
improvement against TCP rate control (TCR)
[1] under a lossy WAN in our 
implementation. Finally, several approaches
to scale up these software components are 
suggested to improve the performance.

2. Motivation and introduction

To guarantee the secure operations of an 
enterprise network, firewalls, virtual private 
networks (VPN) and intrusion detection 
systems (IDS), respectively, address the 
requirement. Originally they were separate 
devices, but they have been integrated with
other services such a network address 
translation (NAT) as a single security 
gateway. Besides, bandwidth management is 
an increasing demand. It is expected to be 
integrated into the gateway as well. We 

integrate several open source packages for 
these purposes into a single gateway. These 
packages are listed in Table 1 [2-7].

Package Name User-space Program Kernel-space Program Package 
Size Version

ipchains Command-line 
management tool

Kernel built-in packet 
filtering firewall and 
NAT

63KB 1.3.9

Squid Daemon
(Cache server, 
transparent proxy**, 
and URL filter)

No 1104KB 2.3

FWTK Daemon 
(Application proxies 
for Web content filter)

No 476KB 2.1

FreeS/WAN Pluto Daemon 
(Internet key 
exchange, IKE)

KLIPS kernel patch 
(Encryption and 
authentication)

1252KB 1.5

Snort Daemon 
(Intrusion detection)

No 644KB 1.7

ALTQ Management tools QoS components 507 KB 3.1

Table 1 Software packages information

Figure 1 illustrates the complete packet 
processing flows of the security part of the 
integrated gateway.
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Figure 1: Complete Packet Processing Flows of the security 
Integration

In general, the packet flow from the private 
interface to the public interface is as follows: (1) 
perform checksum calculations and sanity checks 
of the packet; (2) check the packet through the 
input chain; (3) routes the packet; (4) judge 
whether the packet is generated by the gateway 
itself; (5) check the packet through the forward 
chain; (6) NAT the packet if needed; (7) check 
the packet through the output chain, and (8) 
perform VPN processing if needed. In addition, if 
the packet’s source and destination IP addresses 
both belong to the gateway, i.e., inter-daemon 
communication from Squid to FWTK, the 
gateway passes the packet back to the loopback 
(lo) interface after checking the output chain.

We also propose PostACK to manage TCP traffic. 
It is designed to be more intelligent both in 
retaining previous TCR benefits and 
eliminating its deficiencies. Without 
measuring the WAN delay and shrinking the
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RWND in TCP ACKs, PostAck can avoid
the side effects of TCR. It has the following 
advantages: (1) low buffer requirement, (2) 
low data packet latency, (3) fairness among 
flows within a class, (4) higher goodput than 
TCR-applied flows, (5) more robust under 
various TCP implementations, (6) 
eliminating triple-dup ACKs. Figure 2 
illustrtates theis mechanism. 

Figure 2: Efficient PostAck implementation for managing 
outgoing TCP traffic

3. Result and discussion

We perform both internal and external 
benchmarks to our implementation. Table 2 
summarizes the benchmark methodology.

Category Benchmark Tools Settings Benchmark Items
CPU cost SmartBits 2000 with 

SmartFlows 1.2, 
self-written  HTTP 
Traffic Generator

Who tops the 
processing time 
among all the 
functions

Memory and 
disk cost

SmartBits 2000 with 
SmartFlows 1.2, 
self-written HTTP 
Traffic Generator

1. Enable all security 
functions
2. No other filters in 
ipchains
3. Using 3DES / MD5 
4. 10 URL entries are 

configured
5. A single HTTP 

connection repeatedly 
retrieves a 40KB Web 
page for 10 seconds

The disk / memory 
consumptions

Packet Filter SmartBits 2000 with 
SmartFlows 1.2

1. Only enable packet 
filter
2. Various numbers of 
filters 
3. Various packet sizes

Scalability

URL Filiter self-written HTTP 
Traffic Generator

1. Various Web page sizes
2. Various URL lengths in 
HTTP request
3. A single HTTP 
connection repeatedly 
retrieves a 64KB Web 
page for 10 seconds

Scalability

Content Filter HTTP Traffic 
Generator

1. Various Web page sizes
2. Various numbers of 
concurrent connections
3. A single HTTP 
connection repeatedly 
retrieves a 64KB Web 
page for 10 seconds

Scalability

IP 
Masquerade

SmartBits 2000 with 
SmartFlows 1.2

1. Security gateway 
equipped with 4 NICs. 1 
for public interface and 3 
for private interfaces
2. Various numbers of 
private hosts
3. Various packet sizes

Scalability

Authentication 
Algorithms

SmartBits 2000 with 
SmartFlows 1.2

Various packet sizes Cost of MD5 and 
SHA1

IDS SmartBits 2000 with 
SmartFlows 1.2

Various packet sizes 1. Packet loss rate 
2. pattern-matching 
time

Table 2: Benchmark methodology

Table 3 summarizes the observations of the 

benchmark results. It indicates that ipchains 
and FreeS/WAN are more viable than
commercial products, but FWTK and Snort 
have performance problems.

