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Abstract. Electrical, contractile and structural remod-
eling have been characterized in atrial fibrillation
(AF), and the latter is considered to be the major
contributor to AF persistence. Recent data show that
interstitial fibrosis can predispose to atrial conduction
impairment and AF induction. The interplay between
cardiac matrix metalloproteinases (MMPs) and their
endogenous inhibitors, tissue inhibitors of MMPs
(TIMPs), is thought to be critical in atrial extracellular
matrix (ECM) metabolism. At the molecular level,
angiotensin II, transforming growth factor-b1, inflam-

mation and oxidative stress are particularly important
for ECM dysregulation and atrial fibrotic remodeling
in AF. Therefore, we review recent advances in the
understanding of the atrial fibrotic process, the major
downstream components in this remodeling process,
and the expression and regulation of MMPs and
TIMPs. We also describe the activation of bioactive
molecules in both clinical studies and animal models
to modulate MMPs and TIMPs and their effects on
atrial fibrosis in AF.

Keywords. Angiotensin II, atrial fibrillation, atrial remodeling, inflammation, matrix metalloproteinases,
oxidative stress, tissue inhibitors of matrix metalloproteinases, transforming growth factor-b1.

Introduction

Atrial fibrillation (AF) is the most common clinical
arrhythmia and is associated with cardiovascular mor-
bidity and excessive mortality [1, 2]. AF can occur in
patients without evident heart disease (so-called lone
AF), but organic heart diseases such as congestive heart
failure (HF), mitral valve disease, cardiomyopathy and
coronary artery disease are major co-existing condi-
tions that contribute to the occurrence and persistence
of AF [3, 4]. AF causes changes in the electrophysio-
logical properties of the atria, reducing the refractory
period and enabling the presence of more re-entry

wavelets at the same time. Hence, AF becomes more
inducible and spontaneous sinus rhythm more difficult
to recoever. These findings have led to the theory
known as AF begets AF [5]. Although the details are
poorly understood, the persistence of AF is thought to
result from atrial remodeling. Atrial remodeling in-
cludes electrical, structural and contractile remodeling,
which are the central contributors to the development
and maintenance of AF [6–8]. Electrical remodeling in
AF is defined as shortening in atrial refractoriness and
loss of the normal rate of adaptation of the refractory
period, which were thought to be due to alterations in
the expression of ion channels [5, 9]. Contractile
remodeling of the atria contributes to AF-induced
atrial hypocontractility, and loss of atrial contractility is
the primary cause of atrial dilatation during the early* Corresponding author.
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stages of AF [10, 11]. Histologically, structural remod-
eling in AF has revealed the presence of increasing cell
size associated with myolysis and perinuclear accumu-
lation of glycogen, alteration in connexin expression
and mitochondrial shape, induction of cellular apopto-
sis [12, 13], and changes in the quantity and localization
of structural cellular proteins. Structural remodeling
may be an adaptive process (dedifferentiation of
cardiomyocytes) aimed at protecting the atrial myo-
cytes, or a maladaptive process (degeneration of cells
with fibrotic replacement) [14].
It is controversial whether AF itself directly promotes
atrial fibrosis. In the goat model, studies have shown
that the increase in AF stability is not a result of atrial
fibrosis [11, 15, 16]. In contrast to goat AF model of
lone AF without fibrosis, the studies of AF in the
setting of heart failure and cardiomyopathy show
intra-atrial conduction disturbances as a substrate for
AF with atrial fibrosis [17 – 19]. It was proposed that
homogeneous conduction of atrial activity not only
relies on cardiomyocyte integration but also can be
affected by ECM (extracellular matrix) among the
atrial myocytes. Atrial fibrosis – abnormal deposition
of ECM proteins in the atrium – may be part of the
substrate of AF by increasing the heterogeneity of
atrial conduction and playing an important role in the
maintenance of AF [18, 19]. Because atrial fibrotic
remodeling could result in increased AF vulnerability
and is hard to reverse [20], atrial fibrosis has also been
considered as a second factor in the progression from
paroxysmal to persistent and permanent AF. Inter-
stitial fibrosis may facilitate local intra-atrial conduc-
tion block and increase atrial susceptibility to AF [20,
21], as well as formation of stable local sources for
atrial microre-entry as well as AF induction [19, 22 –
25]. Atrial interstitial fibrosis also increases AF
vulnerability in animal models of CHF [26, 27] and
in a transgenic mouse model of selective atrial fibrosis
[28]. Several reviews and original papers report many
dominant factors in atrial fibrosis, such as angiotensin
peptides, transforming growth factor-beta1 (TGF-b1),
inflammatory cytokines and reactive oxygen species
(ROS) [28 – 31]. In addition, regulation of matrix
metalloproteinases (MMPs) and their endogenous
inhibitors, tissue inhibitors of MMPs (TIMPs), have
recently been regarded as potential etiologic agents in
atrial fibrotic remodeling [32 – 34]. However, the
mechanisms of atrial fibrosis in AF are still under
debate and not well understood. This article reviews
recent contributions to our understanding of the
regulatory mechanisms of atrial fibrosis and ECM
metabolism in AF. We also review the bioactive
molecules that modulate MMP and TIMP expression
in atrial fibrotic remodeling during AF.

Molecular mechanisms of atrial fibrosis

Classical mechanisms describe how AF is initiated or
triggered by single or multiple rapidly firing atrial
ectopic foci, leading to fibrillation, a single rotor (i.e.,
mother wave) with fibrillatory conduction, or multiple
circuit re-entry [35]. The later mechanism may help to
explain how AF is maintained after initiation by the
propagation of multiple re-entrant circuits [36].
However, it has been recently stated that a substantial
increase in fibrous tissue content, e.g., atrial fibrosis,
can interfere with electrical conduction and cause AF
that seems to be due to single-circuit re-entry [24, 25].
Many aspects of AF-induced structural changes,
including abnormal ECM accumulation or atrial
fibrosis at the level of cardiomyocytes and atrial
tissue, have been extensively studied in human [23, 37]
and animal AF models [22, 26, 38]. Yet the precise
mechanisms and signaling pathways involved in the
development of atrial fibrosis remain to be clarified.
Four predominant interrelated pathways appear to be
involved: the renin-angiotensin system (RAS), TGF-
b1, inflammation and oxidative stress pathways.
Figures 1 and 2 show the major signal transductions
concerning these four interrelated pathways.

