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一、 中文摘要

本研究以隨機微分方程構建一隨機動態車流模
式以描述真實世界之隨機動態性, 另外, 模式的參數
估計方法為本研究另一重點, 儘管最大概似法(MLE)
是最常用的方法, 但所需要的最大概似函數僅有少
數模式可得[1], 有些研究指出可以用一般動差法
(generalized method of moments, GMM[2])來估計 , 
Gallant and Tauchen[1] 提出以有效動差法(efficient 
method of moments, EMM) 獲得估計函數, 在其研究
中, 亦證明有效動差法的計算效率與最大概似法相
近, 因此本研究中以有效動差法估計參數. 
關鍵詞: 隨機微分方程, 動態車流模式, 一般動差

法, 有效動差法, 概似估計

Abstract

This project formulates a dynamic traffic flow model 
by a stochastic differential equation (SDE) to describe 
the real traffic phenomena on the roads. In addition, 
estimating the parameters of the model is another 
research topic herein. Although a maximum likelihood 
estimation (MLE) procedure is usually applied to 
estimate stochastic models, the exact solution and the 
likelihood function of a model are usually unknown 
except for only a few cases[1]. Some researchers suggest 
estimating the parameters by the generalized method of 
moments[2] (GMM). Furthermore, Gallant and 
Tauchen[1] proposed the efficient method of moments 
(EMM) to obtain the estimating function and proved that 
the estimators are as efficient as maximum likelihood 
estimation. 
Keywords: stochastic differential equation, traffic flow, 

dynamic model, generalized method of moments, 
efficient method of moments, maximum likelihood 
estimation

二、Motivation and Objectives

Practical traffic systems in real world are stochastic as 
well as dynamic. Stochastic traffic flow models can be 
based on probabilistic distributions for lane-changing 

and passing, traffic variables (headway, spacing, flow, 
and speed) distributions. Others are conducted 
according to queueing theory for signal control and 
intersection analysis or newly developed technologies 
such as particle hopping models that describes dynamic 
traffic phenomena or for special purposes such as 
incident detection. From previously studies, stochastic 
traffic models are mathematically complex. 
Deterministic results are obtained only where 
randomness vanishes but will remain a crude 
approximation since traffic is naturally random as 
previously mentioned. 

According to mathematical modeling, a dynamic 
system with random fluctuations can be modeled by 
stochastic differential equations that involve stochastic 
processes as coefficients of the differential operator, as 
initial conditions, and as forcing functions. This work 
attempts to develop a stochastic differential model to 
represent stochastic dynamic traffic flow. The model is 
employed to describe time variant traffic flow on a 
freeway section that is under uninterrupted flow 
condition. In addition, the stochastic differential 
equation is (SDE) estimated by the efficient method of 
moments (EMM) herein[1, 3-6]. Real freeway data is 
employed as an example to illustrate EMM and show the 
accuracy. 

三、Results and Discussions

3.1 Modeling
The stochastic time variant traffic flow is illustrated 

as
( ) ( ) ( )ttqtq ε+= ,                                                            (1)

 where ( )tq  denotes traffic flow function that depends on 
time t and ( )T

M1 qqq ,...,= , which is a M-dimensional 
variable. ( )tq  denotes time variant mean flow function 
and ( )tε  denotes variance function, which is also time 
dependent. Flow changes with time is what we concern 
which is expressed as:

( ) ( ) ( ) dttddttqddttdq ε+= .                                              (2)



Let ( ) ( ) dttqdqt =ρµ , , ( ) ( ) dttdqt ε=ρσ , , where 

( )T
p1 ρρ=ρ ,...,  is a p-dimensional parameter vector. If 

( )ρσ ,qt
 (or ( ) dttdε ) is assumed to be a Wiener process, 

( )dtqt ρσ ,  may be rewritten as ( ) tt dWtq,σ , where 
tW  is a 

Wiener process. Equation (2) can be converted into ôIt
form as follows:
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1m
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ρσ+ρµ= ,, ,                           (3)

where ( ) ( ) ( )( )T
Mtt1t ρ⋅µρ⋅µ=ρ⋅µ ,,...,,,  is a M-dimensional 

drift function (or mean function) that represents 
instantaneous mean of the state variable and 