Module Characteristics Bottleneck Reason Worst-case Time 
Complexity

ipchains CPU-intensive Increasing the 
number of filters

Linear matching 
algorithm

O(l+m+n); l, m, n: 
number of filters in 
input, forward, and 
output chains, 
respectively

Squid Memory&
CPU-intensive

Increasing the 
number of URL 
regular 
expressions

Linear matching 
algorithm

O(n(l+m)); l: URL 
length in HTTP 
requests; m: average 
regular expression 
length; n: number of 
URL regular 
expressions

FWTK CPU-intensive Increasing the 
number of HTTP 
connections and 
the size of the 
retrieved Web 
page

1. Parse config 
file for each 
request
2. Read only one 
byte of the Web 
page from the 
socket interface 
at a time

O(n); n: size of the 
retrieved Web page

NAT CPU-intensive Increasing the 
number of 
private-to-public 
connections

Data structure of 
NAT table

O(n); n: number of 
private-to-public 
connections

FreeS/WAN CPU-intensive Using the stronger 
algorithms

Too many 
computation for 
encryption and 
authentication

O(n*m); m: key 
length;         n: 
packet size

Snort CPU-intensive Packet loss 
frequently

1. Copy each 
packet from 
kernel space to 
user space
2. Linear 
matching 
algorithm

O(l+m*n); l: number 
of TCP/UDP/ICMP 
rule tree nodes; m: 
number of 
TCP/UDP/ICMP rule 
options;  n: packet 
size

Table 3: Summary of comparisons

For bandwidth management, we compare the 
pros and cons of three mechanisms, Per-flow 
Queuing (PFQ), TCR, and PostAck, as well 
as their complexity. The results are 
summarized in Table 4 and 5.

Metrics                     PFQ       TCR      PostACK
Goodput (under lossy WAN)    High    Slightly Lower   High
Fairness (fine-grained)         Good       Good Slightly Lower
Fairness (under lossy WAN)    Good    Degraded Similar to PFQ
Buffer Requirement            High        Low       Low
Data Packet Latency            Large       Little      Little
ACK Packet Latency            Little       Little      Large
Robustness (under lossy WAN)   High        Poor      High
Stability (under lossy WAN)      High   Slightly Lower High
Table 4: Comparison of PFQ, TCR, and POSTACK: 
performance metrics

Complexity PFQ TCR PostACK
Classification            per-flow      per-flow         per-flow
Time                   O(1)          O(1)           O(1)
Space                  O(N)          O(N)           O(N)
RTT Measurement         No           Yes             No
Header Modification       No            Yes            No
Checksum Recalculation    No            Yes            No
Table 5: Comparison of PFQ, TCR, and PostACK: 
complexity

The following improvements are suggested 
to scale up the security packages:
(1) Improving the linear-time algorithms
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For ipchains, Squid, and Snort, their linear 
matching algorithms can be accompanied by
a flow cache so that active flows can follow a 
fast path. For example, signature-based IDS 
such as Snort, most of the signatures (545 of 
763 signatures) attack Web servers. By 
carefully caching the valid URLs, normal 
URL accesses can bypass the long 
linear-matching phase of URL-related 
signatures.

(2) Proper implementation tricks
For FWTK, the configuration file should be 
scanned only once, and the retrieved Web 
page can be read multiple bytes at once from 
the kernel space to the user space. For the 
NAT module, a suitable bucket size for large 
enterprises can be defined to avoid hash 
collisions.

(3) Function relocation from daemon to 
kernel

For some advanced access control policy 
used in the application proxy, such as FTP, 
SMTP proxy in FWTK, only the 
control-plane parts are required to be directed 
to the user-space daemon process for 
checking. Other data-plane objects should 
pass directly through the kernel or be blocked, 
according to the access-control policy.
Several works have focused on changing the 
slow kernel-daemon-kernel data path into a
fast kernel data path [8,9,10]. The efforts
differ primarily in the flexibility to switch 
between slow and fast data paths. Numerical 
results indicate that this pure software-based
acceleration of application proxies can 
improve the performance by a factor of two 
to four.

(4) Hardware accelerators

For encryption/decryption operations in 
VPN processing such as that in FreeS/WAN, 
the 3-DES operations can be offloaded to an 
accelerator card or ASIC. Typical operations 
are: (1) formatting the data to be
encrypted/decrypted; (2) feeding data to the 
hardware through programming I/O or DMA 
channels; (3) waiting for a hardware interrupt 

to trigger the Interrupt Service Routine (ISR) 
to check what is happening; (4) finding that 
the hardware has successfully 
encrypted/decrypted, and (5) continuing to 
process the subsequent operations.

(5) PostACK
PostACK can also achieve perfect fairness, 
as PFQ and TCR can, if the measuring time 
scale lasts for several RTTs. But if we 
measure the bandwidth with a very fine-
grained time scale, PostACK’s fairness is 
slightly degraded. Honestly speaking, ACK 
control has always been a cool hack, but not 
a deep solution. Our study provides a big 
picture of how much we can shape TCP 
traffic transparently, especially in the lossy 
WAN environments.

4. Self-evaluation of the result

Integrating many functions into a single 
all-in-one system or separating them as 
standalone devices involves security and 
bandwidth management issues.  Many 
commercial security gateways choose to be 
an all-in-one solution. Accordingly, this 
study focuses only (1) building a product-like 
all-in-one system from numerous 
open-source packages and on (2) externally 
and internally evaluating the performance of 
such system. However, installing such a 
device does not mean secured. Other issues, 
such as correctly setting the administrative 
policy rules, increasing the security of the 
network architecture, and increasing the
security of the encryption algorithms, are 
beyond the scope of this study and deserve 
further attention. The highly integrated 
system presented here, together with the 
self-developed Web management console, is 
downloadable at [11] for hands-on practice.
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