RAS
RAS is a hormone system that helps regulate blood
pressure and extracellular volume in the body. Acti-
vation of RAS plays a central role in the development
of cardiovascular diseases [39, 40]. Studies have
shown that RAS is involved in cardiac structural
remodeling and the development of myocardial
fibrosis in several disease states, including CHF [41,
42], myocardial infarction (MI) [43, 44], cardiomyop-
athy [45] and AF [29, 46]. In the RAS system,
angiotensin converting enzyme (ACE) converts an-
giotensin I to angiotensin II (Ang-II), which acts via
the counter-regulatory Ang-II receptors, type I (AT-1)
and type II (AT-2) receptors, that induce opposing
responses [42, 47]. The AT-1 receptor is responsible
for vasoconstriction, sodium and water retention,
cardiac hypertrophy and fibroblast stimulation with
increased cardiac fibrosis [48 – 50]. In contrast to the
effects of AT-1, the AT-2 receptor is able to inhibit
proliferation of cardiac myocytes and fibroblasts, and
induces a decrease in the cellular matrix [51, 52].
Blockade of the RAS signaling pathway by either
ACE inhibitors (ACEIs) or angiotensin-receptor
blockers (ARBs) could improve endothelial function
and reduce both morbidity and mortality of cardio-
vascular disease [39, 40, 53]. A detailed treatise
explaining the role of RAS, particularly involving
ACE and Ang-II, in structural remodeling in AF has
been presented elsewhere [29, 46, 54, 55]. Our present
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review focuses on the regulatory mechanisms linking
the angiotensin peptides, including Ang-II and angio-
tensin 1-7 [Ang-(1-7)], to atrial fibrotic remodeling in
AF.

Signaling pathways induced by Ang-II. Current
knowledge of the signaling pathways induced by
Ang-II underlying atrial fibrosis has been gleaned
from studying HF and hypertrophic cardiomyopathy.
However, Goette et al. [56] explicitly proposed a role
for signal transduction pathways and their regulation
in fibrillating atria. In brief, AT-1 receptors activated
by Ang-II binding induce a phosphorylation cascade
that activates mitogen-activated protein kinases
(MAPKs), which stimulate proliferation of fibro-
blasts, cellular hypertrophy and apoptosis [57 – 59].
Signaling pathways mediated by AT-1 receptors are
linked predominantly to G proteins [60]. Binding of
Ang-II to AT-1 receptors activates kinases of the Src
family (c-Src) via G proteins [61]. Thereafter, a Shc/

Grb2/SOS complex is formed that leads to activation
of the small GTPase, Ras. Ras-GTP interacts with
Raf-1 (MAPK kinase kinase), which then phosphor-
ylates ERK-activating kinase-1 and -2 (MEK-1 and
MEK-2). Finally, extracellular signal-regulated kin-
ases-1 and -2 (ERK-1 and ERK-2) are activated by
phosphorylation in this signaling cascade [58]. ERKs
activate transcription factors such as Elk-1 and c-fos,
which are responsible for the cellular effects.
Activation of the AT-1 receptor also stimulates
phospholipase C, leading to diacylglycerol-mediated
activation of protein kinase C (PKC) and to inositol
1,4,5-trisphosphate-mediated release of calcium from
intracellular stores [62]. The sustained elevation of
cytosolic calcium that occurs in early-stage AF could
activate the calcineurin-nuclear factor of activated T-
cell signaling pathway to regulate cardiac genes [63].
In addition to ERKs, activation of other members of
the MAPK family, such as p38 MAPK and c-Jun N-
terminal kinase (JNK), may induce apoptotic cell

Figure 1. Overview of important components of Ang-II signaling pathways involved in atrial fibrotic remodeling during AF. Ang-II,
angiotensin II; AP-1, activator protein-1; AT-1, angiotensin type I receptor; AT-2, angiotensin type II receptor; ATF-2, activated
transcription factor-2; DAG, diacylglycerol; ER, endoplasmic reticulum; ERK 1/2, extracellular signal-regulated kinase 1/2; Grbs, growth
factor receptor-binding proteins; IP3, inositol 1,4,5-trisphosphate; JAK, Janus kinase; JNK, c-Jun N-terminal kinase; MEK 1/2, mitogen-
activated/ERK kinase 1/2; PAK, p21-activated kinase; PEA-3, polyoma enhancer A-binding protein-3; PKC, protein kinase C; PLC,
phospholipase C; PP2A, protein serine/threonine phosphatase 2A; PTP, phosphotyrosine phosphatase; ROS, reactive oxygen species; Shc,
src homologous and collagen protein; Sp1, specific protein-1; STATs, signal transducers and activators of transcriptions.
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death [59]. Activation of p38 MAPK by Ang-II is also
mediated by H2O2 and JNK, which involves activation
of the p21-activated kinase (PAK)-mediated signaling
cascade. Ang-II signal transduction also has been
demonstrated to activate the JAK/STAT pathways
(i.e., Janus kinase/signal transducers and activators of
transcription) [57]. JAK2 initiates activation of tran-
scription factors STAT-1 and STAT-3 [64]. STAT-1 can
translocate into the nucleus and bind promoters of
early growth response genes such as c-fos and c-jun.
Transcription factors activated by this pathway in-
clude activating protein-1 (AP-1), STATs and nuclear
factor-kappa B (NF-kB).
In contrast, activation of the AT-2 receptor can inhibit
MAPK via activation of different phosphatases. Thus,
activation of the AT-2 receptor has antiproliferative
effects and supports cell survival [65]. Binding of Ang-
II to the AT-2 receptor leads to uncoupling of the GI-
protein, which then activates protein serine/threonine
phosphatase 2A and phosphotyrosine phosphatase,
which inhibit protein-serine/threonine phosphoryla-

tion and protein-tyrosine phosphorylation, respec-
tively [66, 67]. Through these pathways, it is proposed
that activation of the AT-2 receptor suppresses
MAPK activation stimulated by the activated AT-1
receptor and therefore inhibits AT-1 receptor-medi-
ated signaling pathways [42, 47].

The function of cardiac Ang-(1-7). Angiotensin-con-
verting enzyme II (ACE2) is a newly discovered
enzyme in the RAS pathway. ACE2 cleaves Ang-II to
produce a vasodilatory/antihypertrophic peptide
Ang-(1-7) [68, 69]. ACE2 provides a counter-regula-
tory system to Ang-II, thereby contributing to the
beneficial effects of the RAS blockade in AF. The
potential role of Ang-(1-7) as a cardioprotective
peptide having vasodilator, antigrowth and antiproli-
ferative actions has been recognized [70, 71]. In
addition, Ang-(1-7) is proposed to downregulate both
transcription and translation of the AT-1 receptor
[71]. Ang-(1-7) also augments nitric oxide release,
which has a key role in the regulation of cardiac

