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1. Abstract

Variational method is applied to establish the
governing equations and the corresponding
boundary conditions for the dynamic responses of
preloaded arches with shear deformation. An
analytical solution for the free vibration of a uniform
circular arch subjected to a uniform dead load is
developed such that the effects of various initial
stress resultant terms from considering the shear
deformation in the governing equations on dynamic
behavior and buckling load are comprehensively
studied. Then, using series solution and stiffness
matrix method also develops the free vibration and
buckling solutions for preloaded arches with
variable curvature and cross-section.

In this research, two types of arches, namely,
uniform circular arches and elliptic arches are
considered as numerical examples. The parameters
studied for the circular arches are h/R (h is the
thickness of arch, R is the radius of arch), opening
angle, and boundary condition. The additional
parameter investigated for elliptic arches is the ratio
of the long axis to the short axis. These results are the
first known in the literature, and they are reliable
references for engineers.

Keywords: preloaded, shear deformation effect,
arches, dynamic analysis, buckling.

2. Motive and goal
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Curve beam structures have been often used in
civil, mechanical, and aerospace engineering
applications, for example, arch bridges, springs, and
stiffeners in aircraft structures. Research on the
vibrations of curved beams began in the 19" century
[1], and over 500 references can be found in review
articles [2-4]. Most of the research examines the
vibrations of unloaded arches and rings, but rather
few publications address the vibrations of loaded
arches and rings, even though dynamic analyses of
loaded arches are frequently needed in many
engineering applications.

For simplicity, most studies on the vibrations and
stability of loaded circular arches considered cases
with inextensional centerline and no shear
deformation. For example, Timoshenko and Gere [5]
showed closed form solutions for the buckling loads
for pin-ended and fixed circular arches with uniformly
distributed radia loading. Gjelsvik and Bodner [6]
applied an energy method to investigate the stability
of a clamped arch subjected to center point loading,
while Schreyer and Masur [7] developed an exact
solution for an arch with a uniform load. Wasserman
[8] developed exact and approximate formulas for
determining the lowest natural frequencies and critical
loads of arches with flexibly supported ends. Kang et
al. [9] used the differential quadrature method to
determine the critical loads of circular arches.

Centerline extensibility is known to significantly
affect the vibrations of rotating thick rings [10].
Chidamparam and Leissa [11] applied the Ritz
method to €ucidate how centerline extensibility
influences the in-plane free vibrations of loaded
circular arches. However, they assumed an
inextensional centerline in determining the initial
axial force distribution along a circular arch that is
subjected to a static, distributed vertical load.
Matsunaga [12] developed a one-dimensional
higher-order theory for arches with initial axial forces
and used Fourier series expansion to determine the
critical loads of simply-supported circular arches
subjected to constant axial forces.

Shear deformation must be considered for thick
beams. The aforementioned studies indicate that there
is a need to develop the eguations governing free
vibrations of a loaded circular arch that is shear
deformable. This work develops the governing
equations using the variational form presented by
Washizu [13] for the dynamical problems concerning
an elastic body under initial stresses. The developed
governing equations include not only the effect of



initial axial force but aso the effects of other initial
stress resultants, such as shear force and moment due
toinitial loading.

The equations are employed to investigate free
vibration and buckling analyses of circular arches and
dliptic arches under uniform vertical loading.
Developing analytical solutions involves two main
steps. First, the static solution for the circular arch
under loading is obtained in closed form, while a
series solution is developed for the elliptic arch. The
solutions for vibration frequencies and buckling loads
are then determined using the dynamic stiffness
matrix method. A dynamic dtiffness matrix is
established by a series solution of the governing
equations. The proposed solution is applied to
elucidate the effects of opening angle and
thickness-to-radius ratio on the vibration frequencies
and buckling loads of loaded arches. The extent to
which the magnitude of a uniformly distributed static
load affects vibration frequencies is also considered.
The effects of shear deformation on vibration
frequencies and buckling loads are demonstrated by
comparing the results with the published data
obtained by ignoring shear deformation.

3. Contents of theresearch
3.1 Methodology

The equations governing the free vibration of a
loaded arch and the associated boundary conditions
are developed according to the following variational
principle given by Washizu [13] for the dynamic
problem of an elastic body with equilibrium initial

stresses, o, :
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where T and U are the kinetic and strain energies,
given by
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p is the material density, and the dots denote the

derivative with respect to time. In the strain
components ¢j; , the superscript “L” represents

infinitesimal strain parts, while the superscript “H”
denotes high order terms. The term with

aigo) represents the additional strain  energy

contributed by the initial static stresses.

