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Abstract

The effects of the composition of oxynitride passivations (SiOxNy) deposited by plasma enhanced chemical-vapor deposition
(PECVD) at room temperature on the microwave performance of AlGaN/GaN high electron mobility transistors (HEMTs) were
investigated. Five different SiOxNy passivating layers were deposited covering the whole range of dielectrics combinations from SiOx

to SiNy. Their impacts on the HEMT performance were studied by means of DC, S-parameters, pulsed IV and load-pull measurements.
The oxynitride dielectric with a refraction index of 1.58 was shown to be an effective SiOxNy passivation for limiting the gate-lag effects in
the HEMTs and at the same time increasing the breakdown voltage of the device. It is thus a promising passivation layer for microwave
power high voltage and high power applications.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

GaN, AlN and their ternary compounds are very prom-
ising materials for high power and high frequency electron-
ics due to their wide bandgap, high thermal stability, high
electron velocity and large critical field [1]. In particular,
the AlGaN/GaN heterostructure is technologically inter-
esting since it combines the excellent III-nitrides material
properties and a considerable piezoelectric charging of
the 2DEG formed at the interface, making it suitable for
the realization of high electron mobility transistors
(HEMT) for high power and high frequency operation
[2–6].

However, the performance of the HEMTs is usually
limited by trapping effects occurring both at the surface
and in the bulk GaN buffer, decreasing the output current
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and thus output power of the device under RF operation
[7]. These effects are commonly referred to as gate- and
drain-lag, respectively. Unlike the bulk defects, the activity
and the number of the surface trapping centers could be
partly mitigated during processing by the appropriate
passivation. Therefore much attention has been paid to
the development of efficient passivating materials and
processes, i.e. MgO [8], Sc2O3 [8], SiNx [9], SiOx [10],
AlN [11], Al2O3 [12] and ONO [13]. Nevertheless, contra-
dictory reports regarding the passivation efficiency of the
same dielectric layers have been published and might origin
form the different deposition processes. Recently, Arul-
kumaran et al. [14], suggested that SiOxNy could also be
used for the passivation. However, their affirmation was
based only on the influence of illumination on the DC char-
acteristics of HEMTs passivated with a unique SiOxNy

layer (n = 1.58) compared to SiNx and SiOx.
In this paper, we present a study of the impact of several

SiOxNy passivating layers with different ratio of oxygen

mailto:vincent.desmaris@chalmers.se


Fig. 1. DC characteristics of HEMTs different passivations.
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and nitrogen ranging from SiOx to SiNy, on the perfor-
mance of AlGaN/GaN HEMTs, using DC, transient,
small-signal and load-pull measurements.

2. Experimental processing details

The AlGaN/GaN heterostructure was grown on sap-
phire by RF Micro-Devices using metal-organic chemi-
cal-vapor deposition (MOCVD). The HEMT structure
consisted of a 1-lm thick unintentionally doped GaN buf-
fer layer followed by an undoped 25 nm Al0.29Ga0.71N,
respectively. The sheet carrier concentration and electron
mobility obtained by Hall measurements were 9 ·
1012 cm�2 and 900 cm2/V s, respectively.

The epi-wafers were first cleaned using a standard degre-
asing procedure in hot solvents and RCA cleaning. The
mesas were formed by a chlorine based inductively coupled
plasma reactive ion etching (ICP-RIE). Ohmic contacts
were obtained by e-beam evaporation of a Si/Ti/Al/Ni/Au
multilayer followed by a rapid thermal anneal (RTA) in a
nitrogen environment [15] yielding a typical contact resis-
tance of 0.2 X mm. The 2 lm Ni/Au gate, were defined in
the middle of the 10 lm source–drain spacing and deposited
by e-beam evaporation. The transistors were passivated by
five different SiOxNy layers, deposited by plasma enhanced
chemical-vapor deposition (PECVD) at room temperature,
using a constant SiH4 gas flow and different N2/N2O gas
ratios (Table 1). The refractive indices of the deposited lay-
ers were measured with a Woollam M2000 ellipsometer at a
wavelength of 634 nm. The refractive indices were measured
to be 2.04, 1.77, 1.58, 1.5 and 1.47, covering hence the whole
range of oxynitrides from pure SiNy (n = 2.04) to pure SiOx

(n = 1.47). All passivation layers were 800 Å thick. Contact
windows were finally etched in a fluorine-based plasma
before the characterization of the HEMTs using DC, tran-
sient and small-signal measurements. In order not to shield
any gate-lag effects and really to reveal any semiconductor/
passivation trapping mechanism, field-plates (linked to the
gate contact pad) were deposited after DC, transient, and
small-signal measurement, but before the breakdown and
RF large signal characterization.