( ) ( ) ( )( )T
Mtt1t BB ρ⋅ρ⋅=ρ⋅σ ,,...,,,  is a mM × -dimensional drift 

function (or variance function) that represents 
instantaneous variance of the state variable. 
3.2 Estimation method

The explicit solution of Eq. (3) can be represented as
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where ( )( )∫ ρσ
s

0 isis dWsq ,  denotes ôIt  stochastic 

integral. However, for a stochastic differential equation, 
even ( )tq  can be detected in continuous time interval 

[ ]T0t ,∈  there are only a few models can be directly 
solved by a maximum likelihood estimator (MLE). In 
stead of MLE, GMM provides an estimation process to 
estimate parameters of a structural model without a 
specific density function, which is necessary of MLE. 
Thus, Gallant and Tauchen[1] presented a systematic 
approach to generate moment conditions for GMM 
estimator of the parameters of a structural model which is 
termed as efficient method of moments (EMM). The 
basic idea is to employ an auxiliary model (score 
generator) to obtain the expected scores of a structural 
model and treat them as the moment conditions. The 
parameter estimation process is illustrated as follows:
(1) Establish a score generator by the SNP method

A score generator must first be obtained. If the 
process { }tq  is correctly described by the density 

( )ρ− 0L qqp ,...,  introduced by the stochastic differential 

equations and by some other time invariant density 
( )θ− 0L qqf ,..., , which is the score generator as defined 

before. Then let 
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where ( )1tLt1t qqx −−− = ,..., . A score generator is obtained 
and does not have to employ SNP method[1, 7]. If the 
distribution of the process { }tq  is unknown, a score 
generator should be computed by the SNP method. First, 
it is assumed that the expectation of score depends on the 
lagged variables. 

( )Ltt xTq +=     ,..., 1LLt +−−=                                 (6)
of the state are recorded, where tq  denotes an 
M-dimensional vector that is a random variable, 

( )Ltxx Lt +=+
 denotes the lagged variable that is LM ⋅

long and 0L ≥  denotes the number of lagged variables. 
Then, the SNP estimator is illustrated as 

( ) ( )[ ] ( )Σµ∝θ ,,, xM
2

t qNxzPxqf ,                      (7)

where 
xtt Rzq µ+= , ( ) 1t101ttx xbbxqE −− +==µ , 

( )TT
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T
Lt1t qqqx −−−−− = ,...,, , ( )xzP ,  denotes a 

multivariate polynomial of degree zK  and the 

coefficients are tx , which are the xK  degrees 
polynomial of historical data. Thus,

( ) ∑∑
= =

α=
z xK

0i

K

0j

ji
ij xzxzP ,                                   (8)

is a polynomial of degree 
xz KK + . 

The variance-covariance matrix is assumed to 
depend on historical data to represent conditional 
heterogeneity. Let R  be a linear of the absolute values 
of the vector elements rL1tr xLtq

−−
µ−− through 2tx1tq

−
µ−−

and the variance-covariance matrix xΣ  becomes T
xx RR . 

The variance function is denoted as:

( ) ∑
=

+−− +−−−
µ−+ρ=

r
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where ( )Rvech  denotes a ( ) 21MM +  long vector that 
contains the elements of the upper triangle of the R
matrix, 

0ρ  is a ( ) 21MM +  long vector, 1P  through 
rLP

are ( ) 21MM +  by M matrices, and µ−q  denotes a 

vector that contains the absolute values of µ−q . uL

denotes the number of lags in xµ , rL  denotes the 
number of lags in )(Rvech , pL  denotes the number of 

lags of x part of the polynomial ( )xzP , , and L is the total 
number of lags under consideration 

( )urup LLLLL += ,,max .

