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Abstract

This project formulates adynamic traffic flow model
by a stochastic differential equation (SDE) to describe
the rea traffic phenomena on the roads. In addition,
estimating the parameters of the model is another
research topic herein. Although a maximum likelihood
estimation (MLE) procedure is usually applied to
estimate stochastic models, the exact solution and the
likelihood function of a model are usually unknown
except for only afew caseq[1]. Some researchers suggest
estimating the parameters by the generalized method of
moments[2] (GMM). Furthermore, Gallant and
Tauchen[1] proposed the efficient method of moments
(EMM) to obtain the estimating function and proved that
the estimators are as efficient as maximum likelihood
estimation.

Keywords: stochastic differential equation, traffic flow,
dynamic model, generalized method of moments,
efficient method of moments, maximum likelihood
estimation

Motivation and Objectives

Practical traffic systemsin real world are stochastic as
well as dynamic. Stochastic traffic flow models can be
based on probabilistic distributions for lane-changing
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and passing, traffic variables (headway, spacing, flow,
and speed) distributions. Others are conducted
according to queueing theory for signal control and
intersection analysis or newly developed technologies
such as particle hopping models that describes dynamic
traffic phenomena or for special purposes such as
incident detection. From previously studies, stochastic
traffic  models are mathematicaly complex.
Deterministic results are obtained only where
randomness vanishes but will remain a crude
approximation since traffic is naturally random as
previously mentioned.

According to mathematical modeling, a dynamic
system with random fluctuations can be modeled by
stochastic differential equations that involve stochastic
processes as coefficients of the differential operator, as
initial conditions, and as forcing functions. This work
attempts to develop a stochastic differential model to
represent stochastic dynamic traffic flow. The model is
employed to describe time variant traffic flow on a
freeway section that is under uninterrupted flow
condition. In addition, the stochastic differential
equation is (SDE) estimated by the efficient method of
moments (EMM) herein[1, 3-6]. Red freeway data is
employed asan exampletoillustrate EMM and show the
accuracy.

Results and Discussions

3.1 Modeling
The stochastic time variant traffic flow is illustrated

as

o) = al) + (o). (1)
where ¢(¢) denotestraffic flow function that dependson
time t and g=(q,,..., g,,)", which is a M-dimensional
variable. g(t) denotes time variant mean flow function
and ¢(t) denotes variance function, which is aso time

dependent. Flow changes with time is what we concern
which is expressed as:
do(t)/ ot = dg(t)/ ot + de(t); ot - 2



Let m(qr)=dg(t)/a . s,(qr)=celt)at . where

s,(gr) (or ae(t)/dt) isassumed to be a Wiener process,
s, (qg.r)at may berewrittenas s (g, t)awy, where 1/ isa

Wiener process. Equation (2) can be converted into 1t0
form as follows:
do(t)=m(qr)at+s,(gr)dw, ©)
M 1 M 1 M m n
where m,(xr ) = (my, (xr ),....m,,(xr))” is @ M-dimensional
drift function (or mean function) that represents
instantaneous mean of the dstate variable and
s,(xr)=(B,(xt)....B,{xr))" isa M~ m-dimensional drift
function (or variance function) that represents
instantaneous variance of the state variable.
3.2 Estimation method
The explicit solution of Eq. (3) can be represented as

)= 4+ gmle(shr)ds+ & Gs.lefhr)aw, - (4
where 65/5(9(5);)(1% denotes Itd Stochastic

integral. However, for a stochastic differential equation,
even ¢(t) can be detected in continuous time interval

t1 [0,7] there are only a few models can be directly

solved by a maximum likelihood estimator (MLE). In
stead of MLE, GMM provides an estimation process to
estimate parameters of a structura mode without a
specific density function, which is necessary of MLE.
Thus, Gallant and Tauchen[1] presented a systematic
approach to generate moment conditions for GMM
estimator of the parameters of astructural model whichis
termed as efficient method of moments (EMM). The
basic idea is to employ an auxiliary model (score
generator) to obtain the expected scores of a structural
model and treat them as the moment conditions. The
parameter estimation processisillustrated as follows:
(1) Establish a score generator by the SNP method

A score generator must first be obtained. If the

process {q,} is correctly described by the density
p(q_ L qo‘r) introduced by the stochastic differential

equations and by some other time invariant density
g, qa‘q), which is the score generator as defined

before. Then let

f(CI[V"'VqI-L‘q) , (5)
Of(a.-a. |a)dg,
where x , =(g, ,,....q, ,) - A score generator is obtained

and does not have to employ SNP method[1, 7]. If the
distribution of the process {g} is unknown, a score

generator should be computed by the SNP method. First,
it isassumed that the expectation of score depends on the
lagged variables.