3. Results and discussion

3.1. DC characteristics

The DC characteristics of the samples studied are shown
in Fig. 1. The values are averages of five devices and the
Table 1
N2/N2O gas ration and corresponding oxynitride n value

n SiH4flow (SCCM) N2O flow (SCCM) N2 flow (SCCM)

2.04 8 0 20
1.77 8 5 15
1.58 8 10 10
1.5 8 15 5
1.47 8 20 0
error-bars show the spread of the measurements. The max-
imum drain current density (Idss) was found to vary
between the different samples with different passivations.
The variation in Idssfor the different samples may be due
to the different passivations [14], different strains between
the passivation dielectrics and the AlGaN surface [16–19],
and non-uniformities in the epi-growth (resulting in differ-
ent sheet resistivity).

The dependence of the passivation on Igs (gate–source
leakage current) and Igd (gate–drain leakage current) was
investigated using the two different methods. The effect of
the passivation on Igs, the HEMTs were measured in a
two terminals configuration (grounding the source and
drain and measuring the gate current as a function of the
reverse gate bias). The effect of the passivation on Igd was
characterized by measuring the gate current versus the
drain voltage, and biasing the gate in sub-threshold condi-
tions. As shown in Figs. 2 and 3, no significant difference in
the gate current was observed for all the passivations, con-
trary to the results in [14].
3.2. Breakdown characteristics

The off-state breakdown characteristics of the field-pla-
ted HEMTs with different passivations were measured
using a Keithley 237. Typical breakdown characteristics
are plotted in Fig. 4. The measured off-state breakdown
increased from 160 V to 230 V, when increasing ratio of
oxygen in the oxynitride. (The lower breakdown voltage
of the SiOx passivated device is due to a misalignment of
the gate towards the drain. The alignment accuracy is
1 lm.) These results are in accordance with the observation
of [14], where an increase in oxygen ratio in the passivation
changes the surface states from shallow to deep trapping
center. The breakdown voltage in these measurements are
largely due to these trapping centers, since the dielectric



Fig. 2. Two terminals gate current (Vds = 0).

Fig. 3. Ig–Vds measured at sub-threshold regime (Vgs = �6 V).

Fig. 4. Off-state (Vgs = �6 V) breakdown voltage characteristics of SiON
passivated HEMTs.

Fig. 5. Small-signal performance of the different HEMTs.
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breakdown for this HEMT is more than 500 V (calculated
from the gate–drain distance of 2.5 lm and a breakdown
field of 2 MV/cm [20]).
3.3. Small-signal performance

The small-signal performance of the HEMTs was mea-
sured using a HP8510C VNA. The external cut-off frequen-
cies (ft) and maximum oscillation frequency (fmax) was
calculated, as shown in Fig. 5. The small-signal perfor-
mance of the HEMTs, slightly increases when decreasing
the refraction index of the passivation. Since the dielectrics
thickness was kept constant and the DC transconductance
(the maximum transconductance is about 115 mS/mm of
all devices) was independent of the surface passivation, this
dependence can be ascribed to the different Cgs values
induced by the different passivations, modifying the dielec-
tric constant. Similar effects were observed by Tilak et al.
[9] on HEMTs when investigating the thickness depen-
dence of different SiNx passivations on the small-signal
performance of AlGaN/GaN HEMTs.
3.4. Transient characteristics

Gate-lag is attributed to surface state acting as electron
traps located on the un-gated areas between source and
drain, limiting the current in the device under RF large
signal operation. It could be revealed using transient
measurements, by monitoring the drain current IT after a
gate turn-on voltage step (i.e stepping the gate voltage from