As in Timoshenko first-order beam theory, the
in-plane displacement components of an arch can be
assumed to be

v(r,0,t) =v(0,t) — zy(0,t) (49)

w(r,0,t) =w@,t), (4b)
where v and w represent the tangential and radial
displacements of the centroidal axis, respectively, and
y isthe angle of rotation of the centroidal axis due to

bending only. The resulting non-zero strain
component, expressed in terms of displacement
functions, are
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Introduce the following definition of stress
resultants:
(N,M) = [0y (L 2)dA, (6a)
A
Q=o,dA, (6b)
A
(NO MO pO) =[50 (17 2%)dA, (6C)
A
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The relationships between the stress resultants and the
displacement components for an arch with h/R
sufficiently less than unity are
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where E and G are dastic and shear moduli,
respectively; A and | are the area and moment of
inertia of the cross section, respectively; and k isthe
correction factor for the shear force and equals 0.85
for arectangular cross-section.

By performing the variation as indicated in egn (1),
the governing equations for the free vibrations of a
statically loaded arch with the displacement field
specified by egns (4) are obtained and expressed as
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and the associated boundary conditions are
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where the primes denote derivatives with respect to
0.

Substituting the relations between stress resultants
and displacement components into the governing
equations yields a set of three differential equations
with variable coefficients in terms of the displacement
functions. The solution of the governing equations is
obtained in two main steps. The static solution is first
found for determining the distribution of initial stress
resultants caused by static loading. Then, the solutions
for vibration frequencies and buckling loads are
obtained by solving the proposed governing equations.
In this study, analytic solutions are developed by
incorporating the concept of a finite element method
into a series solution, constructed using the Frobenius
method. That is, the solutions are established by
decomposing the considered arch into numerous
curve elements. The stiffness matrix for each element
is developed by using the corresponding series
solution.

The above formulation is established in frequency
domain. Consequently, it can also be directly applied
to study the stationary random responses of preloaded
arch subjected to multiple earthquake input [14].

3.2 Applications

To demonstrate the validity of the proposed
solution, a convergence study on the vibration
frequencies for a unloaded circular arch was carried
out. The convergent results show excellent agreement
with the exact solution given by Tseng et al. [15].

Figures 1 and 2 exhibit the variation of A

(=wR%\[pAlEl ) with 5 (=/R3/El , yis the

intensity of loading) for clamped circular arches with

hR=0.1 and 6y =40° and 80° respectively,
considering various combinations of static stress
resultants, namely N©, Q©, M@, P and T? in egns
(89)-(8c). In the legend of these figures, the stress
resultants inside parentheses are those considered in
egns (8a)-(8c) to obtain the results. (ALL) labels the
results obtained by considering all the stress resultants
in egns (8a)-(8c). Only the results for the first
symmetric mode are shown. Traditionally, the static
axial force N is thought of as the most important
factor that influences the vibration behavior of a
preloaded beam. Figure 1 reveds considerable
differences between the results obtained by
considering al the static stress resultants in egns.
(8a)-(8c) and those obtained by considering N only,
especidly in the region of small A, whereas only
slight differences are observed in Fig. 2. Notably, Fig.
1 clearly shows that, for constant 5, the results
obtained by considering N© and Q© may not always
agree with those obtained by considering all initial
stress resultants more closely than those obtained by
considering only N@. The unimportance of T is
noted from the dlight differences between the results
obtained by considering all initial stress resultants and
those obtained by considering N, Q©, M© and P©
(seeFig. 1).

Because of the limitation of pages for this report,
more results for loaded circular arches are given in
[16]. The analyses for loaded elliptic arches are also
shown in [16] in detail.

4. Discussion

The present results are compared to those
published, obtained by neglecting shear deformation.
The comparison reveals that under tensile static
loading, shear deformation significantly affects
vibration behavior only for thick (h/R=0.1) and

shalow (say, 6,<40° ) arches. The shear

deformation importantly affects thick arches, even
with large opening angles, under compressive static
loading. The vibration frequencies and the lowest
buckling load of preloaded arches, according to shear
deformation theory, are not always smaller than those
obtained by neglecting shear deformation.

Traditionally, N is considered primarily to affect
vibration frequencies and buckling loads of loaded
arches. This study demonstrates that the vibration
frequencies and buckling loads obtained by
considering only N© in the proposed equations may
differ considerably from those obtained by
considering al initial stress resultants, especialy for
thick and shallow arches.

5.Comment and conclusion

We have achieved the goals of the project given
in the proposal. Based on the results in this work, a



paper has been submitted for publishing in
International Journal of Solid and Sructure.
Furthermore, some of the results have also been
reported in the 6™ Sructural Engineering Conference,
held in Ping-Tung, Taiwan 2002 [17].
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Fig. 1. Variation of Awith [ for an arch
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Fig. 2. Variation of A with [ for an arch with

hR=0.1and 6, =80° (for 1% symmetric mode)



