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Abstract 

Electromagnetic wave propagation along waveguides having two-dimensionally (2D) 
periodic walls with finite thickness is formulated here as a rigorous and exact 
boundary-value problem.  The dispersion relations of such a class of waveguide 
having various 2D periodic patterns of finite-thickness walls are systematically 
expressed with both phase and attenuation constants.  In addition, the contour plots 
of field components and Poynting vector are also demonstrated in this paper to verify 
the guiding characteristics of such a class of waveguide.  In particular, the 
phase-matching condition (anomalous coupling) between the incident plane wave and 
the waveguide mode is carefully examined and is employed for the first time to 
predict the guiding characteristic of the waveguide. 

Keywords: 2D periodic structures, 1D periodic structure, stop band, artificial crystal 
waveguide, photonic crystal waveguide, defect, photonic band gap 

1. Introduction 

The development of artificial materials by constructing lattice structures has gained 
considerable attention in recent years; in particular, the stop-band phenomenon 
associated with the lattice structures has found many applications.  For example, the 
antenna substrate etched with two-dimensionally (2D) periodic holes has been utilized 
to suppress the surface waves introduced by printed antennas [1-4].  The 2D periodic 
layers in conjunction with planar structures have been investigated for both optical 
and microwave applications; one example is the high impedance surface that will not 
support a surface wave in any direction [5, 6].  A 2D periodic impedance surface has 
been employed as a simplified model to study its scattering and guiding 
characteristics, especially for its stop bands behavior in bound- and leaky- wave 
region [7, 8].  A 2D periodic array of dielectric rods in a uniform surrounding has 
been shown to exhibit many interesting phenomena, such as the spontaneous emission 
and the localization of electromagnetic energy.  Such a class of periodic structures 
was employed as a novel waveguide to mold the flow of electromagnetic energy or a 
novel cavity to store the energy [9-13].  Although the phenomenon of waveguiding 
in the waveguide has been investigated by means of numerical computation or 
experimental studies, a clear physical picture of wave process still needs to be studied 
in detail for understanding the wave phenomenon in it.  In addition, the type of 
research is needed for developing design rules that are useful for practical 
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considerations. 

The basic concept of this class of applications can be traced back to the early work of 
Larsen and Oliner [14] who had used one-dimensionally (1D) periodic dielectric slabs 
to form waveguide walls operated in their stop-band or below-cutoff condition.  The 
guiding characteristic of waveguide with periodic uniform dielectric layers served as 
its walls has been also investigated [15].  In this paper, we extend the structure to the 
two-dimensional case, that is, the waveguide walls are replaced by a finite stack of 1D 
periodic layer rather than that of uniform layer.   

Specifically, the structure under consideration is a waveguide with 2D periodic walls 
made up of rectangular dielectric rods array immersed in a uniform surrounding, such 
as air.  The 2D periodic array is composed of a finite number of one-dimensionally 
periodic layers of infinite extent on the horizontal plane, which are stacked with equal 
spacing between two neighboring ones.  Each periodic layer is composed of an 
infinite number of rectangular dielectric rods of infinite length.  In addition, we can 
have any 2D array patterns by displacing every second row by a fractional part of the 
period.  However, the performance of this kind of waveguide walls is worse than that 
of metal plate since its reflection characteristic depends on the incident angle as well 
as frequency of operation.  Thus, before carrying out the calculation for the 
dispersion relation of the waveguide, we have to study the scattering characteristics of 
2D periodic dielectric rods array with finite thickness. 

The scattering characteristics of such a structure can be easily analyzed as a 
multilayer boundary-value problem.  We can analyze this problem by means of 
building block approach; that is, the overall 2D periodic structure can be regarded as a 
stack of 1D periodic and uniform layers.  Once the input-output relation of 1D 
periodic and uniform layers is obtained, as has been done in this paper by the rigorous 
mode-matching method, the reflection and transmission characteristics as well as field 
behavior within the structure can be determined immediately.  Even an irregular 
shape of 1D periodic layer such as circular cylinder, we can use the approach of 
staircase approximation to model it as the cascade of rectangular shape 1D periodic 
layer.  As to the guiding analysis, we can utilize the transverse resonance technique 
to find the dispersion relation of the waveguide.  The condition for the existence of a 
non-trivial solution in the absence of the incident wave yields the dispersion relation 
of the waveguiding structure.  Thus the problem is considered completely resolved. 