Table 2
Small-signal performance of the different HEMTs

n P (W/mm) PAE (%) Gp (dB)

2.04 4.3 (5) 45 4.2
1.77 2.9 (3.6) 42 4.2
1.58 3 (4.7) 34 3.9
1.5 2.8 (3.3) 30 3.8
1.47 1.4 (2.3) 13 1.7
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Vpinch to 0 V at given constant drain bias). The gate-lag
ratios (GLR) between the transient source–drain current
ITand the corresponding measured steady state- or
DC-value (Idc) for each type of passivation layers, are pre-
sented in Fig. 6. The measurements were performed with
an Accent DIVA D225 on five different devices of each
passivating dielectric and the uncertainty on GLR is 5%.

The different behaviors of the GLR could be directly
related to the time constant of the gate-lag, and could be
ascribed to different types of surface traps. In fact, Zhang
et al. [17], suggested that the SiO2/GaN interface was pop-
ulated by deep traps, which were beneficial during the turn-
off of the device, capturing electrons injected from the gate.
However their slow detrapping speed was detrimental dur-
ing turn-on. This is in accordance to our measurements,
where the GRL for SiOx passivated HEMTs shows the
strongest dependence on the gate pulse length for long
pulses, revealing a very long detrapping time constant,
and the DC source–drain current could therefore not be
completely recovered.

Using GLR as a figure of merit of the efficiency of the
passivation layers to reduce the surface trapping effect, lim-
iting the current in the device under RF large signal oper-
ation, SiNx and SiOxNy (n P 1.58) passivations are most
efficient to reduce of the gate-lag. In fact, the whole DC
current can be fully recovered; GRL being larger than
100%, due to a limited self heating. Furthermore, these
different GLR results correlate well to the breakdown
results and support the explanation of the breakdown
characteristics.

3.5. Large signal performance

The large signal performance of the devices was investi-
gated using on-wafer continuous wave (CW) load-pull
measurements at 3 GHz. The same Class AB quiescent
point (Vds = 30 V, Vgs = �3 V), was used for all measure-
Fig. 6. Transient characteristics of SiON passivated HEMTs.
ments. Since all transistors have the same pinch-off voltage
(�4 V), they were all tested in the same class of operation.
The maximum power added efficiency (PAE), the associ-
ated output power densities (Pout) and power gain (Gp)
measured at the maximum of PAE, obtained for all the dif-
ferent type of passivated transistors are summarized in
Table 2. The maximum output densities are indicated
within brackets.

The results show a very strong dependence of the PAE
on the passivation layer type. The SiOxNy passivation lay-
ers with a refraction index higher than 1.58, where found to
be the most efficient. This result can be readily correlated to
the GLR measurements. Since all samples were processed
on the same epi-wafer (with equal drain-lag effect), the dif-
ference in PAE is related to the trapping effects at the top
surface of the AlGaN layer.

Moreover, the maximum output power densities are
considerably affected by the type of passivation. The high-
est output power density was obtained for the SiNx passiv-
ation layer (Fig. 7) and the lowest was observed for SiOx

passivated HEMTs (2.3 W/mm). Similar behavior was also
observed by other authors [21]. The difference in maximum
output power densities between the three best passivations
(n P 1.58) is ascribed to the difference in output current
and GLR results.

Nevertheless, the SiOxNy (n = 1.58) passivation resulted
in HEMTs with almost as high output power density and
Fig. 7. Power sweep of SiNx passivated HEMTs.
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comparable PAE, and a higher breakdown voltage com-
pared to SiNx passivated devices. In high voltage applica-
tions, SiOxNy (n = 1.58) may therefore be a good
alternative.
4. Conclusion

SiOxNy dielectrics for the passivation of microwave
AlGaN/GaN HEMTs were investigated with measured
CW output power and correlated with the gate-lag mea-
surements. The SiOxNy layer with a refractive index of
1.58 is almost as efficient as SiNx for the passivation of
HEMTs and might be a good passivation layer for very
high voltage operation, due to its better breakdown
capabilities.
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