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中文摘要 
 

本研究首先以變分法推導考慮剪力變形下，
預載重拱動力反應之控制方程。然後，以圓拱為
例，以解析解探討剪力變形效應對預載重拱自由
振動及挫屈之影響。再擴展至變曲率拱之情況，
此時之解乃利用級數解及動態勁度法之技巧。 

本研究之算例中，將以均勻圓拱及橢圓拱為
主。其中探討影響幾何參數為圓拱之 h/R（h 為拱
厚，R 為拱半徑）、開口角和邊界條件。橢圓拱則
額外探討參數長短軸比之影響。以上之結果均未有
文獻討論，相信此結果必可填補學術文獻之不足，
並作為工程實務設計之參考。 
 
關鍵詞：預載重﹔剪力變形效應﹔拱﹔動力分析﹔
挫屈 
 
1.  Abstract 
 

Variational method is applied to establish the 
governing equations and the corresponding 
boundary conditions for the dynamic responses of 
preloaded arches with shear deformation. An 
analytical solution for the free vibration of a uniform 
circular arch subjected to a uniform dead load is 
developed such that the effects of various initial 
stress resultant terms from considering the shear 
deformation in the governing equations on dynamic 
behavior and buckling load are comprehensively 
studied.  Then, using series solution and stiffness 
matrix method also develops the free vibration and 
buckling solutions for preloaded arches with 
variable curvature and cross-section.  

In this research, two types of arches, namely, 
uniform circular arches and elliptic arches are 
considered as numerical examples. The parameters 
studied for the circular arches are h/R (h is the 
thickness of arch, R is the radius of arch), opening 
angle, and boundary condition. The additional 
parameter investigated for elliptic arches is the ratio 
of the long axis to the short axis. These results are the 
first known in the literature, and they are reliable 
references for engineers. 
 
Keywords: preloaded, shear deformation effect, 
arches, dynamic analysis, buckling. 
 
2. Motive and goal 
  

Curve beam structures have been often used in 
civil, mechanical, and aerospace engineering 
applications, for example, arch bridges, springs, and 
stiffeners in aircraft structures. Research on the 
vibrations of curved beams began in the 19th century 
[1], and over 500 references can be found in review 
articles [2-4]. Most of the research examines the 
vibrations of unloaded arches and rings, but rather 
few publications address the vibrations of loaded 
arches and rings, even though dynamic analyses of 
loaded arches are frequently needed in many 
engineering applications.  

For simplicity, most studies on the vibrations and 
stability of loaded circular arches considered cases 
with inextensional centerline and no shear 
deformation. For example, Timoshenko and Gere [5] 
showed closed form solutions for the buckling loads 
for pin-ended and fixed circular arches with uniformly 
distributed radial loading. Gjelsvik and Bodner [6] 
applied an energy method to investigate the stability 
of a clamped arch subjected to center point loading, 
while Schreyer and Masur [7] developed an exact 
solution for an arch with a uniform load. Wasserman 
[8] developed exact and approximate formulas for 
determining the lowest natural frequencies and critical 
loads of arches with flexibly supported ends. Kang et 
al. [9] used the differential quadrature method to 
determine the critical loads of circular arches. 

Centerline extensibility is known to significantly 
affect the vibrations of rotating thick rings [10]. 
Chidamparam and Leissa [11] applied the Ritz 
method to elucidate how centerline extensibility 
influences the in-plane free vibrations of loaded 
circular arches. However, they assumed an 
inextensional centerline in determining the initial 
axial force distribution along a circular arch that is 
subjected to a static, distributed vertical load. 
Matsunaga [12] developed a one-dimensional 
higher-order theory for arches with initial axial forces 
and used Fourier series expansion to determine the 
critical loads of simply-supported circular arches 
subjected to constant axial forces.  

Shear deformation must be considered for thick 
beams. The aforementioned studies indicate that there 
is a need to develop the equations governing free 
vibrations of a loaded circular arch that is shear 
deformable. This work develops the governing 
equations using the variational form presented by 
Washizu [13] for the dynamical problems concerning 
an elastic body under initial stresses. The developed 
governing equations include not only the effect of 
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initial axial force but also the effects of other initial 
stress resultants, such as shear force and moment due 
to initial loading.  

The equations are employed to investigate free 
vibration and buckling analyses of circular arches and 
elliptic arches under uniform vertical loading. 
Developing analytical solutions involves two main 
steps. First, the static solution for the circular arch 
under loading is obtained in closed form, while a 
series solution is developed for the elliptic arch. The 
solutions for vibration frequencies and buckling loads 
are then determined using the dynamic stiffness 
matrix method. A dynamic stiffness matrix is 
established by a series solution of the governing 
equations. The proposed solution is applied to 
elucidate the effects of opening angle and 
thickness-to-radius ratio on the vibration frequencies 
and buckling loads of loaded arches. The extent to 
which the magnitude of a uniformly distributed static 
load affects vibration frequencies is also considered. 
The effects of shear deformation on vibration 
frequencies and buckling loads are demonstrated by 
comparing the results with the published data 
obtained by ignoring shear deformation.  