On the basis of the exact approach described above, we have carried out extensive 
numerical results to identify and explain the physical phenomena associated with the 
waveguide with 2D periodic walls of finite thickness.  The dispersion characteristics 
of waveguide are displayed with both phase and attenuation constants included.  In 
particular, the contour plots for electric and magnetic field components and 
distribution of Poynting vector are plotted to gain our understanding of the physical 
process of wave guiding in such waveguide.  Moreover, the interesting anomalous 
coupling between the incident plane wave and waveguide modes supported by the 
waveguide has also been studied in detail and verified by analyzing the field and 
Poynting vector distribution in the structure.  In short, the results establish 
considerably the distinctive characteristics of the waveguide with 2D periodic walls of 
finite thickness. 

2. Description of this problem 
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Figure 1 shows a stack of a finite number of identical, equal spaced, periodic layers of 
infinite extent on the horizontal plane.  Each periodic layer is composed of an 
infinite number of rectangular dielectric rods of infinite length.  When the number of 
the periodic layers in the stack is increased indefinitely, the structure can be viewed as 
an unbounded 2D periodic medium.  Therefore, we may infer the propagation 
characteristics of the 2D periodic medium by the scattering characteristics of a stack 
of sufficiently large number of 1D periodic layers.  With the coordinate system 
attached, the dielectric rods in each layer has the width a1 and the distance between 
two neighboring rods is a2, thus the period of the layer is a = a1 + a2.  For simplicity, 
a1/a is referred to as the aspect ratio of the 1D periodic layer.  The thickness of each 
1D periodic layer is b1 and the separation between two neighboring ones is b2.  In 
general, we assume that between two neighboring layers, there is a position shift of 
the distance s in lateral direction, so that we may investigate the effect of a large class 
of array patterns on the propagation characteristics of 2D periodic structures by 
adjusting the parameter s in our analysis.  For example, we have a square array 
pattern for s = 0 and a triangular array pattern for s = 0.5a.  Notice that for an 
arbitrary value of s, b = b1 + b2 is not necessary the period of the structure in the 
y-direction.  Actually, the structure has a period 22 bs +  along the direction at the 
angle θ = sin-1(s/b) from the y-axis.  Even though, the ratio b1/ b is referred to as the 
aspect ratio in the y-direction. 

f igure 1:  Structural conf iguration of  waveguide with
           2D periodic walls of f inite thickness
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3. Mathematical Analysis 

Referring to Figure 1, the 2D periodic structure consists of a finite number of 1D 
periodic layers, and scattering of plane waves by such a structure can be easily 
analyzed as a rigorous multilayer boundary-value problem.  The formulation of such 
a type of boundary-value problems can be carried out for any values of s and it is 
convenient for the analysis of the effect of array pattern on the propagation 
characteristics of the 2D periodic structures.  For simplicity, this will be referred to 
as the scattering approach. 
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As will be explained in the next section, the scattering of plane-wave by a stack of 1D 
periodic layers can be analyzed in terms of that by a single 1D periodic layer.  The 
scattering of plane-wave by a single 1D periodic layer has been well treated [16-20].  
The formulation of the boundary-value problem is generally valid for any periodic 
profiles, as long as the characteristic solutions of the periodic medium can be 
constructed.  For brevity, the input-output relation for a 1D periodic layer is outlined 
in this section while the detail derivation is referred to [19].  In this section, the 
results in the form of input impedance and transfer matrices will be used as a building 
block to analyze the plane-wave scattering by a stack of periodic layers. 