Therefore, to obtain the SNP estimator, the 
parameters of the three parts described below must be 
determined by the empirical traffic data. The first part is 
the parameters of the mean function,

∑
=

−+=µ
L

1i
iti0x xbb L21i ,...,= T1t ,...,=                      (10)

are denoted by [ ]i0 bbΨ , which is a Gaussian VAR. 

The second part is the parameters of the variance 
function Eq.(11) which are denoted by [ ]i0 Pρτ , which is 

a Gaussian VAR+VRCH. The third part is the 
parameters of the Hermite polynomial Eq.(8), which is 
denoted by A(

ijα ). 

(2) Evaluate θ  at the maximum likelihood estimator 



Let =θ [ τΨA ], which is estimated by Tθ̂ , be 

obtained by minimizing
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However, there are lagged number that must be 
determined to ascertain the mean function, the variance 
function and the Hermite polynomial. The conventional 
selection criteria employed are AIC[8], BIC[9] and 
HQC[10]. BIC is conservative as it selects sparser 
parameterizations than the AIC. HQC falls between these 
two extremes. Gallant and Tauchen[7] suggested using 
BIC to move along an upward expansion path until an 
adequate model is determined. 
(3) Compute the information matrix of a score generator 

and generate moment conditions
The maximum likelihood estimation theory produces 

the following two mathematical results: 
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Therefore, to the first order, minimizing 

( ){ } ( ){ }ρ−θρ−θ − KIK T
1

T

T

T
ˆˆ  is the same as minimizing 

( )[ ] ( )TN
1

T

T

TN hIh θρθρ − ˆ,ˆ, . ( )θρ,h  may be computed by 
averaging a long simulation: 
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N

1t
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N
1h ˆ,ˆ,...,ˆˆlogˆ, .            (13)

As sample size N is large enough, Eq. (13) can 
approximate to Eq. (12). The approximation is so called 
Monte Carlo integral.
(4) Employ the GMM estimator to estimate ρ

The GMM estimator ρ̂  is

( )[ ] ( )TN
1

T

T

TN
R

hIh θρθρ=ρ −

∈ρ

ˆ,ˆ,maxargˆ .                 (14)

The (estimated) asymptotic covariance matrix of the 
EMM estimator ρ̂  is 

( ) ( )( ) 1ˆ1ˆ
−

= ρρ θρ HIH
T

Cov TT
T ,                               (15)

where ( )( )ρ∂θρ∂=ρ TNhH ˆ,̂  and the minimized value of T

times EMM criterion function is distributed as 2χ  with 

( ) ( )ρ−θ ˆdimˆdim T  degrees of freedom, where ( )ρ̂dim
denotes the number of elements in the vector ρ̂ , if the 
structural model is correctly specified. 
3.3Empirical study

The data set was collected from the No. 3 National 
Freeway north bound 86 km on 16 February 1999. Table 
1 lists the statistics values obtained from the SAS. 
Normal distribution is treated as a basis and the 
skewness and kurtosis are modified by the Hermite 
polynomial to make the data fit the distribution in the 
SNP. 

Using BIC to move along an upward expansion path 
until an adequate set of lagged numbers is obtained. 

3Lu =  minimizes AIC, BIC, and HQC. Although 

7Lr =  minimizes AIC and HQC, BIC utilizes 3Lr =
because both AIC and HQC selected too many variables. 
According to the selection criterion table, 3Kz =  and 

0Kx =  are chosen which induces ( )xzP ,  to be a third 
order polynomial of z. 0Kx =  means that the 
coefficients are independent to historical data. 