 
3. Contents of the research 
 
3.1 Methodology 
 

The equations governing the free vibration of a 
loaded arch and the associated boundary conditions 
are developed according to the following variational 
principle given by Washizu [13] for the dynamic 
problem of an elastic body with equilibrium initial 
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where T and U are the kinetic and strain energies, 
given by 
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  is the material density, and the dots denote the 
derivative with respect to time. In the strain 
components ij , the superscript “L” represents 

infinitesimal strain parts, while the superscript “H” 
denotes high order terms. The term with 

)0(
ij represents the additional strain energy 

contributed by the initial static stresses.  
As in Timoshenko first-order beam theory, the 

in-plane displacement components of an arch can be 
assumed to be 

) ,() ,() , ,( tztvtrv    (4a) 

),() , ,( twtrw   ,  (4b) 
where v and w represent the tangential and radial 
displacements of the centroidal axis, respectively, and  
 is the angle of rotation of the centroidal axis due to 
bending only. The resulting non-zero strain 
component, expressed in terms of displacement 
functions, are 
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Introduce the following definition of stress 
resultants: 
    dAzMN

A
 ) ,1() ,(   , (6a) 

     dAQ
A

r  , (6b) 

dAzzPMN
A

 ) , ,1() , ,( 2)0()0()0()0(   , (6c) 

    dAzTQ
A

r  ) ,1() ,( )0()0()0(   . (6d) 

The relationships between the stress resultants and the 
displacement components for an arch with h/R 
sufficiently less than unity are  
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where E and G are elastic and shear moduli, 
respectively; A and I are the area and moment of 
inertia of the cross section, respectively; and  is the 
correction factor for the shear force and equals 0.85 
for a rectangular cross-section.  

By performing the variation as indicated in eqn (1), 
the governing equations for the free vibrations of a 
statically loaded arch with the displacement field 
specified by eqns (4) are obtained and expressed as 
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and the associated boundary conditions are 
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where the primes denote derivatives with respect to 
 . 

 Substituting the relations between stress resultants 
and displacement components into the governing 
equations yields a set of three differential equations 
with variable coefficients in terms of the displacement 
functions. The solution of the governing equations is 
obtained in two main steps. The static solution is first 
found for determining the distribution of initial stress 
resultants caused by static loading. Then, the solutions 
for vibration frequencies and buckling loads are 
obtained by solving the proposed governing equations.  
In this study, analytic solutions are developed by 
incorporating the concept of a finite element method 
into a series solution, constructed using the Frobenius 
method. That is, the solutions are established by 
decomposing the considered arch into numerous 
curve elements. The stiffness matrix for each element 
is developed by using the corresponding series 
solution.  

The above formulation is established in frequency 
domain. Consequently, it can also be directly applied 
to study the stationary random responses of preloaded 
arch subjected to multiple earthquake input [14]. 

 
3.2 Applications 
 

 To demonstrate the validity of the proposed 
solution, a convergence study on the vibration 
frequencies for a unloaded circular arch was carried 
out. The convergent results show excellent agreement 
with the exact solution given by Tseng et al. [15].  

Figures 1 and 2 exhibit the variation of λ

( EIAR /2  ) with β  EIR /( 3 ,  is the 

intensity of loading) for clamped circular arches with 

h/R=0.1 and 0 =40o and 80o, respectively, 
considering various combinations of static stress 
resultants, namely N(0), Q(0), M(0), P(0), and T(0) in eqns 
(8a)-(8c). In the legend of these figures, the stress 
resultants inside parentheses are those considered in 
eqns (8a)-(8c) to obtain the results. (ALL) labels the 
results obtained by considering all the stress resultants 
in eqns (8a)-(8c). Only the results for the first 
symmetric mode are shown. Traditionally, the static 
axial force N(0) is thought of as the most important 
factor that influences the vibration behavior of a 
preloaded beam. Figure 1 reveals considerable 
differences between the results obtained by 
considering all the static stress resultants in eqns. 
(8a)-(8c) and those obtained by considering N(0) only, 
especially in the region of small λ, whereas only 
slight differences are observed in Fig. 2. Notably, Fig. 
1 clearly shows that, for constantβ , the results 
obtained by considering N(0) and Q(0) may not always 
agree with those obtained by considering all initial 
stress resultants more closely than those obtained by 
considering only N(0). The unimportance of T(0) is 
noted from the slight differences between the results 
obtained by considering all initial stress resultants and 
those obtained by considering  N(0), Q(0), M(0) and P(0) 
(see Fig. 1).   

Because of the limitation of pages for this report, 
more results for loaded circular arches are given in 
[16]. The analyses for loaded elliptic arches are also 
shown in [16] in detail.  

 
4.  Discussion 
 

The present results are compared to those 
published, obtained by neglecting shear deformation. 
The comparison reveals that under tensile static 
loading, shear deformation significantly affects 
vibration behavior only for thick (h/R=0.1) and 

shallow (say, o400  ) arches. The shear 

deformation importantly affects thick arches, even 
with large opening angles, under compressive static 
loading. The vibration frequencies and the lowest 
buckling load of preloaded arches, according to shear 
deformation theory, are not always smaller than those 
obtained by neglecting shear deformation.  

Traditionally, N(0) is considered primarily to affect 
vibration frequencies and buckling loads of loaded 
arches. This study demonstrates that the vibration 
frequencies and buckling loads obtained by 
considering only N(0) in the proposed equations may 
differ considerably from those obtained by 
considering all initial stress resultants, especially for 
thick and shallow arches. 
 
5. Comment and conclusion 
 

We have achieved the goals of the project given 
in the proposal. Based on the results in this work, a 
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paper has been submitted for publishing in 
International Journal of Solid and Structure. 
Furthermore, some of the results have also been 
reported in the 6th Structural Engineering Conference, 
held in Ping-Tung, Taiwan 2002 [17]. 
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 Fig. 1: Variation of  with   for an arch 

with h/R=0.1 and o400  ( for 1st symmetric 

mode) 
 

-200 -100 0 100



0

10

20

30

40

50



(ALL)
(N(0)+Q(0)+M(0))
(N(0)+Q(0))
(N(0))

 
Fig. 2: Variation of  with   for an arch with 

h/R=0.1 and o800  (for 1st symmetric mode) 