Figure 2. Overview of important components, TGF-b1, ROS and TNF-a, of major signaling pathways involved in atrial fibrotic
remodeling during AF. IKKs, IkB kinases; NF-kB, nuclear factor-kappa B; Smads, sma-and-mad related proteins; TAK1, TGF-b1-
activated kinase 1; TGF-b, transforming growth factor-beta; TGFR, transforming growth factor-beta receptor; TIE, TGF-b inhibitory
element; TNF-a, tumor necrosis factor-alpha; TNFR1, tumor necrosis factor-alpha receptor I.
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fibrosis in response to MI (myocardial infarction), in
part by antagonizing the action of Ang-II [72].
Normal cardiac function in ace/ace2 double-knock-
out mice suggests that a catalytic product of ACE
triggers contractile impairment in the absence of
ACE2, supporting the hypothesis that ACE2 is
indeed a critical negative regulator of the cardiac
effects of RAS [73]. Huentelman et al. showed that
systemic lentiviral delivery of ACE2 to Sprague–-
Dawley rats results in significant attenuation of the
increased heart weight/body weight ratio and myo-
cardial fibrosis induced by Ang-II infusion [74].
These observations demonstrate that ACE2 over-
expression is protective for Ang-II-induced cardiac
hypertrophy and fibrosis. Recently, Pan et al. dem-
onstrated that ACE2 expression is significantly
downregulated in porcine atria with sustained AF,
and the MEK/ERK-MAPK cascade is activated by
the Ang-II-signaling pathway [75]. They suggested
that atrial interstitial fibrosis might be due to an
imbalance of RAS caused by markedly reduced
expression of ACE2 during AF development. Ish-
iyama et al. provided evidence that AT-1 receptor
blockers increase angiotensin peptide concentra-
tions, return AT-1 receptor expression to normal
and increase ACE2 expression in hearts suffering
from MI [76]. These results argue that AT-1 receptor
blockade may upregulate ACE2 expression. Thus,
decreasing ACE2 expression during AF may affect
the Ang-II-dependent signaling pathway.
Based on the above findings, there are at least three
potential mechanisms by which ACE2 may be cardi-
oprotective via the prevention of cardiac fibrotic
processes during AF: first, Ang-II is cleaved to Ang-
(1-7) by ACE2, thereby attenuating Ang-II-induced
cardiac fibrosis; second, Ang-(1-7) may reduce the
effects of Ang-II by downregulating expression of the
AT-1 receptor; and third, production of nitric oxide is
potently induced by Ang 1-7, which might protect
against cardiac remodeling and oxidative stress by
Ang-II overproduction during AF with MI [72, 77].

Studies of RAS roles in atrial remodeling and atrial
fibrosis. Many studies have supported the role of RAS
activation in AF [55, 56, 78 –80]. Several studies have
shown that the use of ACEIs or ARBs can reduce
atrial fibrosis, the occurrence of AF and AF vulner-
ability in patients with CHF or in rapid atrial or
ventricular pacing AF models [55, 81]. In Table 1 [82 –
99], we present recent reports that focus on the roles
of RAS in atrial remodeling and atrial fibrosis in
clinical AF and pacing-induced AF animal models.
The use of an ACEI, such as enalapril or cilazapril,
inhibits the induction of Ang-II, attenuates atrial
fibrosis and decreases AF duration in canines with

either HF or pacing-induced AF [78, 94, 97, 99].
Similarly, administration of an AT-1 receptor blocker,
candesartan, prevents atrial structural remodeling and
atrial fibrosis in dog and rat models [95, 98]. More-
over, increased local production of Ang-II causes
atrial fibrosis and cardiac arrhythmia in a mouse
model overexpressing cardiac-specific ACE [96].
In clinical studies, Goette et al. [56] reported
elevated Ang-II concentrations and increased
ERK activation in patients with atrial fibrosis and
AF development. One study has shown that ACEIs
reduce fibrosis in patients with lone AF [93] .
Several retrospective clinical studies also support
the role of RAS by demonstrating a decrease in the
incidence of AF in patients treated with ACEIs or
ARBs, mostly in the setting of depressed left
ventricular (LV) function [82, 85 – 87, 89 – 93] .
ACEI administration also prevents the progression
of paroxysmal AF to chronic AF [54] , and increases
the efficacy of electrical cardioversion of AF [89,
91] . Multiple planned or prospective clinical trials
clarified the role of RAS inhibition in the treatment
of specific AF patient populations [80] . In a retro-
spective study using the AFFIRM (Atrial Fibrilla-
tion Follow-up Investigation of Rhythm Manage-
ment) database, treatment with ACEIs reduced AF
recurrence in patients with CHF or LV dysfunction
[87] . Recently, several meta-analyses have suggest-
ed that RAS inhibition may prevent AF [40, 53] . In
the largest study, Healey and co-workers [40]
analyzed 11 trials, which included 56,308 patients,
and found that treatment with ACEIs or ARBs
reduced the relative risk of developing AF. How-
ever, the authors found that the evidence for ACEIs
and ARBs in the AF was only convincing in contexts
associated with structural remodeling, like CHFand
LV hypertrophy/hypertension. The clinical data
suggest that the use of ACEIs and/or ARBs may
be useful for delaying progression of atrial fibrosis
and AF. Furthermore, there is now evidence linking
polymorphisms in RAS-related genes, such as those
encoding ACE and ACE2, with an increased risk of
subsequent AF development, further supporting
the role of RAS in AF development [83, 84, 88] .

TGF-b1
In the heart, fibrosis is thought to be partially
mediated by TGF-b1, a potent stimulator of colla-
gen-producing cardiomyofibroblasts [100, 101].
Pathogenic effects of TGF-b1 have now been sug-
gested to play a major role in several heart diseases,
including MI [102], dilated and hypertrophic cardio-
myopathies [102– 104], valve disease [104, 105] and
arrhythmia [104, 106]. Learning more about the
physiological roles of TGF-b1 will help to develop
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approaches for TGF-b1-targeting therapy in a variety
of cardiovascular diseases.

TGF-b1-Smad signaling pathway. TGF-b1 can induce
a signaling cascade through binding to serine/threo-
nine kinase receptors and then trigger the TGF-b1
signaling pathway, which is mediated through phos-
phorylation of the Smad family [107, 108]. The Smad
proteins are a family of intracellular signal transducers
that act downstream of receptors for TGF family
members [109]. Once Smad2 has been phosphory-
lated, Smad forms a complex (Smad2/Smad3/Smad4)
and then translocates to the nucleus and binds to
Smad-binding sequences in the regulatory regions of
specific genes, resulting in the alteration of gene
expression levels [110]. The TGF-b1-Smad signaling
pathway appears to be involved in the activation of
collagen gene promoter sites, primarily enhancing the
expression of collagen type I. Evidence from a trans-
fected mesangial cell line indicates that the gene
encoding collagen type I is a primary site for Smad
binding [111]. Verrecchia et al. found that the TGF-
b1-Smad pathway in dermal fibroblasts induces the
expression of genes encoding several types of colla-
gens, including collagen type I, type III and type VI
[112]. TGF-b1 also initiates JNK signaling pathways,
and then translocates to the nucleus where it phos-
phorylates several transcription factors including c-
Jun, activated transcription factor-2 (ATF-2) and Elk-
1, leading to specific transcriptional responses [113,
114].
An alternative pathway for TGF-b1-induced fibrosis
involving TGF-b1-activated kinase 1 (TAK1) has
been suggested. TAK1, a member of the MAPK
kinase kinase family, is thought to be a significant
downstream modulator for the TGF-b1 superfamily
[115]. Transgenic overexpression of constitutively
active TAK1 causes cardiac hypertrophy, fibrosis
and severe myocardial dysfunction [116]. Hanafusa
et al. reported that TAK1, once activated by TGF-b1,
can phosphorylate ATF-2, which then combines with
Smad2, Smad3 and Smad4 to form a transcription
complex [117]. Therefore, overexpression of non-
phosphorylated ATF-2 results in inhibition of TGF-b1
transcriptional activity.