A. Input-output relation of 1D periodic layer 

For a 1D periodic layer, it is vertically uniform and is characterized by the relative 
dielectric constant: 

 )()( dxx += εε  (1) 

where d is the period.  Due to the spatial periodicity in the x direction, a set of 
Fourier components or space harmonics is generated everywhere in the structure.  
The propagation constant of the nth space harmonic in the x- direction is given by: 

 2   for ...,-2,-1,0,1,2,...,xn xk k n n
d
π= + =  (2) 

where kx is the wavenumber along the x-direction.  According to the Floquet’s 
theorem, the general field solutions can be expressed as a superposition of the 
complete set of space harmonics.  The general electric and magnetic field solutions 
in 1D periodic medium can be written as follows [16]: 

 [ ]dzjczjzEt )exp()exp()( KKQ ++−=  (3) 

 [ ]dzjczjzH t )exp()exp()( KKP +−−=  (4) 

where the tangential electric and magnetic field components are vectors with the 
amplitudes of space harmonics being their elements.  Matrices P and Q are the 
coupling matrices with elements dependent on the structural parameters and the 
incident condition.  K is the diagonal matrix with the propagation constant along the 
z-direction, kzm, as the mth diagonal element. 

By imposing the boundary conditions at the interfaces between periodic and uniform 
layers, we can obtain the input-output relations of the periodic layer.  The detail 
mathematical derivations can be found in reference [2].   The results are listed 
below. 

 11))(( −−−+= PΓIΓIQZ llin  (5a) 

 exp( ) exp( )l outj t j t= − −Γ K Γ K  (5b) 

 1))(( −−+= QPZQPZΓ outoutout  (5c) 

 1))(( −−+= QPZQPZT outout  (5d) 

where t is the thickness of the 1D periodic layer, Zout and Zin are the input impedance 
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matrices looking downward from the lower- and upper- surfaces of such 1D periodic 
layer, respectively, whereas T is the transfer matrix, which defines the transformation 
relation of the electric fields between the input and output interfaces.  It is noted that 
the uniform layer can be regarded as the limiting case of 1D periodic layer with the 
vanishment of the periodic variations.  In view of this, the input-output relation of 
the uniform layer will remain almost the same form but with slight modification and 
could be derived without any difficulties. 

B. Scattering characteristics of the stack of 1D periodic layers 

Underlying the input-output relation and transfer matrix for a single periodic layer as 
previously described, we can successively employ the input-output relation from the 
bottom- to the top- layer.  Thus we can obtain the input impedance matrix looking 
downward from the top surface of the structure Zdn, the relationship between the 
tangential electric and magnetic field vectors at the reference plane z = 0 can be 
written as: 

 )0()0( tdnt HE Z=  (6) 

Meanwhile, the tangential electric and magnetic field vectors in the incident region 
(e.g. air), can be written as: 

 )()0( baE at += Z  (7a) 

 baH t −=)0(  (7b) 

where the vector a and b represent the incident and reflected plane waves.  Since the 
tangential field components must be continuous at the interface at z = 0, we obtain a 
reflection matrix defining the relationship between incident and reflected plane waves, 
as given below: 

 ab Γ=  (8a) 

 )()( 1
adndna ZZZZΓ −+= −  (8b) 

where ΓΓΓΓ is the reflection matrix.  After determining the reflection matrix, we obtain 
the reflected amplitude associated with each space harmonic.  Meanwhile, we also 
obtain the tangential electric and magnetic field over the input surface by equation 
7(a).  Furthermore, we successively employ the transfer matrix of 1D periodic and 
uniform layers, equation 5(d), from the top- to bottom- layer.  Thus we can obtain 
the electric and magnetic field everywhere within the structure under consideration. 

C. Guiding characteristics of the stacks of 1D periodic layers 

The condition for the existence of nontrivial solutions in the absence of any incident 
wave leads to the vanishment of the coefficient matrix.  It is so called the transverse 
resonance condition that defines the dispersion relation of the waveguide: 

 0)det( =+ dna ZZ  (9) 

This equation defines the dispersion relation that determines the guided modes of the 
waveguide.  The dispersion relation in equation (9) is a determinantal equation of 
infinite order; it requires a suitable truncation to a finite order to yield numerical 
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results.  We have implemented a computer code on the basis of the exact formulation 
described above to determine the dispersion roots of the waveguide.  The results are 
obtained systematically for various structural and incident parameters, thus we can 
identify the wave propagation phenomena and their physical implications.  