falx..0)=

q=T(x.) t=-L-L+1. (6)
of the state are recorded, where g denotes an

M-dimensional vector that is a random variable,
x.., = X(t+ L) denotes the lagged variable that is M xL

long and L3 0 denotes the number of lagged variables.
Then, the SNP estimator isillustrated as

flalxa)u [A(z X Ny (gm,.S). ™
where g, =Rz +m, m, = E(qr‘xu) =b,+bx,

%, =0l mdl) o AzX
multivariate polynomial of degree Kk, and the

denotes a

coefficients are X, , which are the K,  degrees

polynomial of historical data. Thus,
K, Kx L

P(z,x):éé_a,jz'x’ 8
i=0 j=0

isapolynomial of degree K, + K .

The variance-covariance matrix is assumed to
depend on historical data to represent conditional
heterogeneity. Let R be alinear of the absolute values
of the vector elements 9-., - ™, through %-:- M,
and the variance-covariance matrix S _becomes R R! .

The variance function is denoted as;
L,

Vech(RXtrl)zr0+é P 9
i=1

where vecHR) denotes a M(M + 1)/ 2 long vector that

contains the elements of the upper triangle of the R
matrix, r , isa M(M + 1)/ 2 long vector, p, through P

are M(M +1)/2 by M matrices, and |9~ M denotes a
vector that contains the absolute values of 9~ ™M, L,
denotes the number of lags in
number of lags in vech(R), L» denotes the number of

G 1 L+i ”

’
Xt-2- Lp+i |

%, L. denotes the

lags of x part of the polynomial Az X), and L isthetotal
number of lags under consideration
L=max(L,, L, L, +L,)

Therefore, to obtain the SNP estimator, the
parameters of the three parts described below must be
determined by the empirical traffic data. Thefirst part is
the parameters of the mean function,

L
m=b+a bx, i=12.L t=1..T (10)
i=1

r

are denoted by Y [bo|b/]- which is a Gaussian VAR.

The second part is the parameters of the variance
function Eq.(11) which are denoted by t|r | 7|, which is

a Gaussan VAR+VRCH. The third part is the
parameters of the Hermite polynomial Eq.(8), which is
denoted by A(a,-,- ).

(2) Evaluate q at the maximum likelihood estimator



Let g =[ Av|t ], which isestimated by q,. be

obtained by minimizing

» el 6d
s,(0,)= - L% 10g F(g/x, ,.q): (©)
eTZr:J
That is
. 65
4, =argmax- 2298 log #(q|x, ,.q)" (10)
qQ eTﬂ;=1

However, there are lagged number that must be
determined to ascertain the mean function, the variance
function and the Hermite polynomial. The conventional
selection criteria employed are AIC[8], BIC[9] and
HQC[10]. BIC is conservative as it selects sparser
parameterizationsthan the AIC. HQC falls between these
two extremes. Gallant and Tauchen[7] suggested using
BIC to move along an upward expansion path until an
adequate model is determined.
(3) Compute the information matrix of a score generator

and generate moment conditions

The maximum likelihood estimation theory produces
the following two mathematical results:

0° d-b%log Aalx.. k@ }pla, ;g7 ), , Lag,’ (11)
1= - Gger-toa la. K(r g T 1o la K (12)
" MG, G )., Ldg,
N
=+ 8- Qg7 109 s K lelG. o ), L
Therefore, to the first order, minimizing

{ar- K(r )}T/‘Tl{ar - K(r )} is the same as minimizing

[hN(r,&T)]T/#hN(r,aT). Hr,q) may be computed by
averaging along simulation:

- oY R .
hN(r,qT)»%g%log Aafa, 1m0 (13)
As sample size N is large enough, Eg. (13) can
approximate to Eq. (12). The approximation is so caled
Monte Carlo integral.

(4) Employ the GMM estimator to estimate r

The GMM estimator § is

= argAmax[hN(r ,(A]T)]T/'Tth(r ar) (14)

The (estimated) asymptotic covariance matrix of the
EMM estimator 7 is

CoF) :%_(H,T/T(ﬁT)H,)l’ (15
where , = (ﬂhN(r“,aT)/ﬂr) and the minimized value of T
times EMM criterion function is distributed as ¢ ? with
dim(ar)- dim(f) degrees of freedom, where dim(F)
denotes the number of elements in the vector 7, if the

structural model is correctly specified.
3.3Empirical study

The data set was collected from the No. 3 Nationa
Freeway north bound 86 km on 16 February 1999. Table
1 lists the datistics values obtained from the SAS.
Normal distribution is treated as a basis and the
skewness and kurtosis are modified by the Hermite
polynomial to make the data fit the distribution in the
SNP.