TGF-b1-mediated atrial fibrosis. Pathogenic effects of
TGF-b1 have now been suggested to play a major role
in AF [104, 118]. Recent studies using microarray
analysis have demonstrated that expression of TGF-
b1 is upregulated in human AF patients, indicating
that activation of TGF-b1 signaling is involved in
atrial fibrosis development in AF [119]. Hanna et al.
[120] have reported a potential role for TGF-b1 in
CHF-related atrial remodeling. In addition, a trans-

genic mouse model overexpressing constitutively
active TGF-b1 revealed selective atrial interstitial
fibrosis, whereas ventricular histology was normal
[28]. This study demonstrated that atrial fibrosis alone
is a sufficient substrate for AF and that TGF-b1 may
play an important role in the genesis of atrial fibrosis.
Interestingly, this mouse model also suggests that the
atrium is more susceptible than the ventricle to the
development of fibrosis in response to high TGF-b1.
In porcine fibrillating atria induced by rapid atrial
pacing, upregulation of TGF-b1 was detected and the
atria showed significantly accumulated ECM [121].
Accordingly, TGF-b1 may be an interesting therapeu-
tic target as more is learned about the precise path-
ways involved in the development of atrial fibrosis.
The role of TGF-b1 in tissue fibrosis is not fully
understood. Many transcriptional elements related to
TGF-b1 signaling pathways may be involved in the
process of tissue fibrosis. For example, P311, a protein
that can block TGF-b1 autoinduction and downregu-
late the expression of genes encoding ECM proteins in
cardiomyofibroblasts, causes anti-fibrotic effects by
inhibiting TGF-b1 signaling [122]. The gene encoding
another protein, TSC-22 (TGF-b1 stimulated clone-
22), which has an effect opposite to P311, is markedly
upregulated in the same AF samples. TSC-22 is a
TGF-b1-inducible gene and represents a transcrip-
tional regulator that enhances the activity of TGF-b1
signaling by binding to the transcriptional activity of
Smad3 and Smad4 [123]. These results suggest that the
dramatic P311 downregulation or TSC-22 upregula-
tion may contribute to the development of fibrosis
during AF when expression of TGF-b1 is also
increased. Interestingly, Chen et al. recently found
markedly downregulated P311 and upregulated TSC-
22 in atrial tissues with AF in a pig model [121].

Inflammation
Accumulating evidence suggests a link between
cardiac inflammatory states and AF pathogenesis
[81, 124 – 126]. The signaling cascades triggered by
inflammatory mediators can induce transcription
factors, such as NF-kB and AP-1, through the path-
ways of ERKs, JNK, p38-MAPK, IkB kinases (IKK)
or ROS, which might involve in the atrial fibrotic
during AF (Fig. 2). The inflammatory cytokines are
potent regulators of ECM protein metabolism which
can mediate repair and remodeling through activating
MMPs and collagen. The studies found that interleu-
kin-1b (IL-1b), tumor necrosis factor-alpha (TNF-a)
and interleukin-6 (IL-6) can directly decrease colla-
gen synthesis and procollagen mRNA expression in
cardiocytes, and increase the breakdown of collagen
by increased MMP activity [127– 129]. Patients with
lone AF have inflammatory infiltrates, myocyte
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necrosis and fibrosis in atrial biopsies [130]. Similar
findings of atrial perimyocarditis with inflammatory
infiltrates and fibrosis in dogs with pacing-induced
sustained AF and atrial dilation have also been
reported [131]. It was shown that prednisone sup-
presses AF susceptibility and C-reactive protein
expression in canine sterile pericarditis and in a
pacing-induced AF model [132, 133]. Treatment with
anti-inflammatory agents such as glucocorticoids and
statins seems to reduce recurrence of AF [53, 134,
135]. In a dog model, CHF-induced atrial structural
remodeling and AF promotion could be attenuated by
simvastatin, an antioxidant and anti-inflammatory
agent [136, 137]. In the studies, the authors showed
that simvastatin-induced inhibition of pro-fibrotic
atrial fibroblast response and attenuation of LV
dysfunction may contribute to preventing the CHF-
induced fibrotic AF substrate.
The anti-inflammatory functions of statins are in-
volved in reducing the expression and function of
inflammatory mediators IL-6, TNF-a and cyclooxy-
genase 2, and in attenuating oxidant-induced mito-
chondrial dysfunction in cardiac myocytes [138].

Oxidative stress
Several studies have indicated that oxidative stress
within the atrial tissue during AF suggests a potential
role in structural remodeling of atrium [139 – 141].
Also, several pharmacologic approaches with antiox-
idant properties are effective for treating AF [79, 81,
142]. AF is often accompanied by oxidative changes,
which include mitochondrial DNA damage and upre-
gulation of NADPH oxidase, a major producer of
ROSs [31, 143]. ROSs arising from oxidative stress
include superoxide anion, hydroxyl radicals, hydrogen
peroxide and peroxynitrite, which in turn modify
myocardial cellular and extracellular protein structure
and function [144].
The role of oxidative stress in atrial remodeling was
established using a pacing-induced AF dog model
[145]. This study suggested that reduced vitamin C
levels in atrial tissue and increased oxidative stress due
to calcium accumulation in the atria result in a cellular
redox state that facilitates the formation and perpet-
uation of AF [146, 147]. Similarly to inflammatory
cytokines, ROSs activate ERKs, JNK and p38-MAPK
in both cardiac myocytes and fibroblasts (Figs. 1, 2).
By these signaling pathways, the pro-fibrotic effects of
ROS are well recognized, involving several processes
such as an increase in fibroblast proliferation, the
expression of pro-fibrotic genes and alterations in
ECM metabolism as well as balance between MMP
and TIMP activities [148, 149]. ROS production might
be stimulated by Ang II, inflammatory cytokines or
NADPH oxidase, etc. Inhibition of ROSs prevents