Table 1 The output of empirical data from SAS
Moments

N 288 Sum Wgts 288
Mean 130.5451 Sum 37597
Std Dev 76.34315 Variance 5828.277
Skewness 0.190541 Kurtosis -0.95643
USS 6580821 Css 1672715
CV 58.48027 Std Mean 4.498563
T:Mean=0 29.0193 Pr > |T| 0.0001
Num=0 288 Num>0 288
M(sign) 144 Pr >= |M| 0.0001
Sgn Rank 20808 Pr >= |S| 0.0001

Thus, the score generator obtained by SNP is 
illustrated as:

( ) ( ) ( )2
xx

23
3

2
210t qNzzzxqf σµα+α+α+α∝θ ,, ,          (16)

where
3t32t21t10x qbqbqbb −−− +++=µ ,                              (17)

4t3t2t x3t3x2t2x1t10x qqq
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µ−ρ+µ−ρ+µ−ρ+ρ=σ −−−
.      (18)

In the SNP, considering the round-off computational 
error, ( ) 0xzP ε+,  is substituted for ( )xzP ,  so the score 
becomes:

( ) [ ][ ]{ } ( )
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where 00100 .=ε . Table 2 is the estimation results from 
the lagged numbers 3K3L3L zru === ,, . 

Generating the moment condition is the next step in 
the estimation. Let N=10,000 to simulate  

( ) t11t qq ⋅β+α=ρµ ,  and ( ) t22t qq ⋅β+α=ρσ , are 
chosen. The chi-square is ( ) 2691072 .=χ , which 
indicates that the structural model is acceptable. Tables 
3 and 4 are the estimation results of the parameters of 
and the t-statistics, which confirm the parameters are 
reasonable and significant. Figure 1 is the actual data 
while Figure 2 displays the estimation results. 



This study constructs a stochastic model to 
represent the time variant traffic flow and employs EMM 
method to estimate the parameters since EMM can 
efficiently estimate the parameters of the structural 
model. There are several aspects leaving to further 
research. In the estimation procedure, the moment 
condition, ( )θρ ˆ,h , is estimated by ( )θρ ˆ,Nh  as N is large 
enough. However, different N  produces distinct results. 
In addition, the computation becomes more complex as 
N  increases. Therefore, how to determine an 
appropriate N  is an important further research topic. 

Table 2. The estimated parameters 
parameters standard deviation t-ratio

2A 0.14693 0.06659 2.206
3A -0.20018 0.03863 -5.182
4A -0.04053 0.01985 -2.042

1Ψ -0.05575 0.01176 -4.740

2Ψ 0.25639 0.05645 4.542

3Ψ 0.35327 0.04782 7.388

4Ψ 0.34106 0.04599 7.415

1τ 0.13949 0.02574 5.419

2τ 0.68111 0.10486 6.495

3τ 0.14032 0.09720 1.444

4τ 0.46823 0.09284 5.043

Table 3. The scores and the statistical results 
Scores s. d. t-ratio

2A 3.02727 2.14400 1.412
3A 3.98679 3.26852 1.220

4A 3.66721 6.59742 0.558

1Ψ 10.42392 5.90399 1.766
2Ψ -9.16756 7.08964 -1.293
3Ψ -6.77414 7.60898 -0.890

4Ψ -10.15077 7.52577 -1.349

1τ 6.91288 5.88235 1.175
2τ 1.01630 1.13576 0.895

3τ 1.42067 1.13618 1.250

4τ 1.55554 0.79777 1.950

Table 4. The estimated SDE parameters 
parameters s. d. t-ratio

1α 0.00059392 0.00010683 5.55944064

1β -0.02288550 0.00022580 -101.35310724

2α  0.08606748 0.00011783 730.45189614

2β -0.00262145 0.00010331 -25.37424970

Figure 1 The observation data of traffic flow

Figure 2 The estimation result of traffic flow

四、Comments

This work is based on the stochastic differential 
equation and the efficient method of moment. We 
successfully develop the stochastic dynamic traffic flow 
model and estimate the parameters. The empirical study 
shows that the methodology is available for forecasting 
traffic flow. Hence, the result coincides to the objectives 
and the expected result. In addition, the result is also 
submitted to the international journal (Transportation 
Technology and Planning).
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