4. Numerical Results and Discussions 

According to the exact formulation described in the preceding section, we are now in 
a position to carry out both qualitative and quantitative analyses of guiding 
characteristics in such a class of waveguides.  First, we shall invoke the concept of 
parallel-plate waveguide to model the waves propagating inside the waveguide.  This 
allows us to identify the guiding characteristics of the waveguide in an easy manner 
for various physical effects associated with the structure and will be particularly 
useful for practical considerations.  Second, for the numerical analysis, the infinite 
system equations for the Fourier amplitude have to be truncated to a finite order and 
the numerical accuracy has to be carefully studied.  Note that it is essential to utilize 
some techniques to accelerate the convergence rate of the numerical process.  After 
the numerical accuracy is assured, extensive numerical data are obtained to identify 
systematically all possible physical processes associated with the structure under 
consideration and to explore promising applications. 

The characteristic solutions of the class of 2D periodic dielectric array certainly 
depend on the composition of the structure.  The dielectric rods may have any 
cross-sectional shape and may be arranged in diverse array patterns.  The relative 
dielectric constants of the dielectric rod and the surrounding medium are 11.4 and 1.0, 
respectively.  The values of aspect ratio along x and y directions are 0.4 and 0.6, 
respectively.  By a proper choice of the parameters a1, a2, b1, b2 and s, we can 
generate any array patterns.  For example, we can have a square pattern as we set a1 
= a2 = b1 = b2 and the shift distance in the lateral direction s = 0; another case is the 
triangular pattern in which the structural parameters remain unchanged as those of the 
square one while the lateral shift distance is changed to a half of the period along the x 
direction. 

Contour of constant reflection coefficient 

Since the reflection of plane wave by 2D periodic dielectric array depends on the 
angle as well as frequency of the incident plane wave, we have plotted the contour 
maps of constant reflection coefficient according to these two parameters.  These 
contour plots provide a simple and useful procedure for the design of the waveguide 
for a desired number of propagating modes. 

Figure 2 shows the contour plot of constant reflection coefficient for the finite stack of 
1D periodic layers.  The horizontal axis represents the normalized phase constant 
along x direction (i.e. π2/dkx ) and the vertical axis is the normalized frequency, d/λ.  
The reflectivity is plotted in gray-scale color map according to the level shown in the 
color bar on the right hand side of the figure.  The region drawn in white color 
indicates the total reflection, that is, the reflection coefficient is close to unity.  For 
instance, the band characterized by the normalized frequency (d/λ) 0.25-0.4 and the 
normalized phase constant 0-0.5 locates in the region of total reflection.  Here, we 
can utilize the characteristics of total reflection in such region to serve as a waveguide 
wall and, as the waves bounce between the two walls so the electromagnetic energy 
flows along this guiding structure. 
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According to the exact dispersion relation in (10), we have carried out a systematic 
evaluation of the guiding characteristics of the waveguide walls with the square 
pattern, and the results are displayed in the form of Brillouin diagram in figure 3(a) 
and (b) for both real and imaginary parts of kx.  Note that the line in long dash is the 
boundary of bound-wave region.  The curves on the left-hand side of bound-wave 
boundary represent fast waves.  From figure 3(a) we observe that the variation of 
phase constant for such a waveguide is very similar to that of ideal parallel-plate 
waveguide.  Thus it can be concluded that the guiding characteristics of such 
waveguide are equivalent to those of parallel-plate waveguide.  Another interesting 
observation is that, though we designed three cases with three, four and five 1D 
periodic layers as their waveguide walls; however, we can observe that the increase in 
the number of 1D periodic layers has a negligible effect on the phase constant.  On 
the contrary, it reduces appreciably the attenuation due to the leakage of energy as 
depicted in figure 3(b). 
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Field contour plot 