atrial remodeling, suggesting that oxidative stress may
play a critical role in the pathogenesis of AF [136,
150]. The direct addition of ROSs can decrease the
expression of collagen at the transcriptional level in
cardiac fibroblasts [151]. Furthermore, ROSs have
been shown to cause direct activation of MMPs in
conditioned media from cardiocytes [152 – 154].
MMPs are responsible for digesting ECM proteins
between cells, and abnormal regulation of MMP
activity results in ECM remodeling. These findings
show that ROS can directly or indirectly regulate the
metabolism of ECM proteins and might be involved in
atrial fibrotic remodeling during AF.
There is evidence that Ang-II increases NADPH
oxidase-mediated superoxide production through the
activation of the AT-1 receptor, whereas inhibition of
Ang-II production ameliorates oxidative stress in the
vasculature [155, 156]. The NADPH oxidase-medi-
ated signaling pathway is associated with p38-MAPK
[157]. On the other hand, elevated levels of ACE and
increased expression of Ang-II receptors have been
found in the atrial tissue of AF patients [56, 158]. It is
therefore reasonable to assume that angiotensin-
induced oxidative stress contributes to the atrial
remodeling process. Interstitial fibrosis triggered by
ROS may be mediated via Ang-II activation and
alternations in MMP/TIMP activity through several
divergent signaling pathways in fibrillating atrium
[155 – 157]. Fibrosis may also be directly generated by
substantial oxidative damage, for example dysfunc-
tion of myofibrillar energy controllers or depletion of
antioxidants [139, 159].
At the gene regulation level, Kim et al. examined gene
transcriptional profiles in human atrial tissue from
patients with permanent AF who underwent the Maze
surgical procedure [160]. Changes in the expression of
1152 known genes were examined by DNA micro-
arrays. Among those genes, five genes associated with
the production of ROSs (flavin containing monoox-
ygenase-1, monoamine oxidase B, ubiquitin-specific
protease 8, tyrosinase-related protein 1 and tyrosine 3-
monooxygenase) were upregulated [160]. The alter-
ation of redox status toward oxidative-related gene
expression has significant implications for atrial
damage, promoting atrial remodeling.

MMPs and atrial remodeling in AF

Cardiologists have commonly conceived of the ECM
as a central structural support and dynamic signaling
system for cells to assemble into functional heart
tissue. The composition of the cardiovascular ECM,
which predominately includes collagen types I and III,
fibril, fibronectin and laminin, is under strict control.
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Cardiac ECM remodeling is the maladaptive response
to changes in cardiac structure and function during the
progression of heart disease [18, 161, 162]. Metabo-
lism of ECM is a process tightly and dynamically
regulated by the delicate balance between MMPs and
TIMPs.
MMPs are a family of zinc-dependent endopeptidases
that are responsible for degradation of all the matrix
components between cells. Thus, an abnormal in-
crease in MMP activity caused by disruption of the
balance between MMPs and TIMPs may result in
degradation of matrix proteins and ECM remodeling
[163 – 165]. MMPs play a critical role in ECM turnover
and are involved in the physiopathogenesis of a
variety of cardiovascular disorders [166 – 168]. To
date, at least 26 human MMPs are known; all MMPs
are extracellular, most are pericellular and only a few
are membrane-bound, such as membrane type I MMP
(MT1-MMP) [169 – 171]. There are four known mem-
bers of the TIMP family, TIMP-1, -2, -3 and -4, which
are differentially regulated in the heart, but their
specific role(s) during heart disease remains unclear
[171 – 173]. TIMPs can directly inhibit the proteolytic
activity of activated MMPs by forming tight-binding
noncovalent 1:1 stoichiometric complexes with them
[174], constituting a key system that regulates ECM
composition and remodeling [172]. In the heart,
proper balance between synthesis and degradation
of ECM molecules is of utmost importance for
maintaining normal function [165, 175]. Most clinical
studies and animal models over the past decade have
focused on the role of MMPs and TIMPs in ventricular
remodeling of CHF and cardiomyopathies [162, 176,
177]. Here, we review recent work related to the effect
of atrial remodeling and atrial fibrosis on the metab-
olism of ECM and the regulation of MMPs/TIMPs
during AF.
Prolonged production of cytokines induced by the
wound repair process, lasting shear stress and static
pressure, or ROS challenge can lead to excessive
ECM accumulation and chronic fibrosis, often re-
sulting in organ failure such as HF [178] as well as
atrial diseases such as AF [18, 23, 37, 179]. Collagen,
the major heart matrix protein, shows marked
accumulation in fibrillating atria of humans [18, 23,
37], and ECM accumulation is considered to be a
secondary effects influenced by cytokines or physical
stress-induced cellular signaling pathways [180].
Besides collagen, change in other ECM proteins
such as fibrillin or fibronectin has also been found to
be associated with the development of AF in a
porcine model [181].
Atrial fibrosis or ECM accumulation is frequently
associated with AF arising from multiple causes,
including age [182], HF [18, 26] and cardiomyopathy

[18, 183]. Such structural and pathological changes are
also observed in atrial biopsies from patients diag-
nosed with lone AF [23, 130] and in the fibrillating
atria of rapid atrial pacing animal models, which are
generally considered to mimic lone AF [179, 181].
However, little is known about the mechanisms of
ECM metabolism and turnover in the development of
AF [33].

Expression and regulation of MMPs and TIMPs
Most MMPs are generally expressed at low levels in
normal adult tissue but are upregulated during certain
physiological and pathological remodeling processes
[184]. MMPs and TIMPs are mediated by a variety of
bioactive molecules, such as neurohumoral peptides,
growth factors, inflammatory cytokines and ROS [111,
184, 185]. At the level of transcription, MMPs and
TIMPs are regulated through binding of transcription
factors, enhancers and/or repressors to each gene
promoter region [170]. In Figure 3 [185 – 194], we
present the predictive binding sites of certain tran-
scriptional factors within the promoter region of
MMPs and TIMPs. The transcriptional factors iden-
tified include NF-kB, AP-1, polyoma enhancer A
binding protein-3 (PEA-3), Fos, Jun, ETS transcrip-
tion factors (Ets), TGF-b inhibitory elements (TIEs)
and specific protein 1 (Sp1).
Several MMP and TIMP genes contain AP-1 and NF-
kB binding sites in their promoter regions, and Ang-
II can influence MMP transcription via AP-1 and NF-
kB [185]. Stimulation of rat cardiomyofibroblasts
with Ang-II induces both NF-kB and AP-1 produc-
tion, which is associated with an increase in collagen
type I production as well as a decrease in MMP-1
expression [195, 196]. Likewise, Ang-II stimulation
of neonatal rat ventricular myocytes triggers the
nuclear translocation of cytoplasmic NF-kB, which in
turn increases MMP-9 transcription [197]. Ang-II
upregulation of MMP-2 and MMP-14 expression is
mediated by the JAK/STAT1 pathway [198]. In
addition, increased abundance of membrane-bound
extracellular MMP inducer (EMMPRIN), a cell-
surface protein that can trigger MMP expression, has
been identified in human myocardia with cardio-
myopathies [199]. The p38-MAPK signaling path-
way is proposed to mediate EMMPRIN regulation of
MMP expression; therefore, a p38 inhibitor,
SB203580, could potentially block EMMPRIN-
mediated upregulation of MMPs [200].
In the TGF-b1 signaling pathway, the active Smad
complex that translocates to the nucleus could bind to
the TIE promoter region, in turn inducing transcrip-
tional activation of specific target genes [108, 201].
Given that MMP-1, -7 and MT1-MMP have TIE
binding sites in their promoters, it is suggested that the
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expression of these MMPs might be altered with
increased levels of TGF-b1 [202]. In addition, Smads
can directly interact with members of the AP-1 family
of transcription factors, thereby increasing the possi-
ble number of promoter interactions [203]. The
proximal AP-1 site was reported by Hall et al. to be
essential for both TIMP-1 induction and MMP-1
repression [204]. MMP-1 repression could be medi-
ated through TGF-b1-dependent Smad3 and Smad4
activation in dermal fibroblasts [205], and MT1-MMP
and MMP-2 in cardiomyofibroblasts can be activated
by TGF-b1 [206]. Taken together, these studies
provide a mechanism for the fibrotic process associ-
ated with TGF-b1 stimulation through the gene
regulation of MMPs and TIMPs.
The inflammatory cytokines are involved in MMP and
TIMP regulation and control cardiomyofibroblast
ECM metabolism and the resulting ECM deposition
and cardiac remodeling in heart diseases, including HF