Using BIC to move along an upward expansion path
until an adequate set of lagged numbers is obtained.
L, =3 minimizes AIC, BIC, and HQC. Although

L, =7 minimizes AIC and HQC, BIC utilizes [ =3

because both Al1C and HQC sel ected too many variables.
According to the selection criterion table, K, = 3 and

K, = 0 are chosen which induces Az x) to be a third
order polynomial of z. K =0 means that the

coefficients are independent to historical data.
Table 1 The output of empirical datafrom SAS

Moments

N 288 Sum Wagts 288
Mean 130.5451 Sum 37597
Std Dev 76.34315 Variance 5828.277
Skewness 0.190541 Kurtosis -0.95643
uUss 6580821 Css 1672715
Ccv 58.48027 Std Mean 4.498563
T:Mean=0 29.0193 Pr>[T| 0.0001
Num=0 288 Num>0 288
M(sign) 144 Pr>= M| 0.0001
Sgn Rank 20808 Pr>=|g 0.0001

Thus, the score generator obtained by SNP is
illustrated as:

flax.au (@, +a,z+a,2 +a,2)f Mgm.s2).  (16)
where

m =b, +b,q,., +b,q,. , + b:q, 5 (17)
Gs-m, |- (18)

In the SNP, considering the round-off computational
error, Az x)+e, issubstituted for Az x) so the score

becomes:
- 2
f(CﬁX,q)= {48 xl[q_ mx]'X] +e0}Nm(C4mx'Si), (19)
dA(s Xt (ds+e,
where e, =0001. Table 2 isthe estimation results from
thelagged numbers [ =3, =3 K, = 3.

Sx:r0+r1‘qt-1_ mx

t-2

+r2‘q,_2- m,

¢ 3

+|’3

Generating the moment condition is the next step in
the estimation. Let N=10,000 to simulate
mg.r)=a,+b,xq, ad s(g.r)=a,+b,xq ae
chosen. The chi-square is c?(7)=10269 , which
indicates that the structural model is acceptable. Tables
3 and 4 are the estimation results of the parameters of
and the t-statistics, which confirm the parameters are
reasonable and significant. Figure 1 is the actual data
while Figure 2 displays the estimation results.



This study constructs a stochastic model to
represent the time variant traffic flow and employs EMM
method to estimate the parameters since EMM can
efficiently estimate the parameters of the structura
model. There are several aspects leaving to further
research. In the estimation procedure, the moment
condition, h(ra) is estimated by hN(r,a) as Nis large
enough. However, different N produces distinct results.
In addition, the computation becomes more complex as

N

increases. Therefore,

how to determine an

appropriate N isanimportant further research topic.
Table 2. The estimated parameters

parameters standard deviation t-ratio
A, 0.14693 0.06659 2.206
A, -0.20018 0.03863 -5.182
A, -0.04053 0.01985 -2.042
Y, -0.05575 0.01176 -4.740
Y, 0.25639 0.05645 4.542
Y, 0.35327 0.04782 7.388
Y, 0.34106 0.04599 7.415
t, 0.13949 0.02574 5.419
t, 0.68111 0.10486 6.495
t, 0.14032 0.09720 1.444
t, 0.46823 0.09284 5.043
Table 3. The scores and the statistical results
Scores s. d. t-ratio
A 3.02727 2.14400 1.412
A 3.98679 3.26852 1.220
A, 3.66721 6.59742 0.558
Y, 10.42392 5.90399 1.766
Y, -9.16756 7.08964 -1.293
Y, -6.77414 7.60898 -0.890
Y, -10.15077 7.52577 -1.349
t, 6.91288 5.88235 1.175
t, 1.01630 1.13576 0.895
t, 1.42067 1.13618 1.250
t, 1.55554 0.79777 1.950
Table 4. The estimated SDE parameters
parameters s. d. t-ratio
a, 0.00059392 0.00010683 5.55944064
b, -0.02288550 0.00022580 -101.35310724
a, 0.08606748 0.00011783 730.45189614
b, -0.00262145 0.00010331 -25.37424970
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Figure1 The observatior{haata of traffic flow

EMM simulated flow
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Figure 2 The estimation result of traffic flow
Comments

This work is based on the stochastic differential
equation and the efficient method of moment. We
successfully devel op the stochastic dynamic traffic flow
model and estimate the parameters. The empirical study
shows that the methodology is available for forecasting
traffic flow. Hence, the result coincides to the objectives
and the expected result. In addition, the result is also
submitted to the international journal (Transportation
Technology and Planning).
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