To substantiate the guiding characteristics of waveguide modes in such a waveguide, 
we plot the contour of electric field component for understanding more easily of the 
physical picture of waveguiding in this waveguide.  First, we randomly choose one 
point (d/2h = 0.3175) on the dispersion curve to plot the field distribution.  Figure 
4(a) is the distributions of field component Ey over the waveguide with square wall 
pattern.  Referring to the color bar attached, figure 4(a) indicates that the electric 
field is concentrated in the waveguide region and exhibits the localization of power 
within it.  Away from this region, the field is exponentially decaying along the 
transverse direction. 
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Distribution of Poynting vector 

In addition to the field contour plots as shown previously, Poynting vector can also 
provide us some information about the power flow in waveguide.  We setup a grid 
with considerable points in the structure and determine the vector Poynting power at 
each of those grid points.  The resulting pattern is shown in figure 4(b) with the same 
parameters as that in figure 4(a).  As we have known before, the real part of 
Poynting vector represents the magnitude and direction of power flow.  In figure 4(b), 
the distribution of Poynting power is seen to be almost uniform in the central region 
and flows along the waveguide direction.  On the other hand, the power leakage is 
negligible away from the waveguide, consistent with the fact that the attenuation 
constant is quite small. 
 

Figure 4(a):  Distribution of electric field components Ey(x,z) within the 
waveguide with 2D periodic walls, which is arranged in square pattern; 
guiding analysis 
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Influence of the periodic pattern for the waveguide walls 

Aside from studying the square pattern, we have also investigated the dispersion 
relation for various periodic patterns with different values of lateral shift distance s, 
for example, s ranges from zero to half of the period along x direction.  Though not 
shown, we have found that the distribution for the phase constant almost converges to 
the same one.  On the contrary, there are some differences between the attenuation 
constants.  As shown in figure 5, we can take the attenuation constants of square and 
triangular pattern as upper and lower bounds, respectively.  The lateral shift distance 
s runs from 0.1 to 0.4 is located in the region.  It is interesting to note that the 
attenuation constant decreases as the increase in the shift distance.  From the results 
we can conclude that the triangular pattern provide better stop band behavior than that 
of the other patterns.  This permits us to design a low-loss waveguide by using the 
waveguide walls with triangular pattern. 
 

Figure 4(b):  Distribution of Poynting vector within the waveguide with 2D 
periodic walls, which is arranged in square pattern; guiding analysis 
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f igure 5:  Variation of  the attenuation constant versus normalized 
                f requency for various lattice pattern  

Anomalous coupling between incident plane wave and localized modes in the 
waveguide 

We have carried out considerable numerical experiments with various incident 
conditions and structure parameters; however, only a few sets are selected here to 
present the interesting phenomena that take place in the presence of 2D periodic 
structure.  Figure 6(a) shows the reflection intensity of space harmonic n = 0 versus 
wavelength of the plane wave for various incident angles.  Furthermore, we observe 
that there exists a sharp variation along each curve, as marked by the characters from 
A’ to E’ in figure 6(a).  
 



 13

0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4

d/ λ
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
if

fr
ac

tio
n 

Ef
fi

ci
en

cy
 o

f 
ze

ro
-th

 o
rd

er

0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A'

B'
C' D' E'

a1

a2

b1

b2

s

h

x

z

θinc

f igure 6(a):  Variation of  the reflection intensity versus normalized 
                     f requency for various incident angles; the number of  
                     1D periodic layer is three and is arranged in triangular
                 pattern  

To explain the unusual behavior of reflection characteristics, we recall the dispersion 
curve of a waveguide with 2D periodic walls of triangular pattern.  Referring to the 
inset in figure 6(b), a plane wave of TE polarization is incident on the waveguide at 
an angle θinc with respect to z axis.  The phase constant kx along the x direction is 
given by: 

 incox kk θsin=  (11) 

where ko is the free-space wavenumber. 