[185, 207], hypertension [208] and AF [124]. TNF-a
and IL-1b may contribute to ventricular dilation and
myocardial failure by promoting interstitial collagen
remodeling [127]. An in vitro study showed that TNF-
a, IL-1b and IL-6 can directly decrease collagen
synthesis and procollagen mRNA expression in cardi-
omyofibroblasts [127]. The increase in MMP activity in
response to TNF-a and IL-1b in cultured neonatal
cardiomyocytes and cardiomyofibroblasts also leads to
a rapid decrease in ECM accumulation [129]. Cardiac-
specific TNF-a overexpression in transgenic mice
causes HF in association with ECM remodeling, with
concomitant increases in MMP-2 and MMP-9 activity
[209]. TNF-a and IL-1b coregulate the expression of
collagenase and c-jun, and MMP activation may be due
to prolonged activation of c-jun gene expression [210].
Both pre- and post-transcriptional mechanisms con-
tribute to increases in MMP gene expression in
response to inflammatory cytokines. An increase in

Figure 3. The predicted binding sites of transcription factors located within the proximal regulatory region of selected human MMPs and
TIMPs gene. AP-1, activator protein-1; NF-kB, nuclear factor-kappa B; PEA-3, polyoma enhancer A binding protein-3; Sp1, specific
protein-1; TIE, TGF-b inhibitory element. The figure was organized from [170] and [185–194].
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the stability of MMP-1 transcripts and higher levels of
steady-state mRNA in response to IL-1b has been
reported [211].
ROS can directly activate MMPs and key transcription
factors such as NF-kB, AP-1 and Ets [144, 149]. In rat
ventricular cardiomyofibroblasts, periods of anoxia and
reoxygenation increased the expression of transcrip-
tion factor NF-kB but had no effect on AP-1 [212]. The
changes in the levels of these molecules could therefore
lead to selective modulation of MMP expression [170].
Moreover, increased hydrogen peroxide production
resulted in an increase of c-jun and c-fos mRNA and the
subsequent induction of MMP-1 mRNA in human skin
fibroblasts [213]. In a clinical study, Kameda et al.
demonstrated a positive correlation between a specific
marker of oxidative stress, 8-iso-prostaglandin F2a, and
the relative levels of MMP-2 and MMP-9 in patients
with coronary artery disease [214]. In an in vivo mouse
model of MI, delivery of hydrogen peroxide increased
relative MMP-2 activity, whereas a ROS scavenger
decreased relative MMP-2 activity [215]. The relation-
ship between ROS exposure and MMP production has
been confirmed in in vitro cell culture systems [151].
Siwik et al. demonstrated that a period of oxidative
stress increased the relative activity of MMP-2 and
MMP-9 in a cardiac fibroblast system [151]. Other
studies have provided a mechanistic link between
oxidative stress and the activation of MMPs in the
myocardium [152, 153]. Therefore, the conditions of
oxidative stress that commonly occur in cardiovascular
disease states with subsequent ROS generation con-
stitute a mechanism by which cardiac MMPs are
dysregulated.

Studies of MMP/TIMP roles in atrial remodeling and
atrial fibrosis
Cardiac MMP expression and activity reportedly
increase in a number of pathological conditions, such
as HF, hypertension and MI [44, 154, 199]. In AF,
altered MMP and TIMP expression is also noted in the
atrium; however, the number of studies is limited. In
Table 2 [216 – 222] we present studies that report
changes in MMP and TIMP expression and activity in
atrial tissues isolated in both clinical and animal
studies.
Boixel et al. [32] used a rat MI model to demonstrate
atrial dilation and fibrosis 12 weeks after LV infarc-
tion, which is accompanied by increased expression
and activity of MMP-2 and -7 but no change in the
expression or activity of TIMP-1, -2 and -4. In an atrial
pacing canine model with atrial failure, activity of
MMP-9 was selectively and significantly increased by
approximately 50 %, and the level of TIMP-4 protein
was decreased by half in the left atrium [221].
Increased expression of Ang-II in combination with

diminished changes in atrial MMP-2 and increased
TIMP-2 expression were observed in a rapid pacing
sheep model by Ann� et al. [222]. The authors also
demonstrated that inhibition of the angiotensin path-
way can suppress atrial fibrosis and the development
of persistent AF.
It was reported that MMP-9 mRNA and protein levels
increased in fibrillating atria of paroxysmal AF patients,
whereas expression levels of MMP-2 and TIMP-1 were
unchanged [217]. Increased MMP-2 activity and re-
duced TIMP-2 expression were observed in AF atria
with dilated cardiomyopathy or end-stage HF, which
may contribute to atrial structural remodeling and atrial
dilatation during AF [18]. Furthermore, a recent clinical
study examined the myocardial collagen content and
levels of MMP-1, -2, -8, -9, -13 and -14 and TIMP-1, -2, -3
and -4 in the four heart chambers, and concluded that
cardiac remodeling occurs in a chamber-specific man-
ner; however, collagen content was greater within the
atrial myocardium but lower in the ventricular myocar-
dium [34]. This study also showed that MMP-1 levels in
the right atrium, MMP-9 in the left atrium and TIMP-3
in the ventricles as well as left atrium were greater with
AF. The changes in the abundance of MMPs and TIMPs
suggest that the presence of AF in patients with CHF
may modulate MMP and TIMP levels and ECM
composition in the atrial myocardium [34]. In addition,
Arndt et al. provided evidence that points to a role of
ADAM (a disintegrin and metalloproteinase) family
members in atrial remodeling in human AF [216]. They
reported that AF is associated with an increase in the
expression of ADAM10 and ADAM15, suggesting that
altered ADAM expression may contribute to structural
remodeling of the atria during AF. Ann� et al. [218]
studied atrial structural remodeling and MMPs as well as
TIMPs in patients with mitral valve disease with and
without AF and showed concordant changes between
MMP-1 and MMP-9 during mitral valve disease, sug-
gesting the involvement of MMPs in structural atrial
remodeling. However, AF itself did not contribute to
altered fibrosis or MMP expression in the left atria.
Plasminogen activator inhibitor, an inhibitor of a potent
activator of many MMPs in the right atrial appendages,
was significantly decreased with increasing duration of
AF. In parallel, the levels of TIMP-1 and -2 transcripts
also decreased significantly [219]. Recently, gene ex-
pression profiles in canine models of AF were reported
by Cardin et al [223]. They concluded that increased
levels of ECM-related transcripts in atria are consistent
with fibrotic pathophysiology. However, similar to the
result of atrial fibrosis in the canine AF model, ECM-
related genes were strongly upregulated in a model of
ventricular tachypacing, but not in a model of atrial
tachypacing.

1500 C.-S. Lin and C.-H. Pan Regulatory mechanisms in atrial fibrillation



Ta
bl

e
2.

St
ud

ie
s

of
M

M
P

ro
le

s
in

at
ri

al
re

m
od

el
in

g
an

d
at

ri
al

fi
br

os
is

in
hu

m
an

st
ud

ie
s

an
d

an
im

al
m

od
el

s.

A
ut

ho
rs

Y
ea

r
E

xp
er

im
en

ta
ld

es
ig

n
K

ey
fi

nd
in

gs

H
um

an
st

ud
ie

s

A
rn

dt
et

al
.[

21
6]

20
02

*
30

pa
ti

en
ts

un
de

rg
oi

ng
ca

rd
ia

c
su

rg
er

y
*

pe
rs

is
te

nt
A

F
(n

=
15

)
vs

.n
o

hi
st

or
y

of
A

F
(n

=
15

)
A

F
is

as
so

ci
at

ed
w

it
h

an
in

cr
ea

se
in

th
e

ex
pr

es
si

on
of

A
D

A
M

10
an

d
A

D
A

M
15

.

M
ar

�n
et

al
.[

33
]

20
03

*
ch

ro
ni

c
no

nr
he

um
at

ic
A

F
(n

=
48

)
vs

.s
in

us
rh

yt
hm

(n
=

32
)

P
at

ie
nt

s
w

it
h

A
F

ha
ve

ev
id

en
ce

of
im

pa
ir

ed
m

at
ri

x
de

gr
ad

at
io

n,
w

hi
ch

is
de

pe
nd

en
tl

y
as

so
ci

at
ed

w
it

h
th

e
pr

es
en

ce
of

A
F.

A
n

in
de

pe
nd

en
t

re
la

ti
on

sh
ip

is
fo

un
d

be
tw

ee
n

th
e

M
M

P
/T

IM
P

sy
st

em
an

d
pr

ot
hr

om
bo

ti
c

st
at

e
in

A
F.

N
ak

an
o

et
al

.
[2

17
]

20
04

*
38

pa
ti

en
ts

un
de

rg
oi

ng
ca

rd
ia

c
op

er
at

io
n

*
A

F
(n

=
13

;p
ar

ox
ys

m
al

A
F,

n
=

6
;c

hr
on

ic
A

F,
n

=
7)

vs
.s

in
us

rh
yt

hm
(n

=
25

)
M

M
P

-9
ex

pr
es

si
on

is
in

cr
ea

se
d

in
fi

br
ill

at
in

g
at

ri
al

ti
ss

ue
,w

hi
ch

m
ay

co
nt

ri
bu

te
to

at
ri

al
st

ru
ct

ur
al

re
m

od
el

in
g

an
d

at
ri

al
di

la
ta

ti
on

du
ri

ng
A

F.

X
u

et
al

.[
18

]
20

04
*

53
pa

ti
en

ts
w

it
h

di
la

te
d

ca
rd

io
m

yo
pa

th
y

an
d

en
d-

st
ag

e
H

F
w

ho
un

de
rw

en
t

he
ar

t
tr

an
sp

la
nt

at
io

n
*

pe
rm

an
en

t
A

F
(n

=
19

),
pe

rs
is

te
nt

A
F

(n
=

18
)

an
d

no
do

cu
m

en
te

d
A

F
(n

=
16

)

A
tr

ia
lE

C
M

re
m

od
el

in
g

is
m

an
if

es
te

d
by

th
e

se
le

ct
iv

e
do

w
nr

eg
ul

at
io

n
of

T
IM

P
-2

al
on

g
w

it
h

up
re

gu
la

ti
on

of
M

M
P

-2
.T

yp
e

I
co

lla
ge

n
vo

lu
m

e
fr

ac
ti

on
in

th
e

at
ri

um
is

as
so

ci
at

ed
w

it
h

th
e

de
ve

lo
pm

en
t

of
su

st
ai

ne
d

A
F

in
pa

ti
en

ts
w

it
h

ca
rd

io
m

yo
pa

th
y

an
d

H
F.

A
nn

�
et

al
.[

21
8]

20
05

*
at

ri
al

ap
pe

nd
ag

es
of

pa
ti

en
ts

un
de

rg
oi

ng
co

ro
na

ry
ar

te
ry

by
pa

ss
gr

af
ti

ng
su

rg
er

y
(C

A
B

G
)

or
m

it
ra

lv
al

ve
su

rg
er

y
(M

V
S)

*
M

V
S

(n
=

19
;9

w
it

h
pe

rm
an

en
tA

F,
10

in
si

nu
sr

hy
th

m
)a

nd
C

A
B

G
(n

=
9

;a
ll

si
nu

s
rh

yt
hm

)

C
on

co
rd

an
t

ch
an

ge
s

be
tw

ee
n

at
ri

al
M

M
P

ex
pr

es
si

on
an

d
fi

br
os

is
in

m
it

ra
lv

al
ve

di
se

as
e

w
it

h
A

F
su

gg
es

t
in

vo
lv

em
en

t
of

M
M

P
s

in
st

ru
ct

ur
al

at
ri

al
re

m
od

el
in

g.
H

ow
ev

er
,s

el
ec

ti
ve

ch
an

ge
s

of
fi

br
os

is
or

M
M

P
ex

pr
es

si
on

in
th

e
le

ft
an

d
ri

gh
ta

tr
ia

of
A

F
w

er
e

fo
un

d.

M
uk

he
rj

ee
et

al
.

[3
4]

20
06

*
43

pa
ti

en
ts

w
it

h
en

d-
st

ag
e

C
H

F
*

A
F

(n
=

23
)

vs
.n

on
-A

F
co

nt
ro

l(
n

=
20

)
A

F
is

as
so

ci
at

ed
w

it
h

ch
am

be
r-

sp
ec

if
ic

al
te

ra
ti

on
s

in
m

yo
ca

rd
ia

lc
ol

la
ge

n
co

nt
en

t
an

d
M

M
P

an
d

T
IM

P
le

ve
ls

.D
if

fe
re

nc
es

in
M

M
P

an
d

T
IM

P
pr

of
ile

s
m

ay
pr

ov
id

e
di

ag
no

st
ic

an
d

m
ec

ha
ni

st
ic

in
si

gh
ts

in
to

th
e

pa
th

og
en

es
is

of
A

F
w

it
h

C
H

F.