For a given incident angle θinc, the relationship between kxd/2π and kod/2π can be 
represented as a straight line passing through the origin with the slope 1/sinθinc.  
Here, we plot the straight line for various angles together with Brillouin diagram in 
figure 6(b).  Note that the two extreme cases: θinc = 0o and θinc = 90o, of incident 
angles correspond to the left vertical axis and the boundary of bound-wave region 
with the slope equal to unity, respectively. 
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The intersection points between incident plane wave and waveguide mode are circled 
and labeled in alphabetical order for various incident angles, as shown in figure 6(b).  
Each of the intersection points represents a case of strong coupling in which the real 
part of the guided-wave wavenumber along the x direction is the same as that of the 
incident plane wave.  Over the frequency range covering each set of intersection 
points, we calculate the reflected power under the same incident conditions.  The 
variation of reflected power versus normalized frequency is shown in figure 6(a). 

Returning to figure 6(a), we observe the sharp decreases in the bandwidth at different 
frequencies as marked by the characters A’, B’, C’, D’ and E’, respectively.  
Comparing to figure 6(b), we found that the position of rapid variation corresponds to 
the intersection points A, B, C, D and E, respectively.  It is interesting to note that at 
these intersection points there are very small attenuation constants for the waveguide, 
as shown in figure 6(c).  Thus good phase-matching condition occurs at these points 
and strong coupling takes place between the incident plane wave and the waveguide 
mode supported by this structure.  Particularly, the attenuation constants are very 
close to zero at the intersection points C and D, hence the coupling takes place almost 
at certain frequencies, as shown in this figure. 
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f igure 6(c):  Variation of  the attenuation constant versus normalized 
                     f requency for different number of  1D periodic 

                 layers which is arranged in triangular pattern  

To verify the anomalous coupling due to phase-matching condition, we also plot the 
contour plots for the electric and magnetic field components, as we have done in the 
previous example.  In this example, the incident angle is designated as 30o and the 
normalized frequency is d/λ = 0.317, which is also the case characterized by the 
conditions at the intersection point C.  We can observe that the field component 
Ey(x,z), as depicted in figure 7, has almost the identical pattern as shown in figure 4(a).  
Thus we can infer that the incident plane wave will couple its energy into such 
waveguide at the phase-matching condition, which is also known as a anomalous 
coupling between the incident plane wave and the waveguide mode supported by the 
waveguide. 
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Also, addition to the phase-matching condition, in this example, we choose an 
incident condition away from the point of phase-matching condition such as θinc = 30o 
and d/λ = 0.35, for example, to study the scattering characteristics.  Since the phase 
of incident plane wave can’t match with that of guided mode supported by the 
structure, the incident power can’t couple into the waveguide and is reflected back to 
the free-space.  The contour plot of field component Ey(x,z) and the distribution of 
Poynting vector are shown figure 8(a) and 8(b), which indicate that the incident plane 
wave is reflected by the structure and can hardly penetrate into the structure any 
further. 
 
 

Figure 7:  Distribution of electric field components, Ey(x,z), within the 
waveguide with 2D periodic walls, which is arranged in triangular pattern; 
scattering analysis 
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Figure 9 shows the contour plot of constant reflection coefficient for the waveguide 
with triangular wall pattern.  In this example, we plot the map versus both 

Figure 8(a):  Distribution of electric field components Ey(x,z) within the 
waveguide with 2D periodic walls, which is arranged in triangular 
pattern; scattering analysis 

Figure 8(b):  Distribution of Poynting vector within the waveguide 
with 2D periodic walls, which is arranged in square pattern; 
scattering analysis. 



 

normalized frequency and phase constant along x direction.  It is interesting to note 
that there exists some points with low reflectivity arranged along a parabolic curve, 
which is the same as shown in figure 6(b).  As we have known previously these 
points are based on the presence of anomalous coupling (phase-matching condition).  
Therefore, as long as the attenuation constant of waveguide mode is not quite obvious, 
the phase constant of the waveguide mode must be predicted by the phase-matching 
condition by means of the scattering analysis.  In a word, we can infer that the 
guiding characteristic of the waveguide through its scattering characteristic, in 
particular, by means of the presence of anomalous coupling (phase-matching 
condition). 
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addition, an anomalous coupling between incident plane wave and the waveguide 
modes has also been investigated and was utilized for the first time to predict the 
guiding characteristic of the waveguide. 
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