G
ra

m
le

y
et

al
.

[2
19

]
20

07
*

ri
gh

t
at

ri
al

ap
pe

nd
ag

es
of

14
6

pa
ti

en
ts

ex
ci

se
d

du
ri

ng
he

ar
t

su
rg

er
y

*
A

F
gr

ou
p

vs
.s

in
us

rh
yt

hm
A

lo
ng

er
A

F
du

ra
ti

on
is

as
so

ci
at

ed
w

it
h

el
ev

at
ed

at
ri

al
in

te
rs

ti
ti

al
M

M
P

ac
ti

vi
ty

,b
ut

de
cr

ea
se

d
T

IM
P

ex
pr

es
si

on
.

K
at

o
et

al
.[

22
0]

20
07

*
th

e
ge

no
ty

pe
s

fo
r

40
po

ly
m

or
ph

is
m

s
of

32
ca

nd
id

at
e

M
M

P
ge

ne
s

*
A

F
(n

=
19

6)
vs

.c
on

tr
ol

(n
=

87
3)

T
he

T
al

le
le

of
M

M
P

2
po

ly
m

or
ph

is
m

is
a

ri
sk

fa
ct

or
fo

r
th

e
de

ve
lo

pm
en

t
of

A
F.

A
ni

m
al

m
od

el
s

H
oi

t
et

al
.[

22
1]

20
02

*
do

gs
w

it
h

ra
pi

d
pa

ci
ng

-i
nd

uc
ed

at
ri

al
fa

ilu
re

*
ra

pi
d

at
ri

al
pa

ci
ng

(n
=

8)
vs

.s
ha

m
op

er
at

io
n

(n
=

6)
R

ap
id

pa
ci

ng
-i

nd
uc

ed
at

ri
al

fa
ilu

re
is

as
so

ci
at

ed
w

it
h

di
ff

er
en

ti
al

ch
an

ge
s

in
M

M
P

ac
ti

vi
ty

.T
he

ac
ti

vi
ty

of
M

M
P

-9
w

as
se

le
ct

iv
el

y
in

cr
ea

se
d

by
~

50
%

,a
nd

th
e

le
ve

lo
f

T
IM

P
-4

pr
ot

ei
n

w
as

de
cr

ea
se

d
by

~
50

%
in

sa
m

pl
es

fr
om

do
gs

w
it

h
at

ri
al

fa
ilu

re
.

B
oi

xe
le

ta
l.

[3
2]

20
03

*
ra

t
m

od
el

of
M

I
*

m
ild

H
F

(n
=

12
)

vs
.s

ev
er

e
H

F
(n

=
15

)
In

M
I

an
d

H
F,

M
M

P
-7

ap
pe

ar
s

to
be

in
vo

lv
ed

in
th

e
ea

rl
y

st
ag

e
of

he
m

od
yn

am
ic

ov
er

lo
ad

in
th

e
at

ri
a.

A
nn

�
et

al
.[

22
2]

20
07

*
ra

pi
d-

pa
ci

ng
sh

ee
p

m
od

el
*

T
he

an
im

al
s

di
vi

de
d

in
to

hi
s

bu
nd

le
ab

la
ti

on
(H

B
A

)
gr

ou
p

(n
=

21
)

an
d

no
n-

H
B

A
gr

ou
p

(n
=

14
).

B
ot

h
gr

ou
ps

w
er

e
su

bd
iv

id
ed

to
re

ce
iv

e
m

ed
ic

at
io

n
:q

ui
na

pr
il,

lo
sa

rt
an

,o
r

pl
ac

eb
o.

A
tr

ia
lf

ib
ro

si
s

de
ve

lo
pm

en
t

in
th

is
m

od
el

is
th

e
re

su
lt

of
in

cr
ea

se
d

ex
pr

es
si

on
of

A
ng

-I
I

in
co

m
bi

na
ti

on
w

it
h

di
m

in
is

he
d

ch
an

ge
s

in
at

ri
al

M
M

P
-2

an
d

in
cr

ea
se

d
T

IM
P

-2
ex

pr
es

si
on

.I
nh

ib
it

io
n

of
th

e
an

gi
ot

en
si

n
pa

th
w

ay
by

A
C

E
Is

or
A

R
B

s
su

pp
re

ss
es

at
ri

al
fi

br
os

is
an

d
th

e
de

ve
lo

pm
en

t
of

pe
rs

is
te

nt
A

F.

Cell. Mol. Life Sci. Vol. 65, 2008 Review Article 1501



Theoretically, an increase in MMP activity should result
in a decrease in MMP substrates such as collagen;
however, cardiac fibrosis has been associated not only
with increased levels of collagens and alterations in
ECM components but also with increased activity of
MMPs, as seen in HF [32, 161]. This apparent discrep-
ancy may be explained by temporal changes in the
function of MMPs with concomitant heart disease, such
as valve regurgitation and HF, which have a substantial
effect on atrial MMP expression [218]. In addition,
increased MMP activity has often been observed in pro-
fibrotic states, and long-term MMP inhibition has been
shown to suppress fibrosis [224]. Moreover, a linear
relationship exists between the extent of fibrosis in right
atrial appendages at the time of open-heart surgery and
the incidence of postoperative AF [180]. Accordingly,
altered MMP levels may precede atrial ECM remodel-
ing and fibrosis and eventually increase conduction
heterogeneity in the atrium and AF vulnerability.

Conclusion

We have reviewed the literature that covers the
effectors, signal transduction and physiopathogenesis
concerning ECM dysregulation and atrial fibrosis in
AF. Based on this body of research, we suggest that the
Ang-II-MAPK and TGF-b1-Smad signaling pathways
play a major and central role in directly or indirectly
regulating atrial fibrotic remodeling in AF. Inflamma-
tion and oxidative stress are the important physiolog-
ical stresses contributing to atrial ECM turnover and
atrial fibrotic progression in fibrillating atria. Metabo-
lism of the ECM is a process that is tightly and
dynamically regulated in cardiac tissues by the balance
of degradative enzymes, MMPs, and their endogenous
inhibitors, TIMPs. Interplay of MMPs and TIMPs is
regulated by bioactive molecules such as neurohumoral
peptides, growth factors, inflammatory cytokines and
ROS. However, so far, knowledge of the expression and
regulation of MMPs and TIMPs in the atria with AF has
had to be extrapolated from the studies of ventricular
remodeling of CHF. A better understanding of the
molecular mechanisms that mediate MMP/TIMP bal-
ance will help us find new approaches to treat atrial
remodeling and to develop new medicines that prevent
or reverse the physiopathogenesis of AF.
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